
 
 
 

 
 

 

 
 
 
 

DESIGN OF AND COMPARISON WITH 
VERIFICATION AND VALIDATION BENCHMARKS 

 
 

William L. Oberkampf 
wloberk@sandia.gov 

 
Timothy G. Trucano 
tgtruca@sandia.gov 

Sandia National Laboratories 
Albuquerque, New Mexico, USA 

 
 
 

Abstract 
 

Verification and validation (V&V) are the primary means to assess accuracy and 
reliability of computational simulations. V&V methods and procedures have fundamentally 
improved the credibility of simulations in several high-consequence application areas, such 
as, nuclear reactor safety, underground storage of nuclear waste, and safety of nuclear 
weapons. Although the terminology is not uniform across engineering disciplines, code 
verification deals with the assessment of the reliability of the software coding and solution 
verification deals with the numerical accuracy of the solution to a computational model. 
Validation addresses the physics modeling accuracy of a computational simulation by 
comparing with experimental data. Code verification benchmarks and validation benchmarks 
have been constructed for a number of years in every field of computational simulation. 
However, no comprehensive guidelines have been proposed for the construction and use of 
V&V benchmarks. Some fields, such as nuclear reactor safety, place little emphasis on code 
verification benchmarks and great emphasis on validation benchmarks that are closely related 
to actual reactors operating near safety-critical conditions. This paper proposes 
recommendations for the optimum design and use of code verification benchmarks based on 
classical analytical solutions, manufactured solutions, and highly accurate numerical 
solutions. It is believed that these benchmarks will prove useful to both in-house developed 
codes, as well as commercially licensed codes. In addition, this paper proposes 
recommendations for the design and use of validation benchmarks with emphasis on careful 
design of building-block experiments, estimation of experiment measurement uncertainty for 
both inputs and outputs to the code, validation metrics, and the role of model calibration in 
validation. It is argued that predictive capability of a computational model is built on both the 
measurement of achievement in V&V, as well as how closely related are the V&V 
benchmarks to the actual application of interest, e.g., the magnitude of extrapolation beyond a 
validation benchmark to a complex engineering system of interest. 

61



 
 
 

 
 

 

 1. Introduction 
1.1 Background 

 
The importance of computer simulations in the design and performance assessment of 

engineered systems has increased dramatically during the last three or four decades. The 
systems of interest include existing or proposed systems that operate, for example, at design 
conditions, off-design conditions, and failure-mode conditions in accident scenarios. The role 
of computer simulations is especially critical if we are interested in the reliability, robustness, 
or safety of high-consequence systems that cannot ever be physically tested in a fully 
representative environment. Examples are the catastrophic failure of a full-scale containment 
building for a nuclear power plant, unusual environments or damaged hardware of the US 
Space Shuttle, long-term underground storage of nuclear waste, and a nuclear weapon 
involved in a transportation accident. In many situations, it is even difficult to specify what a 
“representative environment” actually means in complex system. However, computer 
simulations are beneficial to improved understanding of the response of the system, in the 
development of public policy, the preparation of safety procedures, and the determination of 
legal liability. With this increased responsibility, we believe the credibility of the 
computational results must be raised to a higher level than has been accepted during the early 
decades of computational simulation. From a historical perspective, we must realize that we 
are in the early days of changing from an engineering culture of build-test-fix, to a culture 
based on virtual reality. To have justified confidence in this evolving culture, major 
improvements must be made in the transparency and visibility of both the maturity of the 
computer codes used, as well as the uncertainty assessment of the physics models used. 
Stated more bluntly, we need to move from a culture of glossy marketing and arrogance, to a 
culture that forthrightly addresses the limitations, weaknesses, and uncertainty of our 
simulations. 

Developers of computational software, computational analysts, and users of the results 
of simulations face a critical question: How should confidence in computational science and 
engineering (CS&E) be critically assessed? Verification and validation (V&V) of 
computational simulations are the primary building blocks for assessing and quantifying this 
confidence. Briefly, verification is the assessment or estimation of the numerical accuracy of 
the solution to a given computational model. Validation is the assessment of the accuracy of a 
computational model through comparison of computational simulations with experimental 
data. In verification, the association or relationship of the simulation to the real world is not 
an issue. In validation, the relationship between computation and the real world 
(experimental data) is the issue. 

The nuclear reactor safety community has a long history of contributing to the 
intellectual foundations of V&V and uncertainty quantification (UQ). The risk assessment 
community in its dealings with underground storage of nuclear waste has also made 
significant contributions to the field of UQ. However, contributions from both of these 
communities to V&V&UQ have concentrated on software quality assurance procedures, as 
well as statistical procedures for uncertainty estimation. It is fair to say that computationalists 
(code users and code developers) and experimentalists in the field of fluid dynamics have 
been pioneers in the development of terminology, methodology and procedures for V&V. 
The (only) book in the field on V&V provides a good summary of the development of many 
of the methodologies and procedures in computational fluid dynamics (CFD).[1] Also, Refs. 
[2-5] provide a comprehensive review of the history and development of V&V from the 
perspective of the CFD community. 

To achieve the next level in credibility of computational simulations will require 
concerted and determined efforts by individuals, universities, corporations, governmental 
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agencies, commercial code development companies, engineering societies, and standards-
writing organizations throughout the world. The goal of these efforts should be to improve 
the quality of: the physics models used, the reliability of the computer software, the 
numerical accuracy estimation, the uncertainty quantification, and the training and expertise 
of users of the codes. In addition, new methods are critically needed for effectively 
communicating the maturity and reliability of each of these elements, especially in 
relationship to decision making on high-consequence systems. This paper will focus on one 
aspect of needed improvements to code quality and physics model accuracy assessment, 
specifically, the construction and use of highly demanding V&V benchmarks. The 
benchmarks of interest here are those relating to accuracy and reliability of codes and physics 
models. We are not interested here in benchmarks that relate to performance issues, such as, 
computing speed of codes or performance of codes on different types of computer hardware 
and operating systems. 

Probably the most widely known V&V benchmarks have been developed over the last 
two decades by the National Agency for Finite Element Methods and Standards 
(NAFEMS).[6] Roughly 30 verification benchmarks have been constructed by NAFEMS 
primarily in solid mechanics, but more recently in fluid dynamics. Most NAFEMS 
verification benchmarks consist of an analytical solution, or an accurate numerical solution, 
to a simplified physical process described by a partial differential equation. The NAFEMS 
benchmark set is carefully defined, numerically demanding, and well documented. However, 
these benchmarks are, at the present time, very restricted in their coverage of various 
mathematical and/or numerical difficulties, and also their coverage of physical phenomena. 
In addition, how well a given code performs on the benchmark is left to the interpretation of 
the user of the code. It would also be expected that the code performance on the benchmark 
would depend on the experience and skill of the user. 

Several large commercial code companies dealing with solid mechanics have developed 
an extensive set of verification benchmarks that are well documented and can be exercised by 
licensed users of the code. Such benchmarks are intended to be applied to that specific code, 
and reflect the dissemination limitations of this information. Documented performance on the 
benchmarks can be clearly compared with user-independent checks of the same benchmarks. 
This activity promotes a stronger user understanding of what is minimally expected from 
performance of these codes. Some examples of these commercial codes are: ANSYS with 
roughly 250 verification test cases and ABAQUS with roughly 300 test cases. The careful 
description and extensive documentation of the ANSYS and ABAQUS benchmark set is 
impressive. However, the primary goal in essentially all of these documented benchmarks is 
to demonstrate “engineering accuracy” of the codes; not to precisely and carefully quantify 
the numerical error in the solutions. As stated in one set of documentation: “In some cases, an 
exact comparison with a finite-element solution would require an infinite number of elements 
and/or an infinite number of iterations separated by an infinitely small step size. Such a 
comparison is neither practical nor desirable.” We disagree with this viewpoint on all counts: 
a) it does not require an infinite number of elements, or iterations, or infinitely small time 
step, and b) It is practical and desirable to carefully assess the accuracy of a code by 
comparison with theoretically demanding solutions. We will support our viewpoint in the 
body of this paper. 

Noticeably absent from our list of commercial codes are CFD software packages. A 
recent paper by Abanto et al[7] tested three unnamed commercial CFD codes on relatively 
simple verification test problems. The poor results of the codes were shocking to some 
people, but not to the authors of the paper, nor to us. Although we have not surveyed all of 
the major commercial CFD codes available, of those examined, we have not found extensive, 
formally documented, verification or validation benchmark sets for these codes. 
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A number of efforts have been undertaken in the development of validation databases 
that could mature into well-founded benchmarks. In the United States the NPARC Alliance 
has developed a validation database that has roughly twenty different flows.[8] In Europe, 
starting in the early 1990’s, there has been a much more organized effort in the development 
of validation databases, primarily focused in aerospace applications. ERCOFTAC (the 
European Research Community on Flow, Turbulence and Combustion) has collected a 
number of experimental datasets for validation.[9] QNET-CFD is a Thematic Network on 
Quality and Trust for the industrial applications of CFD.[10] This network has more than 40 
participants from several countries who represent research establishments and many sectors 
of the industry, including commercial CFD software companies. For a history and review of 
the various efforts, see Rizzi and Vos[11] and Vos et al.[12] 

An observation that the present authors make of this work in validation databases is that 
many of the database cases are for very complex flows, sometimes referred to as “industrial 
applications.” Our experience with attempts at validation for complex physical processes, and 
our observations of many open literature activities, is that the computational results 
commonly do not compare well with the experimental measurements. Then the activity 
usually becomes a model calibration activity, or the computational analysts start pointing 
accusatory fingers at the experimentalists about either what is wrong with their data, or what 
they should have measured to make the data more effective for validation. A calibration 
activity can be a useful and pragmatic path forward for use of the calibrated model in future 
predictions that are very similar to the experimental database. However, calibration does not 
address the root causes of the weaknesses of the models because there are typically so many 
modeling approximations, or deficiencies, that could be contributing to the disagreement. We 
are of the view that calibration should be undertaken from a defined understanding of, or as a 
response to, V&V assessment; not as a replacement for V&V assessment.[13-15] 

As will be discussed in more detail in Section 2.3, Validation Activities, the 
construction and use of validation benchmarks is much more difficult than verification 
benchmarks. The primary difficulty in constructing validation benchmarks is that 
experimental measurements in the past have rarely been designed to provide true validation 
benchmark data. Refs. [2-4, 16-18] give an in-depth discussion of the characteristics of 
validation experiments, as well as an example of a wind tunnel experiment that was 
specifically designed to be a true validation benchmark. The validation benchmarks that have 
been complied and documented by organized efforts are indeed instructive and useful to users 
of the codes and to physics model developers. However, we argue in this paper that much 
more needs to be incorporated into the validation benchmarks, both experimentally and 
computationally, to achieve the next level of usefulness and impact. 

In Ref. [5], the concept of strong-sense V&V benchmarks was introduced. Oberkampf 
et al argued that strong-sense benchmarks should be of a quality that they be viewed as 
engineering reference standards. It is these authors’ experience that when there is 
disagreement with a benchmark, especially a validation benchmark, then the debate shifts to 
either a) questioning how good the benchmark is, instead of critically examining the 
simulations that are being compared with the benchmark, or b) how might physical or 
numerical parameters be adjusted to best match the experimental data. They stated that 
strong-sense benchmarks are test problems that have the following four characteristics: a) the 
purpose of the benchmark is clearly understood, b) the definition and description of the 
benchmark is precisely stated, c) specific requirements are stated for how comparisons are 
made with the results of the benchmark, and d) acceptance criteria for comparison with the 
benchmark are defined. In addition, they required that information on each of these 
characteristics be “promulgated”, i.e., the information is well documented and publicly 
available. They asserted that strong-sense benchmarks (SSB) do not presently exist in 
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computational physics or engineering. They suggested that professional societies, academic 
institutions, governmental organizations, or newly formed, nonprofit, organizations would be 
the most likely to construct SSBs. This paper builds on these basic ideas and provides 
detailed recommendations for the characteristics of V&V SSBs, and suggestions how 
computational simulations could be compared with the SSBs. 

 
1.2 Outline of the Paper 

 
Section 2 begins with a brief review of terminology and how different communities 

have varying interpretations of verification and validation. We then discuss how code 
verification is composed of both numerical algorithm verification activities and software 
quality assurance practices. It is pointed out that solution verification serves a different goal, 
that is, estimation of numerical discretization error and iterative solution error. Code 
verification procedures are discussed with regard to the use of highly accurate analytical 
solutions, manufactured solutions, and numerical solutions as verification benchmarks for 
codes. It is pointed out that validation can be viewed as composed of two quite different 
activities; assessment of computational model accuracy by comparison with experiment, and 
extrapolation of models to applications of interest along with the determination of their 
adequacy for the application of interest. The concept of a validation hierarchy is discussed 
along with its importance in assessing computational model accuracy at many different levels 
of complexity. The required characteristics of validation experiments are discussed, how they 
are different from traditional experiments, and how they form the central role in validation 
benchmarks. 

Section 3 discusses our recommendations for the design and construction of verification 
benchmarks. We discuss details of four elements that should be contained in a verification 
benchmark: a) purpose and scope of the benchmark, b) mathematical description of the 
benchmark, c) accuracy assessment of the benchmark, and d) documentation of the 
benchmark. We discuss how each of the elements applies to the four types of benchmarks: 
analytical solutions, manufactured solutions, numerical solutions to ordinary differential 
equations, and numerical solutions to partial differential equations. Although we do not 
recommend that results of comparisons with benchmarks should be included in the 
benchmark itself, we discuss how formal comparison results could be used and the types of 
information that should be included in the comparisons. We point out that making the 
resulting comparisons of codes with suitable benchmarks is an important component of the 
published literature in computational science and engineering (CS&E) and is necessary for 
the progressive improvement of numerical methods. 

