

DESIGN OF AND COMPARISON WITH
VERIFICATION AND VALIDATION BENCHMARKS

William L. Oberkampf
wloberk@sandia.gov

Timothy G. Trucano
tgtruca@sandia.gov

Sandia National Laboratories
Albuquerque, New Mexico, USA

Abstract

Verification and validation (V&V) are the primary means to assess accuracy and
reliability of computational simulations. V&V methods and procedures have fundamentally
improved the credibility of simulations in several high-consequence application areas, such
as, nuclear reactor safety, underground storage of nuclear waste, and safety of nuclear
weapons. Although the terminology is not uniform across engineering disciplines, code
verification deals with the assessment of the reliability of the software coding and solution
verification deals with the numerical accuracy of the solution to a computational model.
Validation addresses the physics modeling accuracy of a computational simulation by
comparing with experimental data. Code verification benchmarks and validation benchmarks
have been constructed for a number of years in every field of computational simulation.
However, no comprehensive guidelines have been proposed for the construction and use of
V&V benchmarks. Some fields, such as nuclear reactor safety, place little emphasis on code
verification benchmarks and great emphasis on validation benchmarks that are closely related
to actual reactors operating near safety-critical conditions. This paper proposes
recommendations for the optimum design and use of code verification benchmarks based on
classical analytical solutions, manufactured solutions, and highly accurate numerical
solutions. It is believed that these benchmarks will prove useful to both in-house developed
codes, as well as commercially licensed codes. In addition, this paper proposes
recommendations for the design and use of validation benchmarks with emphasis on careful
design of building-block experiments, estimation of experiment measurement uncertainty for
both inputs and outputs to the code, validation metrics, and the role of model calibration in
validation. It is argued that predictive capability of a computational model is built on both the
measurement of achievement in V&V, as well as how closely related are the V&V
benchmarks to the actual application of interest, e.g., the magnitude of extrapolation beyond a
validation benchmark to a complex engineering system of interest.

61

 1. Introduction
1.1 Background

The importance of computer simulations in the design and performance assessment of

engineered systems has increased dramatically during the last three or four decades. The
systems of interest include existing or proposed systems that operate, for example, at design
conditions, off-design conditions, and failure-mode conditions in accident scenarios. The role
of computer simulations is especially critical if we are interested in the reliability, robustness,
or safety of high-consequence systems that cannot ever be physically tested in a fully
representative environment. Examples are the catastrophic failure of a full-scale containment
building for a nuclear power plant, unusual environments or damaged hardware of the US
Space Shuttle, long-term underground storage of nuclear waste, and a nuclear weapon
involved in a transportation accident. In many situations, it is even difficult to specify what a
“representative environment” actually means in complex system. However, computer
simulations are beneficial to improved understanding of the response of the system, in the
development of public policy, the preparation of safety procedures, and the determination of
legal liability. With this increased responsibility, we believe the credibility of the
computational results must be raised to a higher level than has been accepted during the early
decades of computational simulation. From a historical perspective, we must realize that we
are in the early days of changing from an engineering culture of build-test-fix, to a culture
based on virtual reality. To have justified confidence in this evolving culture, major
improvements must be made in the transparency and visibility of both the maturity of the
computer codes used, as well as the uncertainty assessment of the physics models used.
Stated more bluntly, we need to move from a culture of glossy marketing and arrogance, to a
culture that forthrightly addresses the limitations, weaknesses, and uncertainty of our
simulations.

Developers of computational software, computational analysts, and users of the results
of simulations face a critical question: How should confidence in computational science and
engineering (CS&E) be critically assessed? Verification and validation (V&V) of
computational simulations are the primary building blocks for assessing and quantifying this
confidence. Briefly, verification is the assessment or estimation of the numerical accuracy of
the solution to a given computational model. Validation is the assessment of the accuracy of a
computational model through comparison of computational simulations with experimental
data. In verification, the association or relationship of the simulation to the real world is not
an issue. In validation, the relationship between computation and the real world
(experimental data) is the issue.

The nuclear reactor safety community has a long history of contributing to the
intellectual foundations of V&V and uncertainty quantification (UQ). The risk assessment
community in its dealings with underground storage of nuclear waste has also made
significant contributions to the field of UQ. However, contributions from both of these
communities to V&V&UQ have concentrated on software quality assurance procedures, as
well as statistical procedures for uncertainty estimation. It is fair to say that computationalists
(code users and code developers) and experimentalists in the field of fluid dynamics have
been pioneers in the development of terminology, methodology and procedures for V&V.
The (only) book in the field on V&V provides a good summary of the development of many
of the methodologies and procedures in computational fluid dynamics (CFD).[1] Also, Refs.
[2-5] provide a comprehensive review of the history and development of V&V from the
perspective of the CFD community.