Section 4 discusses our recommendations for the design and construction of validation 
benchmarks. We discuss details of four elements that should be contained in the validation 
benchmark: a) purpose and scope of the benchmark, b) description of the benchmark, 
experimental techniques, and facility, d) uncertainty quantification of benchmark 
measurements, and d) documentation of the benchmark. We also discuss how one should 
compare candidate code results with the benchmark results, paying particular attention to 
issues of: computation of nondeterministic results to determine the uncertainty of system 
response quantities due to uncertainties in input quantities, computation of validation metrics 
to quantitatively measure the difference between experimental and computational results, the 
minimization of model calibration in comparing with validation benchmarks, and the 
constructive roll of global sensitivity analyses in validation experiments. 

Section 5 discusses a diverse set of issues concerning how a V&V benchmark database 
might be initiated, implemented, and contribute to CS&E. Examples of some of these issues 
are: primary and secondary goals of the database; initial construction of an internet-based 
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system; software construction of the database; review and approval procedures for entries 
into the database; open versus restricted use of the database; organizational control of the 
database; and, possible initial and long term funding of the database. 

Closing remarks and possible future steps toward construction of a V&V benchmark 
database are given in Section 6. 

 
2. Review of Verification and Validation Processes 

 
There are a wide variety of different meanings used for V&V in the various technical 

disciplines. The Institute of Electrical and Electronics Engineers (IEEE) was the first major 
engineering society to develop formal definitions for V&V.[19] These definitions, initially 
published in 1984, were adopted and associated procedures were developed by the software 
quality assurance community, the International Organization for Standardization (ISO), and 
the nuclear reactor safety community.[20, 21] After a number of years of discussion and 
intense debate in the US defense and CFD communities, these definitions were found to be of 
limited value. In particular, these definitions did not speak directly to certain issues that are of 
particular importance in CS&E, such as the dominance of algorithmic issues in the numerical 
solution of partial differential equations, and the importance of comparisons of computational 
results with the “real world”. As a result, the US Department of Defense, developed an 
alternate set of definitions.[22, 23] Following with more precisely targeted definitions, the 
American Institute of Aeronautics and Astronautics (AIAA) and the American Society of 
Mechanical Engineers (ASME) adopted the following definitions:[13, 14] 

 
Verification: The process of determining that a model implementation accurately 

represents the developer’s conceptual description of the model and the solution to the 
model. 

 
Validation: The process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the 
model. 

 
These definitions have also been recently adopted by the United States Department of Energy 
National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing 
program (ASC).[24] For a detailed discussion of the history of the development of the 
terminology from the perspective of the CS&E communities, see Refs. [4, 5, 25, 26]. 

Verification provides evidence, or substantiation, that the conceptual model is solved 
correctly by the computer code in question. In CS&E the conceptual model, sometimes called 
the mathematical model, is typically defined by a set of partial differential or integro-
differential equations, along with the required initial and boundary conditions. The computer 
code solves the computational model, i.e., the discrete-mathematics version, or mapping, of 
the conceptual model. The fundamental strategy in verification is to identify, quantify, and 
reduce errors caused by the mapping of the conceptual model to a computer code. 
Verification does not address the issue of whether the conceptual model has any relationship 
to the real world, e.g., physics. 

Validation, on the other hand, provides evidence, or substantiation, for how accurately 
the computational model simulates the real world for system responses of interest. The US 
Department of Defense, and many other organizations, must deal with complex systems 
composed of physical processes, computer controlled subsystems, and strong human 
interaction. From their perspective, assessment of accuracy compared to the real world would 
include expert opinion and well-founded knowledge of experienced professionals. From the 
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perspective of CS&E community, the real world is traditionally viewed to only mean 
experimentally measured quantities in a physical experiment.[13, 14] Validation activities 
presume that the discrete-mathematics version of the model, which is solved by the computer 
code, is an accurate solution of the conceptual model. However, programming errors in the 
computer code, numerical algorithm deficiencies, or inaccuracies in the numerical solution, 
for example, may cancel one another in specific validation calculations and give the illusion 
of an accurate solution. Verification, thus, should be accomplished before the validation 
process begins so that one’s assessment of mathematical accuracy is not influenced by 
whether the agreement of the computational results with experimental data is “good” or 
“bad.” While verification is not simple, it is conceptually less complex than validation 
because it deals with mathematics and computer science issues. Validation, on the other 
hand, must address a much broader range of issues: assessment of the fidelity of the 
mathematical modeling of physical processes, assessment of consistency, or relevancy, of the 
mathematical model to the physical experiment being conducted, the influence of 
experimental diagnostic techniques on the measurements themselves, and estimation of 
experimental measurement uncertainty. Validation rests on evidence that the correct 
experiments were executed correctly, as well as evidence of mathematical accuracy of the 
computed solution, These problems are practically coupled in non-trivial ways in complex 
validation problems although they are logically distinct. As Roache[1] succinctly states, 
“Verification deals with mathematics; validation deals with physics.” 

 
2.1 Verification Activities 

 
2.1.1 Fundamentals of Verification 

Two types of verification are generally recognized and defined in computational 
simulation: code verification and solution verification.[1, 27] Recent work by Ref. [4] argues 
that code verification should be further segregated into two parts: numerical algorithm 
verification and software quality assurance (SQA). See Fig. 1. Numerical algorithm 
verification addresses the software reliability of the implementation of all of the numerical 
algorithms that affect the numerical accuracy and efficiency of the code. The major goal of 
numerical algorithm verification is to accumulate sufficient evidence to demonstrate that the 
numerical algorithms in the code are implemented correctly and functioning as intended. 
SQA emphasizes determining whether or not the code, as a part of a software system, is 
reliable (implemented correctly) and produces repeatable results on specified computer 
hardware and a specified software environment, including compilers, libraries, etc. SQA 
procedures are primarily needed during software development, testing, and modification, and 
secondarily during production-computing operations. 

Unfortunately, as discussed in Ref. [28], when solving complex partial differential 
equations the distinct problems of mathematical correctness, algorithm correctness, and 
software implementation correctness are virtually impossible to decouple. For example, 
algorithms often represent non-rigorous mappings of mathematical approximations to the 
underlying discrete equations. Two examples are approximate factorization of difference 
operators and algorithms that are derived assuming high levels of continuity, when in reality 
they are applied to problems with little or no continuity of derivatives. Whether these 
algorithms are “correct” cannot be assessed in isolation from code executions, which are in 
turn coupled to software implementation. One consequence is that an “obvious” numerical 
inaccuracy may not be easily associated with one of mathematics, algorithms, or software. 
This suggests a greater overlap between SQA and the “science” of numerical computation 
than some practitioners feel comfortable with. 
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Figure 1 
Integrated View of Code Verification in Computational simulation 

[5] 
 

Numerical algorithm verification, SQA, and solution verification are fundamentally 
empirical. Specifically, these issues are based on observations, comparisons, and analyses of 
the code results for specific input options chosen. Numerical algorithm verification centers on 
careful investigations of topics such as spatial and temporal convergence rates, iterative 
convergence, independence of solutions to coordinate transformations, and symmetry tests 
related to various types of boundary conditions. Analytical or formal error analysis is 
inadequate in numerical algorithm verification because the code must demonstrate the 
analytical and formal results of the numerical analysis. Numerical algorithm verification is 
conducted by comparing computational solutions with highly accurate solutions. We believe 
Roache’s description of this as “error evaluation” clearly distinguishes it from numerical 
error estimation.[29] Solution verification centers on estimating the numerical error for 
particular applications, e.g., different mesh resolutions, when the correct solution is not 
known. 

SQA procedures are very well developed, as they have been in existence for at least 
three decades. They are a combination of software management, inspection, and testing 
procedures. However, there is ongoing debate about the precise role of SQA in CS&E, as 
well as on the efficacy of particular SQA strategies and methods.[28, 30, 31] Trucano et 
al.[28] emphasize three areas that are ripe for developing precise overlap between SQE and 
CS&E V&V: (1) testing; (2) software lifecycle definition; and (3) code accreditation. The 
latter issue is firmly in the orbit of the current paper, although we do not explicitly discuss it. 

Fig. 1 depicts a top-down process with two main branches of code verification: 
numerical algorithm verification and SQA practices.[5] Numerical algorithm verification, 
discussed in Section 2.1.2, focuses on the accumulation of evidence to demonstrate that the 
numerical algorithms in the code are implemented correctly and functioning properly. The 
main technique used in numerical algorithm verification is testing, which is alternately 
referred to in this paper as numerical algorithm testing or algorithm testing. SQA activities 
include practices, procedures and processes primarily developed by researchers and 
practitioners in the computer science and IEEE communities. Conventional SQA emphasizes 
processes (management, planning, acquisition, supply, development, operation, and 
maintenance), as well as reporting, administrative, and documentation requirements. One of 
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the key elements of SQA is configuration management of the software: configuration 
identification, configuration and change control, and configuration status accounting. These 
activities are primarily directed toward programming correctness in the source program, 
system software, and compiler software. As shown in Fig. 1, software quality analysis and 
testing can be divided into static analysis, dynamic testing, and formal analysis. Dynamic 
testing further divides into such elements of common practice as regression testing, black-box 
testing, and glass-box testing. From a SQA perspective, one could reorganize Fig. 1 such that 
all of the activities listed on the left, under Numerical Algorithm Verification, could be 
moved under dynamic testing. However, the computer science and IEEE communities have 
shown no formal interest in the development of these activities. These activities, on the other 
hand, dominate code development practice in the traditional CS&E communities. 

A recent comprehensive analysis of the quality of scientific software by Hatton[32] 
documented, to the disbelief of many, a dismal picture of code verification. Hatton studied 
more than 100 scientific codes over a period of seven years using both static analysis and 
dynamic testing. The codes were submitted primarily by companies, but also by government 
agencies and universities from around the world. These codes covered 40 application areas, 
including graphics, nuclear engineering, mechanical engineering, chemical engineering, civil 
engineering, communications, databases, medical systems, and aerospace. Both safety-critical 
and non-safety-critical codes were comprehensively represented. All codes were “mature” in 
the sense that the codes were regularly used by their intended users, i.e., the codes had been 
approved for production use. The total number of lines of code analyzed in Fortran 66 and 77 
was 1.7 million and the total number of lines analyzed in C was 1.4 million. As the major 
conclusion in his study, Hatton stated, “The T experiments suggest that the results of 
scientific calculations carried out by many software packages should be treated with the same 
measure of disbelief researchers have traditionally attached to the results of unconfirmed 
physical experiments.” Hatton’s conclusion is disappointing, but not at all surprising in our 
view. 

Solution verification centers on the quantitative estimation of the numerical accuracy of 
a given solution to the PDEs. Because, in our opinion, the primary emphasis in solution 
verification is significantly different from that in numerical algorithm verification and SQA, 
we believe solution verification should be referred to as numerical error estimation. That is, 
the primary goal is attempting to estimate the numerical accuracy of a given solution, 
typically for a nonlinear PDE with singularities and discontinuities. Assessment of numerical 
accuracy is the key issue in computations used for validation activities, as well as in use of 
the code for the intended application. Numerical error estimation is strongly dependent on the 
quality and completeness of code verification. 

The two basic approaches for estimating the error in a numerical solution to a PDE are 
a priori and a posteriori error estimation techniques. An a priori approach uses only 
information about the numerical algorithm that approximates the partial differential operators 
and the given initial and boundary conditions. A priori error estimation is a significant 
element of classical numerical analysis for PDEs, especially those underlying the finite 
element and finite volume methods.[1, 33-38] An a posteriori approach uses all of the a 
priori information, plus computational results from previous numerical solutions, e.g., 
solutions using different mesh resolutions or solutions using different order of accuracy 
methods. We believe the only quantitative assessment of numerical error that can be achieved 
in practical cases of nonlinear, complex, PDEs is through a posteriori error estimates. 

A posteriori error estimation has primarily been approached through the use of either 
Richardson extrapolation[1] or estimation techniques based on finite element 
approximations.[39, 40] Richardson extrapolation uses solutions on multiply refined meshes 
to estimate the spatial discretization error. It can also be used on multiply refined time-step 
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solutions to estimate temporal discretization error. Richardson’s method can be applied to 
any discretization procedure for differential or integral equations, e.g., finite difference 
methods, finite element methods, finite volume methods, spectral methods, and boundary 
element methods. As pointed out by Roache,[1] Richardson’s method produces different 
estimates of error and uses different norms than the traditional a posteriori error methods 
used in finite elements.[35, 41] A Grid Convergence Index (GCI), based on Richardson’s 
extrapolation, has been developed by Roache to assist in the estimation of grid convergence 
error.[1, 42, 43] 

Although SQA and solution verification are quite important, a detailed discussion of 
these topics is beyond the scope of this paper. For further discussion of SQA issues, see, for 
example, Refs. [5, 44-46]. For further discussions of numerical error estimation, see, for 
example, Refs. [1, 33-38, 47-50]. 

 
2.1.2 Code Verification Procedures 

From the perspective of the numerical solution of PDEs, the major components of code 
verification include the definition of appropriate benchmarks for evaluating solution accuracy 
and the determination of satisfactory performance of the algorithms on the benchmarks. Code 
verification rests upon comparing computational solutions to the “correct answer,” which is 
provided by highly accurate solutions for a set of well-chosen benchmarks. The correct 
answer can only be known in a relatively small number of isolated cases. These cases 
therefore assume a very important role in verification and should be carefully formalized in 
test plans for verification assessment of the code. 

Figure 2 depicts a method for detecting numerical algorithm deficiencies and 
programming errors by using verification benchmarks. The conceptual model, or 
mathematical model, is derived from the physics of interest and the mathematical 
assumptions made in constructing the model. Since we are interested in benchmark solutions, 
the conceptual model is chosen by what exact or highly accurate solutions are known, or new 
ones that can be generated. The conceptual model is typically given by a set of PDEs and all 
of the associated input data, e.g., initial conditions, boundary conditions, material properties, 
nuclear cross-sections, etc. These equations are discretized, i.e., mapped from derivatives and 
integrals to algebraic equations, using the numerical algorithms chosen. The discretized 
equations are programmed in the computer code. When the code is exercised by solving the 
benchmark problem, then the code produces computational results of interest. The results 
from the code are then compared with the benchmark solution results to evaluate the 
differences that occur. The comparisons are usually examined along boundaries of interest or 
error norms computed over the entire solution domain. The accuracy of each of the dependent 
variables or functionals of interest can be determined as part of the comparisons. 

Probably the most important issue in the design and computation of verification 
benchmarks is the mathematical accuracy of the benchmark solution. The AIAA Guide,[13] 
suggests the following hierarchical organization of confidence or accuracy of benchmarks 
(from highest to lowest): (1) analytical solutions, (2) highly accurate ordinary differential 
equation numerical solutions, and (3) highly accurate numerical solutions to PDEs. 
Analytical solutions are closed-form solutions to special cases of the PDEs that define the 
conceptual model. These closed-form solutions are commonly represented by infinite series, 
complex integrals, and asymptotic expansions. Relatively simple numerical methods are 
usually used to compute the infinite series, complex integrals, and asymptotic expansions in 
order to obtain the solutions of interest. The accuracy of these solutions, particularly if they 
are infinite series or asymptotic expansions, must be carefully quantified, which can be very 
challenging. The most significant practical shortcoming of classical analytical solutions is 
that they exist only for very simplified physics, material properties, and geometries. 
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Figure 2 
Method to Detect Sources of Errors in Code Verification 

 
The second type of highly accurate solution is the numerical solution to special cases of 

the general PDEs that can be mathematically simplified to ordinary differential equations 
(ODE). The ODEs can be either initial value problems or boundary value problems. These 
solutions commonly result from simplifying assumptions, such as simple geometries that 
allow formation of similarity variables. Once an ODE is obtained, then a highly accurate 
ODE solver can compute the numerical solution. Highly accurate ODE solvers typically 
employ both variable integration-step and variable order of accuracy numerical methods. In 
fluid dynamics, some well known ODE benchmarks are stagnation point flow, laminar flow 
in two and three dimensions, Taylor-Maccoll solution for inviscid flow over a sharp cone, 
and Blasius solution for laminar flow over a flat plate. Note that the Blasius solution would 
be a useful benchmark for assessing the accuracy of CFD code that solves the boundary layer 
equations. However, it would not be a good benchmark for testing a Navier-Stokes code 
because the Blasius solution also relies on the approximations assumed in the boundary layer 
theory. As would be expected, there would be a difference between a highly accurate Blasius 
solution and a highly accurate Navier-Stokes solution because of the different modeling 
assumptions involved in each. The modeling assumptions must be the same between the 
benchmark solution and the code being tested. The only question that should be answered in 
Fig. 2 is related to numerical accuracy and correctness of the code being tested. 

The third type of highly accurate solution is numerical solution to more complex PDEs, 
i.e., more complex than those obtained from analytical solutions or ODE numerical solutions. 
The accuracy of these type benchmark solutions clearly becomes a more questionable issue 
compared to analytical solutions or ODE solutions. In the literature, for example, one can 
find descriptions of computational simulations that are considered to be “benchmark 
solutions” by the author, but are later found to be lacking. Although it is common practice to 
conduct code-to-code comparisons, we argue that these types of comparisons are of very 
limited value unless highly demanding requirements are imposed on the numerical solution 
that is considered as the “benchmark.”[51] These requirements will be discussed in detail in 
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section 3.1 
During the last decade a technique has been developed for constructing a special type of 

analytical solution that is specifically used for testing numerical algorithms and computer 
codes; it is referred to as the “Method of Manufactured Solutions” (MMS).[1, 52] The MMS 
is a method of custom-designing verification benchmarks of wide applicability, where a 
specific form of the solution function is assumed to satisfy the PDE of interest, rather than a 
major simplification of the PDE of interest. This function is inserted into the PDE, and all the 
derivatives are analytically derived. Typically these derivatives are derived by using 
symbolic manipulation software such as MATLAB® or Mathematica®. The equation is 
rearranged such that all remaining terms in excess of the terms in the original PDE are 
grouped into a forcing-function or source term. This source term is then added to the original 
PDE so that the assumed solution function satisfies the new PDE exactly. When this source 
term is added to the original PDE, one recognizes that we are no longer dealing with 
physically meaningful phenomena, although we remain in the domain of mathematical 
interest. This realization can cause some researchers or analysts to claim that the solution is 
no longer relevant to computational simulation. The fallacy of this argument is emphasized 
by noting that in verification we are only dealing with testing of the numerical algorithms and 
coding: not the relationship of the code results to physical responses of the system. Since the 
solution to the modified PDE was “manufactured”, the boundary conditions for the new PDE 
are analytically derived from the solution chosen. For the three types of common boundary 
conditions, one can use the chosen solution function to: a) simply evaluate solution on any 
boundary of interest, i.e., a Dirichlet condition, b) analytically derive a Neumann type 
boundary condition and apply it on any boundary, and c) analytically derive a boundary 
condition of the third kind and apply it on any boundary. MMS could be described as finding 
the problem, i.e., the PDE, for which we have assumed a solution. 

Using MMS in code verification requires the ability to insert the analytically derived 
source term and boundary conditions into the code being tested, and that this insertion be 
verified in the sense of code verification. This technique verifies a large number of numerical 
aspects in the code, such as, the numerical method, differencing or finite element technique, 
spatial-transformation technique for grid generation, grid-spacing technique, and correctness 
of algorithm coding. Although the MMS has been used in various forms for checking 
computer codes for a number of years, recent extensions and generalizations of the method 
have proven very effective. As pointed out by a number of researchers in this topic, solutions 
in MMS must be carefully chosen to achieve the desired test results. For example, solutions 
should be chosen so that as many terms as possible in the original PDE are brought into play. 
This includes any submodels affecting terms in the original PDE, as well as any mathematical 
transformations of physical space to computational space. MMS has proven to be so effective 
that we will specifically add it to the list of three types of highly accurate solutions described 
earlier in this section. 

In code verification the key feature to determine is the observed, or demonstrated, order 
of accuracy from multiple numerical solutions. As discussed in a number of references,[1, 
52] Richardson extrapolation is used in combination with the known exact solution and 
results from two different mesh resolutions to determine the observed order of accuracy from 
a code. A typical plot of observed order of accuracy versus mesh resolution is shown in Fig. 
3. When the mesh is sufficiently resolved, the numerical solution enters the asymptotic 
convergence region with regard to spatial resolution. In this region the observed order of 
accuracy becomes a constant. By computing the observed order of accuracy in testing a code 
one can make two strong statements concerning accuracy. First, if the observed order is 
greater than zero, then the code converges to the correct solution as the mesh is refined. If the 
observed order of accuracy is zero, then the code will converge to an incorrect answer. 
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Second, if the observed order of accuracy matches (or nearly matches) the formal order of 
accuracy, then the code demonstrates that it can reproduce the theoretical order of accuracy 
of the numerical method. This statement belies the fact that in many practical cases, the 
theoretical order of accuracy of a complex code is actually not known rigorously, or it is a 
mixed order scheme. When an empirical convergence study is in disagreement with a 
claimed formal order of accuracy, it may be the case that both sides of this comparison must 
be subject to close analysis. 
 

 
Figure 3 

Observed order of accuracy as a function of mesh resolution for two Navier-Stokes 
codes[53] 

 
Researchers have found a number of reasons why the observed order of accuracy can be 

less than the formal accuracy when the latter is rigorously known. Some of the reasons are: 
(1) a programming error exists in the computer code, (2) the numerical algorithm is deficient 
is some way, (3) insufficient grid resolution so that the grid is not in the asymptotic 
convergence region of the power series expansion for the particular system response quantity 
(SRQ) of interest, (4) the formal accuracy for interior grid points is different than the formal 
accuracy for boundary conditions with derivatives resulting in a mixed order of accuracy, (5) 
singularities, discontinuities, and contact surfaces interior to the domain of the PDE, (6) 
singularities and discontinuities in the boundary conditions, (7) highly stretched meshes, (8) 
inadequate convergence of an iterative procedure in the numerical algorithm, and (9) over-
specified boundary conditions. It is beyond the scope of this paper to discuss these in detail, 
however some of the representative references in these topics are [1, 33, 52, 54-63]. For the 
types of benchmarks we will concentrate on in this paper, we will focus on testing candidate 
codes for reasons (1) – (4). 

 
2.2 Validation Activities 

 
2.2.1 Fundamentals of Validation 

Various researchers and engineering standards documents[4, 5, 13-15, 64] have pointed 
out that there are two key, and distinct, issues in validation: a) quantification of the accuracy 
of the conceptual model by comparisons with experimental data, and b) estimation of the 
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accuracy of the conceptual model for its intended use. The definition of validation, given at 
the beginning of Section 2, is not particularly clear on the issue and, as a result, the definition 
has been interpreted to include both issues, and also been interpreted to only include the first 
issue. The first issue is typically referred to as model fidelity assessment, or assessment of 
validation metrics, and the second issue is usually referred to as adequacy assessment of the 
model for applications of interest, or predictive capability estimation. Figure 4 depicts these 
two issues, as well as the input information these two issues require. 

 

 
 

Figure 4 
Two Aspects of Model Validation 

 
It is clear from Fig. 4 that model fidelity assessment by comparison of model results to 

experimental results is distinctively different from adequacy assessment of the model relative 
to accuracy requirements for applications that may, or may not, be very well defined. The 
most recent engineering standards document dealing with V&V, referred to as the ASME 
Guide[14] takes the view that both aspects of validation are fundamentally combined in the 
term “validation.” The AIAA Guide,[13] however, takes the view that “validation” only deals 
with the first aspect; assessment of model accuracy, with no implication that model accuracy 
is “good” or “bad”. Uncertainty is involved in the assessment, both in terms of experimental 
measurement uncertainty and in terms of the computational simulation, primarily because 
input quantities needed from the experiment are not available. The second aspect is regarded 
as a separate activity related to predictive capability. Stated differently, the AIAA Guide 
takes the perspective that predictive capability uses assessed model accuracy as input, but 
predictive capability also incorporates: a) additional uncertainty estimation resulting from 
extrapolation of the model beyond the existing experimental database to future applications 
of interest, and b) comparison of the accuracy requirements needed by a particular 
application relative to the estimated accuracy of the model for that specific applications of 
interest. Both perspectives are useful and workable, but the terminology clearly means 
different things and, as a result, one must be careful in discussions and writing on the subject. 

Work by the ecological community[65, 66] and recent work by the hydrology 
community[67] in Europe have independently developed very similar ideas to those being 
developed in the US with regard to V&V. Rykiel[65] makes a important practical point, 
especially to analysts and decision makers, concerning the difference between the philosophy 
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of science viewpoint and the practitioner’s view of validation: “Validation is not a procedure 
for testing scientific theory or for certifying the ‘truth’ of current scientific understanding … 
Validation means that a model is acceptable for its intended use because it meets specified 
performance requirements.” Refsgaard and Henriksen[67] have recommended terminology 
and fundamental procedures for V&V that are applicable to a much wider range of 
simulations than just hydrological modeling. Their definition of validation makes the two 
aspects of validation in Fig. 4 quite clear: “Model Validation: Substantiation that a model 
within its domain of applicability possesses a satisfactory range of accuracy consistent with 
the intended application of the model.” An additional crucial issue stressed by Refsgaard and 
Henriksen, and corroborated by both the AIAA and ASME Guides, is: “Validation tests 
against independent data that have not also been used for calibration are necessary in order to 
be able to document the predictive capability of a model.” Stated differently, the key issue in 
validation is assessment of the model in a “blind” test with experimental data, whereas the 
key issue in calibration is adjustment of physical modeling parameters to improve agreement 
with experimental data. It is difficult, and sometimes impossible, to make blind comparisons, 
e.g., when well-known benchmark validation data is available for comparison. However, we 
must be extremely cautious in making conclusions of predictive accuracy of models when the 
analyst has seen the data. Knowing the “correct answer” before hand is extremely seductive, 
even to a saint. 