To achieve the next level in credibility of computational simulations will require
concerted and determined efforts by individuals, universities, corporations, governmental

62

agencies, commercial code development companies, engineering societies, and standards-
writing organizations throughout the world. The goal of these efforts should be to improve
the quality of: the physics models used, the reliability of the computer software, the
numerical accuracy estimation, the uncertainty quantification, and the training and expertise
of users of the codes. In addition, new methods are critically needed for effectively
communicating the maturity and reliability of each of these elements, especially in
relationship to decision making on high-consequence systems. This paper will focus on one
aspect of needed improvements to code quality and physics model accuracy assessment,
specifically, the construction and use of highly demanding V&V benchmarks. The
benchmarks of interest here are those relating to accuracy and reliability of codes and physics
models. We are not interested here in benchmarks that relate to performance issues, such as,
computing speed of codes or performance of codes on different types of computer hardware
and operating systems.

Probably the most widely known V&V benchmarks have been developed over the last
two decades by the National Agency for Finite Element Methods and Standards
(NAFEMS).[6] Roughly 30 verification benchmarks have been constructed by NAFEMS
primarily in solid mechanics, but more recently in fluid dynamics. Most NAFEMS
verification benchmarks consist of an analytical solution, or an accurate numerical solution,
to a simplified physical process described by a partial differential equation. The NAFEMS
benchmark set is carefully defined, numerically demanding, and well documented. However,
these benchmarks are, at the present time, very restricted in their coverage of various
mathematical and/or numerical difficulties, and also their coverage of physical phenomena.
In addition, how well a given code performs on the benchmark is left to the interpretation of
the user of the code. It would also be expected that the code performance on the benchmark
would depend on the experience and skill of the user.

Several large commercial code companies dealing with solid mechanics have developed
an extensive set of verification benchmarks that are well documented and can be exercised by
licensed users of the code. Such benchmarks are intended to be applied to that specific code,
and reflect the dissemination limitations of this information. Documented performance on the
benchmarks can be clearly compared with user-independent checks of the same benchmarks.
This activity promotes a stronger user understanding of what is minimally expected from
performance of these codes. Some examples of these commercial codes are: ANSYS with
roughly 250 verification test cases and ABAQUS with roughly 300 test cases. The careful
description and extensive documentation of the ANSYS and ABAQUS benchmark set is
impressive. However, the primary goal in essentially all of these documented benchmarks is
to demonstrate “engineering accuracy” of the codes; not to precisely and carefully quantify
the numerical error in the solutions. As stated in one set of documentation: “In some cases, an
exact comparison with a finite-element solution would require an infinite number of elements
and/or an infinite number of iterations separated by an infinitely small step size. Such a
comparison is neither practical nor desirable.” We disagree with this viewpoint on all counts:
a) it does not require an infinite number of elements, or iterations, or infinitely small time
step, and b) It is practical and desirable to carefully assess the accuracy of a code by
comparison with theoretically demanding solutions. We will support our viewpoint in the
body of this paper.

Noticeably absent from our list of commercial codes are CFD software packages. A
recent paper by Abanto et al[7] tested three unnamed commercial CFD codes on relatively
simple verification test problems. The poor results of the codes were shocking to some
people, but not to the authors of the paper, nor to us. Although we have not surveyed all of
the major commercial CFD codes available, of those examined, we have not found extensive,
formally documented, verification or validation benchmark sets for these codes.

63

A number of efforts have been undertaken in the development of validation databases
that could mature into well-founded benchmarks. In the United States the NPARC Alliance
has developed a validation database that has roughly twenty different flows.[8] In Europe,
starting in the early 1990’s, there has been a much more organized effort in the development
of validation databases, primarily focused in aerospace applications. ERCOFTAC (the
European Research Community on Flow, Turbulence and Combustion) has collected a
number of experimental datasets for validation.[9] QNET-CFD is a Thematic Network on
Quality and Trust for the industrial applications of CFD.[10] This network has more than 40
participants from several countries who represent research establishments and many sectors
of the industry, including commercial CFD software companies. For a history and review of
the various efforts, see Rizzi and Vos[11] and Vos et al.[12]

An observation that the present authors make of this work in validation databases is that
many of the database cases are for very complex flows, sometimes referred to as “industrial
applications.” Our experience with attempts at validation for complex physical processes, and
our observations of many open literature activities, is that the computational results
commonly do not compare well with the experimental measurements. Then the activity
usually becomes a model calibration activity, or the computational analysts start pointing
accusatory fingers at the experimentalists about either what is wrong with their data, or what
they should have measured to make the data more effective for validation. A calibration
activity can be a useful and pragmatic path forward for use of the calibrated model in future
predictions that are very similar to the experimental database. However, calibration does not
address the root causes of the weaknesses of the models because there are typically so many
modeling approximations, or deficiencies, that could be contributing to the disagreement. We
are of the view that calibration should be undertaken from a defined understanding of, or as a
response to, V&V assessment; not as a replacement for V&V assessment.[13-15]