An additional fundamental, as well as practical, aspect of validation in a real 
engineering environment has been the introduction of the concept of a validation 
hierarchy.[13, 14] Because of the infeasibility and impracticality of conducting true 
validation experiments on most complex or large scale systems, the recommended method 
(and we would agree that it is logically necessary) is to use a building-block approach. This 
approach divides the complex engineering system of interest into three or more progressively 
simpler tiers: subsystem cases, benchmark cases, and unit problems. In the reactor safety 
field a very similar concept has been used for some time and it is usually referred to as 
separate effects testing. The strategy in the tiered approach is to assess how accurately the 
computational results compare with the experimental data at multiple degrees of physics 
coupling and geometric complexity. The approach is extremely useful in that: (1) it 
recognizes that there is a hierarchy of complexity in systems, physics and geometry, (2) the 
hierarchy requires a very wide range of experienced individuals to construct it; often 
discovering subsystem or component interactions that had not been recognized before, (3) 
models, or submodels, can be tested at any of the tiers of complexity, and (4) it recognizes 
that the quantity, accuracy and cost of information that is obtained from experiments varies 
radically over the range of tiers. Each comparison of computational results with experimental 
data allows an inference of model accuracy concerning tiers both above and below the tier 
where the comparison is made. The construction and use of the validation hierarchy is 
particularly important in situations were the complete system of interest cannot be tested. For 
example, in the nuclear power industry very similar ideas to the validation hierarchy have 
been used in safety studies and probabilistic risk assessment for abnormal environment 
scenarios. 

An example of a hierarchical structure for a complex, multidisciplinary system was 
presented in Ref. [68]. The example features an air-breathing, hypersonic cruise missile. The 
missile is assumed to have an autonomous guidance, navigation, and control (GNC) system, 
an on-board optical target seeker, and a warhead. Figure 5 shows the system-level 
hierarchical validation structure for the hypersonic cruise missile. The missile is referred to as 
the complete system, and the following are referred to as systems: propulsion, airframe, 
GNC, and warhead. The hierarchy shown is not unique, nor is it necessarily optimum for 
every computational-simulation perspective of the missile system. In addition, the structure 
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shown in Fig. 5 focuses on the airframe system and the aero/thermal protection subsystem for 
the purpose of analyzing the aero/thermal performance of the missile. 

 

 
Figure 5 

Validation Hierarchy for a Hypersonic Cruise Missile[68] 
 

2.2.2 Characteristics of Validation Experiments 
With the critical role that validation experiments play in assessment of model accuracy 

and predictive capability, it is fair to ask: Exactly what is a validation experiment? Or, How 
is a validation experiment different from other experiments? In an attempt to answer these 
questions, we first suggest that traditional experiments could generally be grouped into three 
categories. The first category comprises experiments that are conducted primarily to improve 
the fundamental understanding of some physical process. Sometimes these are referred to as 
physical-discovery experiments. The second category of traditional experiments consists of 
those conducted primarily for constructing or improving mathematical models of fairly well 
understood physical processes. Sometimes these are referred to as model calibration 
experiments. The third category of traditional experiments includes those that determine or 
improve the reliability, performance, or safety of components, subsystems, or complete 
systems. These experiments are sometimes called “proof tests” or “system performance 
tests.” 

The present authors and colleagues[2, 3, 16, 69-73] have argued that validation 
experiments constitute a new type of experiment. A validation experiment is conducted for 
the primary purpose of determining the predictive accuracy of a computational model, or 
group of models. In other words, a validation experiment is designed, executed, and analyzed 
for the purpose of quantitatively determining the ability of a mathematical model and its 
embodiment in a computer code to simulate a well-characterized physical process. Thus, in a 
validation experiment “the code is the customer” or, if you like, “the computational analyst is 
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the customer.” Only during the last 10 to 20 years has computational simulation matured to 
the point where it could even be considered as a customer in this sense. As modern 
technology increasingly moves toward engineering systems that are designed, and possibly 
even fielded, based predominately on CS&E, then CS&E itself will increasingly become the 
customer of experiments. 

We argue that there are three aspects that should be used to optimize the effectiveness 
and value of validation experiments: (1) early in the planning process, define the goals and 
the expected results of the validation activity, (2) design the validation experiment by using 
the code in a predictive sense and also account for the capability limitations of the 
experimental facility, and (3) develop a well-thought-out plan for analyzing and 
quantitatively comparing the computational and experimental results.[73] The first aspect, 
defining the goals and expected results, deals with issues, such as: clear determination how 
the validation activity relates to the application of interest (typically through the validation 
hierarchy); identification of what physics modeling issues are being tested; deciding if the 
validation activity intended to severely test the model or make the model look good; 
specification of what is required from both the computational and experimental aspects of the 
validation activity to conclude that each aspect was deemed a “success;” and laying out the 
steps that would be taken if the model (or the experimental results) looks surprisingly good or 
surprisingly bad. 

In the second aspect above, “design” means using the code to directly guide design 
features of the experiment, such as: geometry, initial and boundary conditions, material 
properties, sensor locations, and diagnostic techniques, e.g. strain gauges, thermocouples, 
optical techniques, and radiation detectors. Even if the accuracy of the code predictions is not 
expected to be high, the code can frequently guide much of the design of the experiment. 
Using the code, and the goals of the validation activity, one can also guide the required 
accuracy needed of the experimental measurements, or the number of experimental 
realizations needed to obtain a specific statistical result. Suppose, through a series of 
exploratory calculations for a particular application of the code, an unexpectedly high 
sensitivity to certain physical parameters is found. If this unexpected sensitivity has an 
important impact on the application of interest, a change in the design of the validation 
experiment may be needed, or indeed, a completely separate validation experiment may be 
called for. Also, the limitation of the experimental facility should be directly factored into the 
design of the experiment. Examples of facility or diagnostic limitations are: inability to 
obtain the range of parameters, e.g., load, temperature, velocity, time, radiation flux, needed 
to meet the goals of testing the model, inability to obtain the needed accuracy of 
measurements (both system response quantities and model input quantities), and inability to 
measure all of the needed input quantaties, e.g., initial conditions, boundary conditions, 
material properties, needed for the code simulation. 

The third aspect above refers to the importance of rigorously analyzing and 
quantitatively comparing the computational and experimental results. As shown in top 
portion of Fig. 4, this type of quantitative comparison is now called a validation metric and is 
an active topic of research.[4, 74-79] Validation metrics use statistical procedures to compare 
the results of code calculations with the measurements of validation experiments. Because we 
emphasize that the overarching goal of validation experiments is to develop quantitative 
confidence so that the code can be used for its intended application, we have argued the 
central role of validation metrics. Stated differently, we believe predictive capability should 
be built directly on quantitative measures of agreement that have been demonstrated in 
previous assessments of the model using experimental data, as opposed to obscure or vague 
declarations that the model is “valid,” and then making predictions. In the statistical inference 
literature, there has been a long history of the development of statistical procedures for 
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closely related inference tasks. However, most of these procedures yield either probabilistic 
measures of agreement, such as hypothesis testing, or they are directed at calibration of 
models, such as Bayesian updating. 

As proposed in Refs. [78, 79], we currently believe that useful validation metrics should 
include several characteristics. Some of the recommended characteristics concerning a metric 
are: (1) explicitly include an estimate of the numerical error in the computed system response 
quantity (SRQ), or exclude the numerical error because it has been demonstrated to be small 
relative to the measurement uncertainty, (2) include in some explicit way an estimate of the 
measurement uncertainty in the experimental data for the system response quantities of 
interest, (3) depend on the number of experimental measurements that have been made of the 
SRQ, e.g., multiple replications of the measurements of the SRQ, and multiple measurements 
of a SRQ over a range of input quantities, and (4) exclude any indications, either explicit or 
implicit, of the level of adequacy of agreement between computational and experimental 
results. This last recommendation refers to the common practice of declaring the 
computational results “valid” if the results pass through the uncertainty bands of the 
experimental measurements. 

During the past several years, a group of researchers at Sandia National Laboratories 
has been developing methodological guidelines and procedures for designing and conducting 
a validation experiment.[2-4, 16, 69-73] These guidelines and procedures have emerged as 
part of a concerted effort in the NNSA ASC program to provide a rigorous foundation for 
V&V for computer codes that are important elements of the U.S. nuclear weapons 
program.[80] Historically, they were first developed in their current form in a joint 
computational and experimental program conducted in a wind tunnel, however, they apply 
over a wide range of CS&E.  

 
Guideline 1: A validation experiment should be jointly designed by experimentalists, 

model developers, code developers, and code users working closely together 
throughout the program, from inception to documentation, with complete candor 
about the strengths and weaknesses of each approach. 

Guideline 2: A validation experiment should be designed to capture the essential physics 
of interest, including all relevant physical modeling data and initial and boundary 
conditions required by the code. 

Guideline 3: A validation experiment should strive to emphasize the inherent synergism 
between computational and experimental approaches. 

Guideline 4: Although the experimental design should be developed cooperatively, 
independence must be maintained in obtaining both the computational and 
experimental results. 

Guideline 5: A hierarchy of experimental measurements of increasing computational 
difficulty and specificity should be made, for example, from globally integrated 
quantities to local measurements. 

Guideline 6: The experimental design should be constructed to analyze and estimate the 
components of random (precision) and bias (systematic) experimental errors. 

 
These guidelines are applicable to any tier in the validation hierarchy discussed with regard 
to Fig. 5. A detailed discussion of each of these six guidelines is beyond the scope of the 
present work. The reader is referred to the given references for an in-depth discussion of what 
these guidelines mean, how they can be implemented, and the difficulties that can be 
encountered. Some of these guidelines will be incorporated into the recommendations for the 
construction of validation benchmarks, Section 4.1. 
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3. Recommendations for Verification Benchmarks 
 
The discussion of SSBs in verification, as well as in validation, is divided into the 

recommended features of the benchmark itself and how one should compare a code being 
tested (referred to as the candidate code) to the benchmark results. The characteristics we 
recommend here for SSBs are not discipline specific, but can be applied to many fields of 
physics and engineering. 

 
3.1 Construction of Verification Benchmarks 
 

As discussed in Section 1.1, Introduction, Ref. [5] suggested three characteristics for the 
construction of a SSB: a) the purpose of the benchmark should be clearly stated, b) the 
definition and description of the benchmark should be precisely stated, and c) the benchmark 
should be well documented. We agree with these characteristics and we add an additional 
characteristic that should be incorporated in their construction: d) the accuracy of the 
benchmark should be carefully assessed and the pedigree of the evidence should be explained 
in detail. 

 
3.1.1 Purpose and Scope of the Benchmark 

The description given in the purpose and scope of the benchmark should be a textual 
description: no equations or symbols. The reason for this is that we believe that an electronic 
database of verification benchmarks should be constructed in the future, similar to the ideas 
expressed by Rizzi and Vos discuss.[11] With an electronic database, one could search the 
database for key words that would assist in finding those benchmarks that could be applicable 
to particular problems of interest. In addition, the purpose and scope of the benchmark should 
be described from various perspectives. 

The first perspective of the information given in the description is the general class of 
physical process being modeling in the benchmark. For example, in fluid dynamics the 
description should give the general characteristics such as: steady vs. unsteady, class of fluid 
assumed (e.g., continuum vs. non-continuum, viscous or inviscid, Newtonian vs. non-
Newtonian, Reynolds-Averaged Navier-Stokes equations vs. large eddy simulation vs. direct 
numerical simulation, compressible vs. incompressible, single phase vs. multi-phase), spatial 
dimensionality and what coordinate system is used, perfect gas, and all auxiliary models that 
are assumed (e.g., assumptions for a gas with vibrationally excited molecules, chemically 
reacting gas assumptions, thermodynamic property assumptions, transport property 
assumptions, assumptions on chemical models, reactions, and rates, and turbulence model 
assumptions.) In solid dynamics, for example, the description should include equations of 
state assumptions, such as choice of independent variables in tables, solid behavior 
assumptions varying from elasticity to visco-plasticity, assumptions about material failure, 
and assumptions about mixture behavior for complex non-homogeneous materials. Note that 
the description should be with respect to the class of physics that is modeled in the 
benchmark, not the actual physics of interest. 

Second, the benchmark description should include the initial conditions and boundary 
conditions exactly as they were characterized in the benchmark. Some examples in fluid 
dynamics are: steady state flow between parallel plates with infinite dimension in the plane of 
the plates, flow over a circular cylinder of infinite length with undisturbed flow far from the 
cylinder, and flow over an impulsively started cube in an initially undisturbed flow. Some 
examples in solid dynamics are: externally applied loads or damping, contact models, joint 
models, explosive loads or impulsive loads, and impact conditions (geometry and velocity). 
Included with boundary conditions would be a statement of all of the pertinent geometry 
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dimensions, or non-dimensional parameters characterizing the problem, if any. In the 
statement of “infinity” boundary conditions, it must be clearly stated exactly what was used 
in the benchmark. For example, if the numerical solution benchmark imposed an undisturbed 
flow condition at some finite distance from an object in a fluid, then that should be carefully 
described. However, one could also impose an undisturbed flow condition at infinity using 
coordinate stretching away from the object by mapping infinity to a finite point. 

Third, the benchmark description should include the types of physical applications the 
benchmark is relevant to. Some examples in fluid dynamics are: laminar wake flows, 
turbulent boundary layer separation over a smooth surface, impulsively started flows, laminar 
diffusion flames, shock/boundary layer separation, and natural convection in an enclosed 
space. Some examples in solid dynamics are: linear structural response under impulsive 
loading, wave propagation excited by energy sources, explosive fragmentation, crater 
formation and evolution, and penetration events. This type of information in the description 
will be particularly useful to individuals searching for benchmarks that are more or less 
related to their actual application of interest. 

Fourth, it should be stated what type of benchmark this is. As discussed in section 2.1.2, 
Code Verification Procedures, it is quite important to state if it is: (1) an analytical solution, 
(2) a manufactured solution, (3) an ODE numerical solution, or (4) a PDE numerical solution. 
If the benchmark is a type 1 or type 2, then one must be able to accurately compute the 
observed order of accuracy of the candidate code. If the benchmark is a type 3 or type 4, then 
it is doubtful that the observed order of accuracy can be computed for the candidate code 
because the accuracy of the numerical solutions from the benchmark will probably not be 
adequate. As a result, only an accuracy assessment of SRQs of interest from the candidate 
solutions could be made by comparison with the benchmark solution. 

And fifth, the benchmark should state what numerical algorithm or software quality 
issues are being tested. Some examples are: test of the numerical method to capture a strong 
shock wave in three dimensions, test to determine if the numerical method can accurately 
approximate specific types of discontinuities or singularities that occur either within the 
solution domain or on the boundary, test of the numerical method to compute re-contact 
during large plastic deformation of a structure, test of the numerical method in computing a 
denotation front in a granular mixture, and test of the numerical method in computing shock-
induced phase transitions. In this facet of the description one should also include if any type 
of physics coupling is being tested by using the benchmark. For example, does the 
benchmark test the coupling of a shock wave and chemically reacting flow, or does the 
benchmark test the coupling of thermal stresses in addition to mechanical stresses during 
large plastic deformation of a structure? Or does the method test only an isolated physics 
phenomenon? 

To better clarify how these five descriptive perspectives would be applied in practice, 
we will discuss four different types of benchmarks in fluid dynamics: 

 
Type 1 Benchmark Example (Ref. [81]) 
Title: Unsteady, incompressible, laminar, Couette flow, using the Navier-Stokes 

equations 
Initial Conditions and Boundary Conditions: Initial-boundary value problem, two-

dimensional Cartesian coordinates, impulsive flow between flat plates, one plate 
instantaneously accelerates relative to a stationary plate with the fluid initially at rest. 

Related Physical Problems: Impulsively-started, laminar flows 
Type of Benchmark: Analytical solution given by an infinite series 
Numerical and/or Code Features Tested: Interaction of inertial and convective terms in 

one dimension; initial value singularity on one boundary at time zero. 
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Type 2 Benchmark Example (Ref. [82-84]) 
Title: Steady, incompressible, turbulent flow, using one and two-equation turbulence 

models for the Reynolds-Averaged-Navier-Stokes equations 
Initial Conditions and Boundary Conditions: Boundary value problem, two-dimensional 

Cartesian coordinates, arbitrary boundary geometry, boundary conditions of the first, 
second, and third kind can be specified. 

Related Physical Problems: Incompressible, internal or external turbulent flows, wall-
bounded and free-shear-layer turbulent flows. 

Type of Benchmark: Manufactured solution given with source terms to be added 
Numerical and/or Code Features Tested: Interaction of inertial, convective, and 

turbulence terms in two Cartesian dimensions for RANS models. 
 
Type 3 Benchmark Example (Ref. [81]) 
Title: Steady, incompressible, laminar flow of a boundary layer for a Newtonian fluid 
Initial Conditions and Boundary Conditions: Initial-boundary value problem, in two-

dimensional Cartesian coordinates, flow over a flat plate with zero pressure gradient. 
Related Physical Problems: Attached, laminar boundary layer growth with no separation. 
Type of Benchmark: Blasius solution; numerical solution of a two-point boundary value 

problem 
Numerical and/or Code Features Tested: Interaction of viscous and convective terms in a 

boundary layer attached to a flat surface. 
 
Type 4 Benchmark Example (Ref. [85]) 
Title: Steady, incompressible, laminar flow using the Navier-Stokes equations 
Initial Conditions and Boundary Conditions: Boundary value problem, two-dimensional 

Cartesian coordinates, flow inside a square cavity with one wall moving at constant 
speed (except near each moving wall corner), Rl=104. 

Related Physical Problems: Attached laminar flow with separation, laminar free-shear 
layer, flow with multiply induced vortices. 

Type of Benchmark: Numerical solution given by a finite element solution 
Numerical and/or Code Features Tested: Interaction of viscous and convective terms in 

two dimensions; two-points on the boundary that are nearly singular. 
 

3.1.2 Mathematical Description of the Benchmark 
A clear and complete description should be given of the partial differential or ordinary 

differential equations for the mathematical problem being solved. We want to stress here that 
the mathematical description of the benchmark must not include any feature of the 
discretization or numerical methods used to solve the PDEs and ODEs. The mathematical 
description should include: 

 
a) Clearly state all of the assumptions used to formulate the mathematical problem 

description. 
b) Define all symbols used in the mathematical description of the benchmark, including 

any non-dimensionalization used, and units of all dimensional quantities. 
c) State the PDEs, ODEs, or integral equations being solved, including all secondary 

models, or submodels. The statement of these models must be given in differential 
and/or integral form, not in discretized form. Some examples of secondary models 
that would be given are: equation of state, thermodynamic models, transport property 
models, chemical reaction models, turbulence models, emissivity models, constitutive 
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models for materials, material contact models, externally applied loads, opacity 
models, neutron cross-section models, etc.  

d) Give a complete and unambiguous statement of all of the initial conditions and 
boundary conditions used in continuum mathematics form. The stated initial 
conditions and boundary conditions are those that are actually used for the solution to 
the PDEs and ODEs, not those that one would like to use in some practical 
application of the computational model. For example, if the benchmark solution is a 
numerical solution of a PDE, a type 4 benchmark, and the numerical solutions uses an 
outflow boundary condition imposed at a finite distance from the flow region of 
interest, then that condition (in continuum mathematics form) should be given. 

e) State all of the system response quantities (SRQs) of interest that are produced by the 
benchmark for comparison with the candidate solutions. The SRQs could be 
dependent variables in the mathematical model, functionals of dependent variables, or 
various types of probability measures of dependent variables or functionals. Examples 
of functionals are forces and moments acting on an object in a flow field, heat flux to 
a surface, location of boundary layer separation or reattachment point or line, and 
location of a vortex center. Functionals of interest should be stated in continuum 
mathematics form, not discrete form. Examples of probability measures are 
probability density functions and cumulative distribution functions. 

f) If any quantities provided in the description of the mathematical model are uncertain, 
a precise characterization of the uncertainty of the quantity should be given. For 
example, if a quantity is given by a probability density function, then the family of 
distributions should be stated, along with all of the parameters defining a specific 
distribution. 

 
The overarching goal is to provide an unambiguous, reproducible mathematical 

characterization of the benchmark problem that eliminates all potential disagreement about 
what was mathematically intended. We believe that this goal must be ruthlessly pursued and 
achieved. Judgment or opinions about what mathematics is apparently intended for a 
benchmark, must be replaced with explicit specification. 

A comment should be made here about the practice of incorporating numerical 
approximations or features directly into the mathematical models of the physics. An example 
in fluid dynamics is seen in large eddy simulations (LES) of turbulence. Many researchers, 
but not all, that solve the LES equations will define the length scale of turbulence to be 
modeled as that determined by the local discretization scale used in the numerical simulation. 
That is, the subgrid turbulence scale is defined to be all spatial scales smaller that the local 
mesh that they happen to be using. An example in fracture dynamics is seen in modeling 
crack propagation through a material. Some researchers, but thankfully fewer in recent times, 
will define the spatial scale of the crack tip to be either the same as the local mesh resolution 
used in a particular numerical solution. 

We strongly argue against the practice of connecting physical modeling scales, either 
spatial or temporal, with numerical discretization scales. Our arguments are particularly 
compelling when verification benchmarks are the issue. The reasons for our objection are two 
fold. First, combining physics modeling with numerical approximations intertwines two very 
different issues. Models of physics should be stated in a way that does not, in any way, 
depend on how the numerical solution is obtained. Mathematical models of physics should 
depend only on physics assumptions and spatial and temporal scales. Second, if one defines a 
physics model to be dependent on numerical solution approximations then as one changes 
numerical approximations, e.g., mesh resolution, the physics model, by definition, changes. 
Suppose one wanted to use a different class of numerical methods to solve the mathematical 
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model, such as a higher order method, then, even with the same mesh resolution, two 
different numerical solutions would exist; neither one would have any meaning with respect 
to the differential equations stated in the mathematical model. Mixing physics modeling and 
numerical solution approximations is, in our view, as bad a mixing different dimensional 
units; it makes no sense. Physics modeling scales, typically dimensional scales in length or 
time, should be defined based on physical scales defined in the differential equations 
describing the process of interest. 

 
3.1.3 Accuracy Assessment of the Benchmark 

The numerical accuracy of the benchmark should be clearly assessed and the means of 
assessment should be carefully described. The assessment procedure and the accuracy 
assessment result should be described for each SRQ that is provided by the benchmark. The 
accuracy assessment should be provided, if appropriate, as a function of: a) spatial 
coordinate, b) temporal coordinate, and c) parameters provided in the solution, e.g., Reynolds 
number, Mach number, externally applied load, heat flux, and boundary condition parameter. 
In general, the accuracy assessment of the SRQs depends on all the independent variables and 
parameters in the model. The purpose of this assessment is to provide a definitive pedigree 
for the benchmark that is unambiguous and objective. This task clearly becomes more 
difficult as we progress from simpler analytic to more complex benchmarks. Perversely, in 
some sense pedigree is less noteworthy for analytic problems because it is more obvious. 
Whereas, it is extremely important for numerical PDE benchmarks exactly because it is so 
difficult to produce. False pedigrees often lie at the heart of failed, complex, benchmark 
efforts centered on numerical PDE solutions. Many managers and organizations are fond of 
complex, high-visibility, benchmarks, but they commonly turn into a mirage when the details 
of the benchmark are examined. 

The accuracy of the benchmark will depend greatly on the type of benchmark solution 
computed. We now discuss particular accuracy assessment issues unique to each type of 
benchmark: 

 
Type 1 Benchmark (analytical solution) 
 If the benchmark solution is given in terms of a closed-form solution, the accuracy is 

usually near machine precision. (By “closed-form solution” we mean a solution that 
can be expressed analytically in terms of a bounded number of well-known functions. 
We also presume that the derivation of the solution can be fully comprehended by the 
people who use it as a benchmark. If the derivation is incomplete or otherwise not 
fully available for critical scrutiny, it is unlikely that the benchmark will be widely 
used. If the analytical solution is given by an infinite series, then the accuracy is 
determined by the rate of convergence and how many terms are included before the 
sequence is truncated. One cannot estimate the accuracy of these type analytical 
solutions by simply comparing how much the solution changes by adding one more 
term in the infinite series. If the analytical solution contains an integral, or iterative 
solution of an algebraic or transcendental equation, one must estimate the numerical 
error involved. If the benchmark is not a closed-form solution, then one must very 
carefully estimate accuracy. For example, in the Type 1 Benchmark Example given in 
Section 3.1.1, the solution for the unsteady Couette flow is given by an infinite series. 
The convergence rate of the series depends drastically on the time chosen. For times 
near zero, the convergence rate is extremely poor compared to large times, because of 
the existence of the singularity at time equal zero. 

 
Type 2 Benchmark (manufactured solutions) 
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 Manufactured solutions are all composed of well-known, elementary, functions, such 
as circular functions and exponential functions. The accuracy issue in manufactured 
solutions centers on the accuracy, or reliability, of all of the source terms that are 
derived and then are placed on the right-hand-side of the PDE. The two texts[1, 52] 
dealing with MMS recommend a number of practices and procedures that are very 
helpful in MMS. Some of these are: a) do not try to derive the source terms by hand; 
only use symbolic manipulation software, such as Mathematica® or MATLAB®, to 
derive them; b) when they are derived, do not try to program them by hand; it is 
recommended to electronically copy them from the symbolic manipulator output 
directly into the software solving the PDEs; c) if one desires to check the reliability of 
the output from the symbolic manipulation software, then one should use two 
different software packages; and d) when picking the manufactured solution form and 
its associated free parameters, try to pick a solution form and it parameters so that 
when the solution is substituted into the original PDE, all of the terms in the original 
PDE are reasonably balanced in magnitude. 

 
Type 3 Benchmark (ODE numerical solution) 
 Benchmark solutions obtained by the numerical solution to a set of ODEs can be of 

two types, either an initial value problem (IVP) or a boundary value problem (BVP). 
The accuracy of solutions to IVPs and BVPs primarily depends on the sophistication 
and reliability of the numerical integrator used to compute the solution. For 
benchmark solutions it is recommended that a high-order accuracy integration 
technique be used, along with a variable step-size procedure that is adjusted according 
to a user-specified, per-step, relative error criterion. If possible, two different 
numerical integrators should be used and the results compared. It is recommended 
that the order of accuracy of the ODE integrator be at least 3 or 4 orders higher than 
the formal order of accuracy of the candidate solution being tested. If a fixed-order 
accuracy method is used, then one can use Richardson extrapolation to estimate the 
error of the numerical solution for each SRQ of interest. An example of an efficient, 
high-order accuracy procedure is an embedded Runge-Kutta method of order 6 or 7. 
Additional complexity, and inaccuracy, is introduced if one numerically solves a 
BVP. For BVPs, one must have user-specified control of the error along all of the 
boundaries where boundary conditions are specified. If a singularity exists along any 
boundary, or as an initial condition, then one must develop methods to estimate how 
the numerical error near the singularity propagates into the solution domain. If the 
singularity is very well behaved, for example, the leading edge singularity in the 
Blasius solution, then the numerical solution should not incur additional error. 