As will be discussed in more detail in Section 2.3, Validation Activities, the
construction and use of validation benchmarks is much more difficult than verification
benchmarks. The primary difficulty in constructing validation benchmarks is that
experimental measurements in the past have rarely been designed to provide true validation
benchmark data. Refs. [2-4, 16-18] give an in-depth discussion of the characteristics of
validation experiments, as well as an example of a wind tunnel experiment that was
specifically designed to be a true validation benchmark. The validation benchmarks that have
been complied and documented by organized efforts are indeed instructive and useful to users
of the codes and to physics model developers. However, we argue in this paper that much
more needs to be incorporated into the validation benchmarks, both experimentally and
computationally, to achieve the next level of usefulness and impact.

In Ref. [5], the concept of strong-sense V&V benchmarks was introduced. Oberkampf
et al argued that strong-sense benchmarks should be of a quality that they be viewed as
engineering reference standards. It is these authors’ experience that when there is
disagreement with a benchmark, especially a validation benchmark, then the debate shifts to
either a) questioning how good the benchmark is, instead of critically examining the
simulations that are being compared with the benchmark, or b) how might physical or
numerical parameters be adjusted to best match the experimental data. They stated that
strong-sense benchmarks are test problems that have the following four characteristics: a) the
purpose of the benchmark is clearly understood, b) the definition and description of the
benchmark is precisely stated, c) specific requirements are stated for how comparisons are
made with the results of the benchmark, and d) acceptance criteria for comparison with the
benchmark are defined. In addition, they required that information on each of these
characteristics be “promulgated”, i.e., the information is well documented and publicly
available. They asserted that strong-sense benchmarks (SSB) do not presently exist in

64

computational physics or engineering. They suggested that professional societies, academic
institutions, governmental organizations, or newly formed, nonprofit, organizations would be
the most likely to construct SSBs. This paper builds on these basic ideas and provides
detailed recommendations for the characteristics of V&V SSBs, and suggestions how
computational simulations could be compared with the SSBs.

1.2 Outline of the Paper

Section 2 begins with a brief review of terminology and how different communities

have varying interpretations of verification and validation. We then discuss how code
verification is composed of both numerical algorithm verification activities and software
quality assurance practices. It is pointed out that solution verification serves a different goal,
that is, estimation of numerical discretization error and iterative solution error. Code
verification procedures are discussed with regard to the use of highly accurate analytical
solutions, manufactured solutions, and numerical solutions as verification benchmarks for
codes. It is pointed out that validation can be viewed as composed of two quite different
activities; assessment of computational model accuracy by comparison with experiment, and
extrapolation of models to applications of interest along with the determination of their
adequacy for the application of interest. The concept of a validation hierarchy is discussed
along with its importance in assessing computational model accuracy at many different levels
of complexity. The required characteristics of validation experiments are discussed, how they
are different from traditional experiments, and how they form the central role in validation
benchmarks.

Section 3 discusses our recommendations for the design and construction of verification
benchmarks. We discuss details of four elements that should be contained in a verification
benchmark: a) purpose and scope of the benchmark, b) mathematical description of the
benchmark, c) accuracy assessment of the benchmark, and d) documentation of the
benchmark. We discuss how each of the elements applies to the four types of benchmarks:
analytical solutions, manufactured solutions, numerical solutions to ordinary differential
equations, and numerical solutions to partial differential equations. Although we do not
recommend that results of comparisons with benchmarks should be included in the
benchmark itself, we discuss how formal comparison results could be used and the types of
information that should be included in the comparisons. We point out that making the
resulting comparisons of codes with suitable benchmarks is an important component of the
published literature in computational science and engineering (CS&E) and is necessary for
the progressive improvement of numerical methods.

Section 4 discusses our recommendations for the design and construction of validation
benchmarks. We discuss details of four elements that should be contained in the validation
benchmark: a) purpose and scope of the benchmark, b) description of the benchmark,
experimental techniques, and facility, d) uncertainty quantification of benchmark
measurements, and d) documentation of the benchmark. We also discuss how one should
compare candidate code results with the benchmark results, paying particular attention to
issues of: computation of nondeterministic results to determine the uncertainty of system
response quantities due to uncertainties in input quantities, computation of validation metrics
to quantitatively measure the difference between experimental and computational results, the
minimization of model calibration in comparing with validation benchmarks, and the
constructive roll of global sensitivity analyses in validation experiments.