 
Type 4 Benchmark (PDE numerical solution) 
 Benchmark solutions obtained by the numerical solution of a set of PDEs are, by far, 

the most questionable with regard to their accuracy assessment. Compared to the 
Type 1-3 benchmarks, Type 4 benchmarks require a great deal more detail with 
regard to accuracy assessment. We will not list here all of the requirements we 
recommend for a Type 4 benchmark, but we will give a sample of types of 
information needed so that someone could not only understand the estimated accuracy 
of the benchmark, but also to evaluate the strength of the procedure used to estimate 
the accuracy: a) Describe all of the iterative procedures and convergence criteria used 
in any aspect of the numerical solution, e.g., the iterative procedure and convergence 
criteria for iterative solution of a nonlinear BVP, iterative procedure and convergence 
criteria for intra-time-step iterations; b) Compute a series of solutions using at least 
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three different mesh resolutions and use Richardson’s extrapolation to estimate the 
numerical error over the entire solution domain for each of the SRQs of interest. Also, 
using the multiple mesh resolution results, estimate the observed order of accuracy of 
the solution for each SRQ and compare it with the formal order of accuracy expected 
from the method. One could argue that some of the a posteriori finite element error 
estimation procedures, such as, recovery methods or residual methods, could be used 
instead of Richardson extrapolation.[39, 40] 

 There are some practical difficulties with most of these methods: First, some only 
provide global error norms instead of error estimates on SRQs of interest, such as 
error estimates of local dependent variables, second, some only provide error 
estimates to within some unknown constant, third, essentially none of these methods 
have been developed for nonlinear parabolic and hyperbolic PDEs, fourth, if the PDE 
or any sub-model is substantially changed, then the error estimation equation must be 
re-derived, and fifth, it is poorly understood at present how the lack of continuity of 
higher derivatives of dependent variables and how singularities affect these 
estimators. Experience has shown that Richardson extrapolation is more robust than a 
posteriori finite element error estimators, probably because Richardson extrapolation 
is directly based on a power series expansion of the SRQ of interest; c) If the 
benchmark problem is an IVP, compute a series of solutions using at least three 
different temporal resolutions and use Richardson’s extrapolation to estimate the 
numerical error over the entire solution domain for each of the SRQs of interest. Also, 
using the multiple solutions, estimate the observed order of temporal accuracy and 
compare it with the formal order of temporal accuracy for each SRQ. In estimating 
the temporal accuracy, one must include the coupling of the temporal and spatial 
accuracy in the Richardson extrapolation equations; d) If a singularity exists inside 
the solution domain or on any boundary, or in the initial conditions, one must provide 
strong evidence that the numerical solution is not polluted by error propagated away 
from the singularity. 

 A preferable approach, but one that is technically demanding, is to analytically 
eliminate the singularity from the problem in some fashion. An additional method that 
adds credence to a numerical solution with a singularity is to use two markedly 
different numerical methods to solve the same problem and show the results from 
both methods for all SRQs of interest. The Type 4 Benchmark Example given in 
Section 3.1.1, the driven cavity problem, is a good example of some of the difficulties 
encountered with solutions containing singularities. Prabhakar and Reddy[85]) 
eliminated the two singularities in the moving-lid corners by replacing the fixed speed 
of the moving lid with a speed that varies spatially near each of the corners. They 
clearly state that if they did not remove the singularities, their numerical procedure 
did not converge. All earlier published solutions of the driven cavity problem, that we 
are aware of, did not remove the singularities in the corners. Just because those 
solutions appeared to converge with the singularities present, does not engender much 
confidence, in our view, in the accuracy of those solutions. 

 
3.1.4 Documentation of the Benchmark 

The documentation should include all of the information discussed in the previous three 
subsections. In addition, the documentation should include details that would possibly assist 
users of the benchmarks in the following ways: a) if the candidate solution did not 
satisfactorily compare with the benchmark, one might find some small detail in the 
documentation which could assist the user of the benchmark in discovering the cause of the 
discrepancy in their solution, b) a user of the benchmark might want to try and reproduce the 
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results presented in the benchmark, particularly if the accuracy of the candidate results are 
expected to be comparable to the benchmark, yet the results differ more than expected from 
the benchmark, and c) an interested researcher might want to investigate how one might 
improve the accuracy, utility, or generality of the benchmark. 

There are several pieces of information that should be documented, regardless of the 
type of benchmark computed. Appropriate descriptions of the following should be given: a) 
computer hardware used, b) operating system and version, c) compiler type and version and 
any pertinent compiler options used, d) arithmetic precision, e) programming language used 
in the source code, f) computer run time for each of the solutions documented in the 
benchmark, and, of course, g) authorship of the benchmark results, their affiliated 
organizations, and possibly the funding agency for the work. Some of the additional 
information that should be included in the documentation differs significantly for each type 
of benchmark. We give some examples below: 

 
Type 1 Benchmark (analytical solution) 
 The analytical solution should be documented in the traditional form of equations and 

explanatory text. If the benchmark solution is given by an infinite series, a description 
should be given of the method used to estimate the error due to truncation of the 
series. If all the terms in the series are of the same sign, then one method that has been 
used is to compute a curve fit of the magnitude of each term as a function of the 
number of the term in the series. If the terms are of alternating sign, then a curve fit of 
the magnitude of the sum of pairs of terms can be computed. With a proper choice of 
functional form, the curve fit can then be extrapolated to infinity. Then the sum of the 
truncated terms can be computed to estimate the error due to the truncated series. 

 If the benchmark solution is given by an integral, or iterative solution of an algebraic 
or transcendental equation, the numerical method used to compute the integral and the 
iterative solution should be given. 

 Adequate references must be provided for the analytical solution, along with its 
derivation, if possible. The references should be publicly available. 

 
Type 2 Benchmark (manufactured solutions) 
 The source terms for the manufactured solution should be included in the 

documentation in two forms: a) a traditional form for analytical equations, and b) a 
form that is programmed in a commonly used programming language, such as C++ or 
FORTRAN. One should be able to electronically copy the programming language 
form and insert it into a computer code, or into an input file for a code. 

 The symbolic manipulation software used to derive the source terms should be stated, 
along with the version number of the software. If two different symbolic manipulation 
software packages are used to serve as a check, then this should be stated. If this is 
done, one should be certain that each package is unrelated to the other. For example, 
the symbolic manipulation kernel in MATLAB® from the MathWorks is the same as 
that in Maple™ from Maplesoft. 

 
Type 3 Benchmark (ODE numerical solution) 
 A detailed description should be provided of the numerical method used to solve the 

ODE. If the numerical integrator is contained in a software package, then provide: a) 
a description and version number of the package, and b) information concerning what 
type of code verification has be documented on the package. If possible, the software 
package should be included in the documentation of the benchmark. 

 If any tabular data is used in any mathematical sub-model, then all of the numerical 
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data should be provided, along with a description of the interpolation procedure used 
for the tabular data. 

 
Type 4 Benchmark (PDE numerical solution) 
 A detailed description should be provided of all of the numerical methods used in all 

aspects of the solution procedure. This would include a large number of details, such 
as: a) describe all of the numerical algorithms used to discretize the PDEs and all sub-
models, including any parameters or constants that might be associated with the 
numerical algorithms, e.g., artificial damping parameters, and smoothing parameters, 
b) if the geometry contains any complexity, then a detailed description should be 
given of the geometry and how it was computed, c) describe how the spatial mesh 
was generated, especially all of the clustering features of the mesh, and provide the 
coordinates of all mesh elements, d) describe how all of the multiply refined meshes 
are related to one another, for example, were the multiple meshes generated starting 
with the finest mesh and then coarsening, or was it done in reverse, e) state the formal 
order of accuracy of all of the numerical methods used to solve the PDEs, including 
computation of numerically computed Jacobians in mapping the physical space to the 
computational space, and any numerical processing procedures (such as interpolation, 
integration, or differencing) used to compute SRQs of interest, f) provide a 
description of the computer code, along with version, and a statement if the code is 
available for public dissemination, and g) either include the code verification 
documentation in the benchmark documentation, or provide references concerning 
what code verification has been done and documented. 

 
Documentation of each verification benchmark should be in an electronic format that is 

widely usable and robust across many computer operating systems. Adobe Portable 
Document Format (PDF) is the most commonly used and it has many desirable 
characteristics, but it should be supplemented with additional file formats for specialized 
information. For example, tabular data could be in ASCI text files or in Microsoft Excel files; 
high resolution digital photographs should be in easily usable formats, such as, tiff, PDF, and 
JPEG; digital video files in formats such as QuickTime, MPEG, or AVI; and computer 
software should be provided in common languages such as C++, Fortran, or Java. This last 
item would be necessary for documenting the source terms in MMS. 

Discussion of how an electronic database of V&V benchmarks could be setup is 
discussed in Section 5, Implementation Issues. 

 
3.2 Comparing Candidate Code Results with Verification Benchmarks 

 
As discussed in the Introduction, Section 1, we are only interested in comparisons of a 

candidate code with a benchmark for the purpose of assessing accuracy of the results of the 
candidate code. Issues with respect to computing speed performance or robustness of the 
candidate code, are not of particular interest here. Given this context, how one would want to 
report results from comparing a candidate solution to a benchmark solution depends on the 
purpose of making the comparison. Suppose the purpose of the comparison is similar to one 
of the following: a) make a preliminary assessment of accuracy of a code that is in 
development, b) investigate the accuracy of a new numerical algorithm implemented in a 
code, or c) conduct a proprietary investigation of the accuracy of a code that is in competition 
with a your own commercial code. We would characterize all of these types of comparison as 
“informal,” in the sense that the results of the comparison are for restricted or preliminary 
use. 
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In this paper we are interested in discussing “formal” comparisons of candidate results 
and benchmark results. Some examples of the use of formal comparisons are: a) a potential 
software customer may want to compare the accuracy obtained from competing commercial 
codes, b) a large organization that develops its own codes for internal use for high-
consequence systems may want to determine how its codes compare with industry standard 
benchmarks, c) a governmental regulatory organization may want to require certain 
verification benchmarks be passed before a code could be used for performing work funded 
by that governmental organization, or other governmental organizations, d) an accident 
investigation committee may want to try and determine if there were any deficiencies in the 
software that was used to analyze the performance and safety of the system that failed, and e) 
a commercial software company may want to use the results of formal comparisons of its 
code with benchmarks in its marketing program. 

Even though we are interested in formal comparisons, we believe that these 
comparisons should not be included in the benchmark database. Our viewpoint is contrary to 
those expressed by Rizzi and Vos[11] and Vos et al.[12] However, one must recognize that 
the type of database they have envisioned, and those that have been constructed in Europe, 
are formed using a weaker form of benchmarks than those described here. They believe that 
comparison results that have been obtained should be included in the database, if the 
individuals who computed the results so choose. It is our view that if the benchmarks in the 
database are indeed SSBs, then the comparisons add nothing to the database. If the new 
solution results have met all of the stringent requirements for inclusion in the database, then 
the new solution could be included as a new benchmark for the same problem, or possibly 
replace the existing benchmark if it has a stronger pedigree than the existing benchmark. As 
discussed in Section 5, Implementation Issues, there must be a well defined and formal 
review process for deciding which solutions can be included in the SSB database. 

To achieve some of the goals suggested for formal comparisons, the documentation of 
the comparisons should contain much of the same information described earlier in sections 
3.1.1 through 3.1.4. The key piece of information that is of interest in the documentation is: 
Did the candidate code pass the benchmark? The most common method of answering this 
question is by comparing a computed result for a SRQ from a candidate code with the 
comparable result from a SSB. Although this comparison is useful, it has two significant 
disadvantages. First, the accuracy requirement for comparing the candidate and benchmark 
SRQs is quite arbitrary. For example, should one require an accuracy of 1% or 0.1% or 
machine precision accuracy when comparing results? To say that the accuracy required 
depends on the application of interest, defeats the purpose of the benchmark. Second, the 
accuracy of the candidate result will depend directly on the mesh and temporal resolution 
used in the computed result. That is, the candidate result will depend in a continuous manner 
on mesh and temporal resolution used. As discussed in Section 2.1.2, Code Verification 
Procedures, the most definitive test of the accuracy of a code is determining the observed 
order of accuracy. 

For type 1 and 2 benchmarks, the accuracy of the benchmarks should be adequate to 
determine the observed order of accuracy using the benchmark and solutions from two 
different mesh resolutions of the candidate. For a type 3 benchmark, this may not be possible 
because the accuracy of the benchmark may not be adequate. For a type 4 benchmark, it is 
essentially assured that the accuracy of the benchmark will not be adequate to reliably 
determine the observed order of accuracy of the candidate. As a result, different measures of 
“pass” and “fail” must be assigned to each type of benchmark compared with. 

If an observed order of accuracy can be computed for the candidate, there are two 
criteria one might use to determine pass/fail. One may choose to require that the observed 
order of accuracy of the candidate match its stated formal order of accuracy. Or, one may 
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choose the weaker criteria that the observed order of accuracy of the candidate be positive, 
i.e., the minimum requirement that it converged to the correct answer. Regardless of which 
criteria is chosen, the observed order of accuracy should be reported in the documentation as 
a plot of observed order of accuracy as a function of mesh and/or temporal resolution. In this 
plot, one can discern the observed order of accuracy in the asymptotic region for the 
particular SRQ. 

If the observed order of accuracy cannot be computed for the candidate, then one is left 
with simply comparing the candidate result for an SRQ with the corresponding benchmark 
result. If this comparison is used, it is recommended that the results be shown as a difference 
between the candidate and the benchmark as a function of mesh and/or temporal resolution. If 
the candidate is capable of computing the solution as accurately as the benchmark, then the 
difference plotted would start to show erratic results for fine mesh resolutions. 

 
4. Recommendations for Validation Benchmarks 

 
In Section 2.2.2, Characteristics of Validation Experiments, we briefly discussed our 

views on the unique characteristics of validation experiments. As pointed out, a validation 
experiment is more than a traditional, high quality, experiment. It must provide information 
that is typically not available in traditional experiments, and it is optimized for a non-
traditional customer: model builders and simulation analysts. Since most traditional 
experiments available in the published literature have not been designed as validation 
experiments, some of the recommended characteristics to be discussed for SSBs will seem 
rather idealistic and impractical to obtain. However, as new experiments are conducted in the 
future, these recommendations could be used for the design and acquisition of new high 
quality validation benchmarks. 

High quality validation benchmarks will be much more feasible to obtain at the lower 
tiers of the validation hierarchy. As one proceeds to higher tiers, i.e., more complex systems, 
in the hierarchy, the number and importance of the unmeasured input quantities will decrease 
the ability to critically assess the computational model of interest. Stated differently, 
comparing experimental data obtained from complex systems with computational results 
inevitably becomes a process of calibrating the very large number of either unmeasured or 
poorly known parameters in the models. As will be seen in the following section, most of the 
recommendations for construction of validation benchmarks deal with the common theme: 
measurement and documentation by the experimentalist of essentially all input quantities 
needed in the code so as to minimize the degree of calibration of the physics modeling 
parameters. 

 
4.1 Construction of Validation Benchmarks 

 
As discussed with regard to Fig. 4, validation benchmarks are intended to address the 

issue of model accuracy assessment. Issues with regard to accuracy requirements for a 
particular application, or the accuracy of the model when it is extrapolated to other intended 
uses, are not addressed in validation benchmarks. In addition, issues regarding code 
verification, solution verification, and modeling assumptions are not dealt with in the 
validation benchmark, as those issues are properly addressed in Section 4.2, Comparing 
Candidate Code Results with Validation Benchmarks. As we have emphasized, there is 
logical dependence of the quality of validation upon verification. 

To clarify some of the characteristics discussed in the following material, we give an 
example of a hypothetical benchmark experiment in fluid dynamics. This example is carried 
through the discussion of each of the following subsections. Not every detailed piece of 
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experimental information needed for the benchmark is discussed in this example, but we 
concentrate of those elements of the experiment that are not commonly included in execution 
and documentation of an experiment. 
 
4.1.1 Purpose and Scope of the Benchmark 

Listed in the following are the important elements that should be included in the 
description of the purpose and scope of the validation benchmark: 

 
a) A textual description should be given of the primary types of physics, or coupled 

physics, that the benchmark is intended to test in the computational modeling. If 
appropriate, a description should be given that is segregated into two categories of the 
importance of physics being tested: the primary physical processes occurring in the 
experiment, and the secondary physical processes occurring. This categorization will 
assist computational analysts and physics model developers in searching the 
validation database for experiments that are aligned with their immediate interests. In 
the design of validation experiments, one should maximize the effect of the physics of 
interest, and minimize the effects all other physical processes not of interest. An 
example in fluid dynamics is the following: 

 Primary physics occurring—incompressible, turbulent flow with large separated 
regions over a circular cylinder with heat transfer. 

 Secondary physics occurring—small effect of variable thermodynamic and transport 
properties near a heated surface and in a wake region. 

 
b) Provide a list of both quantitative and qualitative SRQs measured in the experiment. 

We have found that qualitative measurements, for example, video imaging of the 
physics phenomena during the experiment, can be very useful in guiding the 
computational analyst in the appropriate assumptions that should be made for 
modeling of the experiment and also for aiding the experimentalist in diagnosing any 
unforeseen problems with the experiment. For our fluid dynamics example, one has: 

 System responses quantitatively measured—three-dimensional, unsteady, velocity 
measurements in streamwise planes normal to the cylinder, and high-frequency, 
surface pressure measurements in or near the wake of the cylinder. 

 System responses qualitatively measured—flow-field visualization provided by 
marker-dye injection, and high-speed, digital video imaging of the flow field. 

 
c) A description should be given of what engineering applications the benchmark could 

be related to that would occur at higher levels in a validation hierarchy. Since 
complex engineering systems, or subsystems, of interest occur at higher tiers in the 
validation hierarchy, some examples should be provided so that electronic searches of 
the validation database could find benchmarks that may be of interest to a wide range 
of applications. Concerning our fluid dynamics example: 

 Related applications of interest—flow inside heat exchangers, natural convection 
inside cavities, liquid cooling of internal combustion engines, forced and natural 
convection over circuit boards. 

 
4.1.2 Description of the Benchmark, Experimental Technique, and Facility 

A wide variety of detailed information should be provided concerning not only the 
SRQs measured in the experiment, but also all computer code input data needed, 
experimental measurement techniques, data reduction and processing techniques, the 
experimental facility, etc. Some examples of the required information are the following: 
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a) Description of the geometry of the experiment conducted, along with any 

supplementary experiments that were conducted in support of the benchmark 
experiment. A supplementary geometry could be one that the computational analyst 
could simulate with much higher accuracy and confidence than the primary geometry 
of interest. In our fluid dynamics example we have: 

 Geometry—flow over a circular cylinder near a flat, solid wall in a water tunnel, the 
cylinder was mounted at various distances from the wall, 0.0, 0.1, 0.2, and 0.5 
cylinder diameters from the wall. 

 Supplementary geometry—flow inside the water tunnel without the cylinder in the 
test section. 

 
b) Specification of all of the measured boundary conditions, initial conditions, material 

properties, imperfections in the test geometry or experimental facility, forcing 
functions, surface properties, transport properties, thermodynamic properties, mass 
properties, etc. In the design of validation experiments, one should minimize the 
complexities and difficulties computational analysts must deal with concerning all of 
the issues just mentioned, if they are not important to assessment of the physics 
models of interest. In our fluid dynamics example we have: 

 Boundary conditions—a solid circular cylinder was heated over its entire length using 
electrical-resistance heating, the cylinder was mounted near the bottom wall of a 
water tunnel and it spanned the entire width of the test section, the tunnel had a square 
cross-section 10 cm x 10 cm, the diameter of the cylinder was 1 cm. and it was placed 
20 cm. from the beginning of the test section, the test section was 100 cm long, all of 
the tunnel walls had a turbulent boundary layer approaching the test section, the three-
dimensional, unsteady, velocity field was measured over the entire inflow plane at the 
beginning of the test section, the water temperature was measured at the beginning of 
the test section, the water was de-aerated to eliminate bubbles in the water, 
measurements were made for two Reynolds numbers (based on average inflow 
velocity, kinematic viscosity of the water, and diameter of the cylinder) 10 and 100. X 
103, time-averaged static pressure measurements were made in the middle of each 
tunnel wall at three locations, at the beginning, middle, and end of the test section, the 
heat flux per unit length along the cylinder was measured, the heat flux leaking from 
the ends of the cylinder was measured, for 100 cm past the end of the test section each 
wall of the water tunnel was set at the same diverging angle of 5 deg resulting in an 
increasing cross-sectional area. Accompanying this textual description would be 
detailed drawings and schematics of the geometry of interest, the water tunnel, and 
measurement locations for the boundary conditions. 

 
c) Specification of all SRQs that are both quantitatively and qualitatively measured, 

along with a detailed description of the diagnostic techniques, analog-to-digital 
sampling, signal filtering, and signal conditioning methods. In our fluid dynamics 
example we have: 

 System responses quantitatively measured—three-dimensional, unsteady, velocity 
measurements in three planes normal to the cylinder, one plane was in the middle of 
the cylinder, the other two planes were half-way between the middle of the cylinder 
and each side wall, the planes extended from 5 diameters upstream of the cylinder to 
10 diameters downstream of the cylinder, velocity measurements were made using 
particle imaging velocimetry (PIV) in a rectangular grid pattern at 5000 points in each 
plane, velocity measurements were made at a frequency of 1/sec for a time period of 
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1000 sec, time-averaged velocity measurements are also available over the 1000 sec 
period, and high-frequency, surface pressure measurements made on the wall of the 
tunnel at 0., 1. and 5 diameters downstream of the cylinder. 

 System responses qualitatively measured—marker-dye was injected along a narrow 
slit parallel to the cylinder at a location of five cylinder diameters upstream of the 
cylinder, digital video images were recorded of each experiment at a framing rate of 
100/sec, the unsteady cellular structure in the wake of the cylinder can be seen at each 
Reynolds number tested, along with the change in wake structure near the side-walls 
of the test section. 

 
4.1.3 Uncertainty Quantification of the Benchmark Measurements 

Estimates of experimental uncertainty should be provided for all of the SRQs measured, 
as well as of all the quantities that could be used as possible inputs for the computational 
simulation, for example, boundary conditions, initial conditions, material properties, 
geometrical features, etc. Some examples of the type of information that should be provided 
are the following: 

 
a) Describe all of the instrument, diagnostic, and facility calibration procedures. 

Particular emphasis in calibration procedures should be placed on identifying, and 
possibly estimating subtle bias errors in calibrations, e.g., shifts in diagnostic 
measurements due to temperature, pressure, time, reference frequencies, etc. In the 
design of validation experiments, one should attempt to use multiple diagnostic 
techniques to measure both SRQs and input quantities. By comparing results from 
multiple measurement techniques one can better identify possible bias (systematic) 
errors in measurements. In our fluid dynamics example, one should attempt to use 
different diagnostic techniques to try and identify bias errors in optical calibration of 
PIV measurements. Also, attempt to use different techniques to determine possible 
temperature bias effects on the high-frequency, surface pressure measurements aft of 
the cylinder. 

 
b) Describe if an input quantity needed for the computational simulation is either a 

controlled or uncontrolled quantity in the experiment. A controlled quantity is one 
that can be adjusted, to a large degree, by the experimentalist or by procedures related 
to the operation of the experimental facility. An uncontrolled quantity is one that the 
experimentalist has little or no control over, such as atmospheric weather conditions, 
a missile impacting an irregular surface, turbulence spectrum and spatial variability in 
a wind tunnel, and unit-to-unit variability of material samples. If a quantity is an 
uncontrolled quantity, but one that can be measured, e.g., atmospheric weather 
conditions, then measurement uncertainty in the measurement should be given. If the 
quantity is an uncontrolled quantity, but one that is a random draw from a population, 
then the population should be well characterized before the experiment. For example, 
if material testing is being conducted on a number of small specimens (coupons), then 
the needed input material properties should be characterized by a probability 
distribution constructed by large number of random draws from the sample 
population. There are also situations were there are a very limited number of 
specimens and the specimens are destroyed in the characterization process. In this 
case, large uncertainty exists in the characterization of the population, resulting in an 
ensemble of probability distributions. Alternately, the characterization of the 
specimen population would occur during the validation process by way of a 
calibration activity. This latter approach, although less desirable because it combines 
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validation and calibration, is some unavoidable. 
 
c) Estimates should be provided of both the bias error and the random (precision) error 

of the quantities measured. The uncertainty in measured quantities could be 
characterized as one of the following: an interval, i.e., there is a single true value that 
is believed to lie in the stated interval, but no other information is available 
concerning the true value; an imprecise probability distribution, i.e., the true quantity 
is a random variable characterized by a known family of probability distributions, but 
the parameters of the probability distribution are only stated as intervals; and a precise 
probability distribution, i.e., the true quantity is a random variable characterized by a 
probability distribution with accurately known parameters. It has been found that one 
of the most effective methods of quantifying experimental uncertainties, particularly 
bias errors, is to conduct the same experiment in multiple experimental facilities, 
preferably using different diagnostic techniques. The time and cost involved in 
conducting experiments at multiple facilities will commonly cause a fainting-spell 
among most project managers and funding sources. 

 
d) Description of and justification for the uncertainty quantification of each measured 

quantity should be provided. Some examples of uncertainty quantification procedures 
are, from least desirable to most desirable: experience of the experimentalist from 
previous experiments using similar techniques in the same facility; measurement of 
some of the components contributing to uncertainty, but no formal procedure for 
estimating uncertainty; propagation of contributing uncertainties to formally estimate 
uncertainty in an SRQ;[86] and design of experiment statistical procedures to directly 
estimate the uncertainty in SRQs using multiple realizations of the experimental 
measurements under varying conditions.[2, 3, 72, 87, 88] This last procedure, if 
properly implemented in the design and execution of the experiment, can quantify 
certain types of correlated-bias errors, such as that due to: wind tunnel flow field non-
uniformity, wind tunnel model imperfections, certain types of misalignment in a load 
cell, and asymmetries in thermal heating of components. 

 
4.1.4 Documentation of the Benchmark 

The documentation should include all of the information discussed in the previous three 
subsections, and all of the more traditional documentation associated with archiving high 
quality experiments. In addition, the documentation should include details that would 
possibly assist users of the benchmark in the following ways. First, information on the 
experimental technique, experimental facility, boundary condition, initial conditions, etc, that 
might help the computational modeler choose different modeling assumptions than the 
experimentalist might have thought the modeler would have used. For example, the modeler 
may chose to assume a three-dimensional Cartesian coordinate system instead of a two-
dimensional axisymmetric coordinate system, or the modeler may want to include the actual 
nonuniformities in either the component tested for the facility being used in the experiment. 
Second, another experimentalist may choose to conduct the same experiment in their facility 
and submit their results to either supplement the existing benchmark, or possibly replace the 
existing benchmark. Also, all of the experimental data should be easily available in 
commonly used electronic format, for visual and quantitative presentation. 

 
4.2 Comparing Candidate Code Results with Validation Benchmarks 

 
As discussed in Section 3.2, Comparing Candidate Code Results with Verification 
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Benchmarks, we are only interested in formal comparisons of code results with validation 
benchmarks. Also, as explained earlier, the code results and comparisons with the validation 
benchmarks should not be included in the database. 

In comparison of code results with validation data we do not feel there is an acceptable 
way, in general, to answer the question: Did the code pass the validation benchmark? Our 
viewpoint can be explained from two perspectives. First, we view assessment of model 
accuracy by comparison with experimental data as a “continuum” in the sense of validation 
metrics discussed in Section 2.2.1, Fundamentals of Validation. We believe that validation 
metrics are the fundamental operators in assessing model accuracy. A validation metric is a 
difference operator that can yield a deterministic result, a precise probability distribution, or 
an imprecise probability distribution; and, preferably, with some type of associated 
confidence measure. Stated differently, validation metrics are simply measures of agreement 
between simulations and experiments that have no fundamental “good” or “bad” associated 
with them. Second, to state that a benchmark is passed, one would have to have some stated 
accuracy requirement for an application of interest, as discussed concerning Fig. 4. The 
accuracy requirement should, we believe, be determined by the application of interest; not 
some vague concept with regard to the philosophy of science or how much scatter exists in 
the experimental data. In addition, validation metrics can be applied to several different SRQs 
from a validation benchmark. It is expected that the metric results for some of the SRQs will 
meet accuracy requirements, and some will not. Then, as we have observed in real 
engineering projects, additional discussions will ensue with regard to the appropriateness of 
the accuracy requirements, as well as the cost, schedule, and performance of the engineering 
system of interest. The consequence of our viewpoint is that the comparison of code results 
with validation benchmarks should be formally documented, but no pass or fail assignment 
should be given. 

The type of information that should be included in the documentation of comparison of 
code results with validation benchmarks is a combination of that described earlier for 
constructing verification benchmarks, especially for a type 4 benchmark, and validation 
benchmarks. We only mention a few topics in the following to stress certain elements and to 
add new elements that should be documented: 

 
a) Code verification. References should be provided to document the code verification 

activities that have been completed and version of the code used. 
 
b) Solution verification. Detailed information should be provided concerning iterative 

error convergence. At least three mesh resolutions and three temporal discretizations 
should be computed so that Richardson’s method can be used to estimate the spatial 
and temporal discretization error on each of the SRQs that are compared with the 
experimental data. In addition, the observed order of accuracy should be documented, 
along with the theoretical order of accuracy. 

 
c) Computation of SRQs. In almost all fields of engineering it is traditional to compute 

deterministic values for SRQs. That is, it is assumed that no uncertainty exists in any 
of the input quantities, e.g., boundary conditions, initial conditions, material 
properties, etc, so that a single value is computed for each of the SRQs. These 
deterministic values are then compared with the experimentally measured SRQs. This 
is, of course, the minimum level of comparison that should be made between code 
results and experimental benchmark results. It is recommended, however, that non-
deterministic results be computed for each SRQ based on the uncertainty quoted for 
each input quantity, as stated in the validation benchmark. This is usually referred to 
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as uncertainty quantification of SRQs as a function of uncertainty input quantities. As 
discussed in Section 4.1.3, the uncertain input quantity could be characterized as an 
interval, an imprecise probability distribution, or a precise probability distribution. 
Propagation of these uncertain quantities through the computational simulation model 
will likely rely on methods like Monte Carlo sampling or Latin Hypercube 
sampling.[89-92]] Importantly, major increases in computational resources will be 
required to compute tens or hundreds of solutions needed for the sampling techniques. 
In our experience, there will be a great deal of resistance to expending this level of 
computational resources for this purpose. Nonetheless, the probabilistic risk 
assessment community, especially nuclear reactor safety and underground storage of 
nuclear waste, has accepted this philosophy of simulation for over two decades. 

 
d) Validation metrics. It is recommended that validation metrics be used to compare the 

computed and measured SRQs, instead of the typical viewgraph norm technique. 
Graphical comparisons should be included because they are a very traditional 
comparison technique, however validation metrics should also be used. Since 
validation metrics are in an early stage of development, there is only a limited range 
of examples to draw upon. [4, 15, 76, 77, 79, 93-97] It is recommended that validation 
metric results be computed for all of the SRQs measured in the experiment so that 
objective information is complete rather than partial or biased toward those that “look 
good.” 

 
e) Calibration. As we have emphasized earlier in our discussion, we have carefully 

distinguished between validation, i.e., assessment of model accuracy, and calibration, 
i.e., activities to optimize model parameters when code results are compared with 
experimental measurements. Without a doubt, the most common parameters that are 
optimized are those that were not provided by the experimentalist in documentation of 
the experiment. That is why we have stressed the importance of the experimentalist 
providing uncertainty estimates of all input quantities that might be needed for 
simulations. However, we recognize that there will probably be some “wiggle room” 
for computational analysts to optimize unmeasured, and undocumented, input 
quantities needed for the code that are related to physical characteristics of the 
experiment. If this is done in obtaining the code results, we feel it is necessary for the 
analyst to document any procedures used to optimize input quantities. Our 
recommendation also applies to any numerical parameters, such as, numerical 
damping, numerical smoothing, or numerical parameters such as hour-glass control of 
the vibrational modes of individual elements in solid dynamics meshes. 

 
f) Global sensitivity analysis. Here we mean an analysis which rank orders the 

importance of each uncertain input for each SRQ according to the magnitude of 
change of the SRQ for a unit change in each uncertain input. This is typically done by 
using the sampling results from the uncertainty quantification analysis discussed 
above and reprocessing the results to obtain a global sensitivity analysis. (See, for 
example, Refs. [98-101] Conducting a sensitivity analysis as part of a comparison of 
code results with a validation benchmark is important from two perspectives. First, 
the analyst computing the results, or another analyst reading the documentation, will 
obtain a deeper understanding of the importance of different input quantities with 
regard to SRQs. Often, the ranking of sensitivities can be quite surprising. Second, the 
experimentalist who conducted the experiment can use the sensitivity analysis to 
possibly update the uncertainty estimation on some measured quantities. Also, the 
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experimentalist, or possibly a different experimental group, may choose to conduct a 
new experiment and judiciously reduce the experimental uncertainty on the largest 
contributors to uncertainty in SRQs. 

 
 

5. Implementation Issues of a Verification and Validation Database 
 
If verification and validation SSBs and a database to house them were to become a 

reality, there would be a number of complex and difficult implementation and organizational 
issues that would have to be addressed and agreed upon. Some of these would be, for 
example: primary and secondary goals of the database; initial construction of the database; 
review and approval procedures for entries into the database; open versus restricted use of the 
database; software construction of the database; organizational control of the database; 
relationship of the controlling organization to existing organizations; and, initial and long 
term funding of the database. These issues are of major importance to the joint community of 
individuals, corporations, non-profit organizations, engineering societies, universities, and 
governmental organizations with serious interest in verification and validation. 

Initial construction of a database is a technically and organizationally complex, as well 
as costly, endeavor. Population of the database with relevant and high-quality benchmarks is 
a community effort, and cuts across major disciplines of theory, experiment, computation, 
application, and decision-making. Putting this kind of collaborative effort together hinges on 
a careful plan that takes the long view for the database. The benchmark effort we describe 
here makes little sense as a short-term task. Much of what we recommend clearly aims at 
sustainable use of the database, with an implication that the quality and breadth of the 
database improves over a long period of time. Long-term success of the database requires a 
sound starting point with broad consensus as to the goals, use, access, and funding over the 
long term. 

There are broad organizational issues that must be address very early in the planning 
stage. Will a single organization (non-profit, academic, or governmental) have responsibility 
for database maintenance, configuration management, and day-to-day operation? Will the 
database have a role beyond its immediate community, as we have essentially argued in this 
paper? This implies that there is the goal of open access to the database for the good of the 
broader community, specifically the world community in each of the traditional scientific and 
engineering disciplines. But how is this goal compatible with the significant expense needed 
to create the database, to maintain it, and to improve it? Financial supports and users of the 
database would need to be convinced of the value returned to them for their investment. The 
value back to them could be in many forms, for example, improvements in their software 
products, ability to attract new customers to their software products, and use as a quality 
assessment requirement for contractors to bid on new projects. If proprietary information is 
used in the database, we believe it would greatly diminish, possibly eliminate, the ability to 
create and sustain the database. 

It seems that V&V databases of the type we have discussed should be constructed along 
the lines of traditional engineering and science disciplines, e.g., fluid dynamics, solid 
dynamics, electrodynamics, neutron transport, plasma dynamics, molecular dynamics, etc. 
How each of these disciplines might begin to construct databases certainly depends on the 
traditions, applications, and funding sources in each of these fields. Our views about the 
implementation and organizational issues of a database are based on our background in fluid 
dynamics. 

This paper concentrated on the construction of SSBs primarily for the purpose of 
assessing numerical accuracy in codes (verification) and assessing physics modeling 
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accuracy in codes (validation). We recognize this is a narrow view of the possible uses of 
benchmarks, but we feel that SSBs are critically needed at this early stage of maturity of 
computational simulation. We would suggest that a secondary purpose to the establishment 
and use of SSBs would be for development of best practices in computational simulation. As 
recognized by NAFEMS[6] and ERCOFTAC,[102] there is a compelling need for 
improvements in professional practice in computational simulation. We feel that one could 
make a convincing argument that the most common failure mode in industrial applications of 
computational simulation is the practitioner using the code. Corporate and governmental 
management, of course, shoulders the ultimate responsibility for mentoring and training these 
experts, and monitoring their computational simulation work-products. Given the qualities of 
SSBs discussed earlier, they could be viewed as very carefully documented, step-by-step, 
sample problems that practitioners, new and experienced, could learn a great deal from. 

Rizzi and Vos[11] and Vos et al[12] discuss how validation databases could be built 
and used by a wide range of individuals and organizations. They stress the importance of 
close collaboration between corporations and universities in the construction and refinement 
of a validation database. In this regard, they also stress the value of workshops that are 
focused on specialty topics to improve the modeling efforts and simulations that are 
compared to experimental data. They discuss a number of workshops and initiatives in 
Europe, primarily funded by the European Union. Often these workshops provide dramatic 
evidence of the power of carefully defined and applied V&V benchmarks. One such effort 
organized in the U.S., but with participants from around the world, is the series of Drag 
Prediction Workshops.[103-107] These have been extraordinarily enlightening; primarily 
pointing out the great variability in drag predictions for a relatively simple aircraft geometry, 
and the surprisingly large differences between computational results and experimental 
measurements. Results from these types of workshops could form the basis for initial 
submittals for the database. 

We believe an Internet-based system would provide the best vehicle for deployment of 
V&V databases for three reasons. First, the ability to build, quickly share and collaborate 
with an Internet-based system is now blatantly obvious. A paper-based system would be 
completely unworkable, as well as decades behind the current state of information 
technology. We speculate on one aspect of deployment, although this issue is beyond the 
purpose of this paper, Many businesses around the world are better understanding the 
competitive advantage provided by the speed of information transfer within their 
organization, even if their organization is spread around the world. Thus, we expect that 
corporate acceptance of a benchmark effort might hinge on Internet deployment.  

Second, words that are of interest in a particular application of interest could be input to 
a search engine that could find all of the benchmarks that would contain those words. The 
search engine could operate much like that found in Google or Wikipedia. Functionality 
could be expanded to include a relevancy-ranking feature that would further improve the 
search and retrieval capability. The overall system design would include configuration, 
document, and content management elements. Then the benchmarks found could be sorted 
according to their relevance to the words input to the search. One could then click on the 
hyperlinks embedded with any of the benchmarks found. When a particular benchmark is 
displayed, one could have links from important words in the benchmark description to more 
detailed information in the benchmark. And third, the computer-based system can instantly 
provide much more detail concerning each benchmark. 

In the long term, new validation experiments as community goals should be funded 
either by the organization controlling the database or by private, non-profit, or governmental 
organizations. These new results could then be entered into the database. We believe that 
identification of new validation experiments should be the responsibility of both the 
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application community and the database organization. Funding for high-priority experiments 
could possibly be obtained from corporations, governmental institutions, and even joint 
ventures between private industrial organizations. The organizational role and facilitation of 
discussions regarding which experiments should be conducted would be best served by the 
database organization. 

 
 

6. Concluding Remarks 
 
In this paper we have made the argument that significantly improved methodology and 

practice of V&V is necessary to achieve improved credibility in computational science and 
engineering. We have discussed in detail one element of needed improvements; the design, 
construction, and use of strong-sense benchmarks in V&V. If you are of the opinion that 
CS&E is fully mature, and fully capable, to shoulder the new responsibilities demanded of it, 
then you will have little interest in the ideas proposed here. If you are of the opinion, as we 
are, that CS&E is in its early stages of development and contributions made to business, 
society, and to governments, then you will be interested in our ideas. Even though the 
development of strong-sense benchmarks will be slow, difficult, and costly, they are 
necessary for maturation of CS&E. 

While we only touched on organizational issues surrounding the construction and use of 
V&V databases, these are, in fact, highly sensitive issues with aspects of business-to-business 
economic competition, organizational and national prestige, and national security 
implications. Increasing the level of formality of V&V by constructing databases is going to 
inevitably lead to active discussions about the further improvements in university education 
and professional-level training in the field of computational science. This is the inevitable 
consequence of devoting large amounts of expert thought, money, and labor to the 
deployment and utilization of such databases. If these databases are developed and widely 
used around the world, then they are going to evolve into de facto, if not intentionally 
designed, standards. There would be similarities of V&V benchmark standards to 
international procedures that have developed over the last century for physical measurement 
standards. However, the range of expert knowledge required for V&V benchmark standards 
would be much broader than measurement standards. 
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