Section 5 discusses a diverse set of issues concerning how a V&V benchmark database
might be initiated, implemented, and contribute to CS&E. Examples of some of these issues
are: primary and secondary goals of the database; initial construction of an internet-based

65

system; software construction of the database; review and approval procedures for entries
into the database; open versus restricted use of the database; organizational control of the
database; and, possible initial and long term funding of the database.

Closing remarks and possible future steps toward construction of a V&V benchmark
database are given in Section 6.

2. Review of Verification and Validation Processes

There are a wide variety of different meanings used for V&V in the various technical

disciplines. The Institute of Electrical and Electronics Engineers (IEEE) was the first major
engineering society to develop formal definitions for V&V.[19] These definitions, initially
published in 1984, were adopted and associated procedures were developed by the software
quality assurance community, the International Organization for Standardization (ISO), and
the nuclear reactor safety community.[20, 21] After a number of years of discussion and
intense debate in the US defense and CFD communities, these definitions were found to be of
limited value. In particular, these definitions did not speak directly to certain issues that are of
particular importance in CS&E, such as the dominance of algorithmic issues in the numerical
solution of partial differential equations, and the importance of comparisons of computational
results with the “real world”. As a result, the US Department of Defense, developed an
alternate set of definitions.[22, 23] Following with more precisely targeted definitions, the
American Institute of Aeronautics and Astronautics (AIAA) and the American Society of
Mechanical Engineers (ASME) adopted the following definitions:[13, 14]

Verification: The process of determining that a model implementation accurately

represents the developer’s conceptual description of the model and the solution to the
model.

Validation: The process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended uses of the
model.

These definitions have also been recently adopted by the United States Department of Energy
National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing
program (ASC).[24] For a detailed discussion of the history of the development of the
terminology from the perspective of the CS&E communities, see Refs. [4, 5, 25, 26].

Verification provides evidence, or substantiation, that the conceptual model is solved
correctly by the computer code in question. In CS&E the conceptual model, sometimes called
the mathematical model, is typically defined by a set of partial differential or integro-
differential equations, along with the required initial and boundary conditions. The computer
code solves the computational model, i.e., the discrete-mathematics version, or mapping, of
the conceptual model. The fundamental strategy in verification is to identify, quantify, and
reduce errors caused by the mapping of the conceptual model to a computer code.
Verification does not address the issue of whether the conceptual model has any relationship
to the real world, e.g., physics.

Validation, on the other hand, provides evidence, or substantiation, for how accurately
the computational model simulates the real world for system responses of interest. The US
Department of Defense, and many other organizations, must deal with complex systems
composed of physical processes, computer controlled subsystems, and strong human
interaction. From their perspective, assessment of accuracy compared to the real world would
include expert opinion and well-founded knowledge of experienced professionals. From the

66

perspective of CS&E community, the real world is traditionally viewed to only mean
experimentally measured quantities in a physical experiment.[13, 14] Validation activities
presume that the discrete-mathematics version of the model, which is solved by the computer
code, is an accurate solution of the conceptual model. However, programming errors in the
computer code, numerical algorithm deficiencies, or inaccuracies in the numerical solution,
for example, may cancel one another in specific validation calculations and give the illusion
of an accurate solution. Verification, thus, should be accomplished before the validation
process begins so that one’s assessment of mathematical accuracy is not influenced by
whether the agreement of the computational results with experimental data is “good” or
“bad.” While verification is not simple, it is conceptually less complex than validation
because it deals with mathematics and computer science issues. Validation, on the other
hand, must address a much broader range of issues: assessment of the fidelity of the
mathematical modeling of physical processes, assessment of consistency, or relevancy, of the
mathematical model to the physical experiment being conducted, the influence of
experimental diagnostic techniques on the measurements themselves, and estimation of
experimental measurement uncertainty. Validation rests on evidence that the correct
experiments were executed correctly, as well as evidence of mathematical accuracy of the
computed solution, These problems are practically coupled in non-trivial ways in complex
validation problems although they are logically distinct. As Roache[1] succinctly states,
“Verification deals with mathematics; validation deals with physics.”

2.1 Verification Activities

2.1.1 Fundamentals of Verification

Two types of verification are generally recognized and defined in computational
simulation: code verification and solution verification.[1, 27] Recent work by Ref. [4] argues
that code verification should be further segregated into two parts: numerical algorithm
verification and software quality assurance (SQA). See Fig. 1. Numerical algorithm
verification addresses the software reliability of the implementation of all of the numerical
algorithms that affect the numerical accuracy and efficiency of the code. The major goal of
numerical algorithm verification is to accumulate sufficient evidence to demonstrate that the
numerical algorithms in the code are implemented correctly and functioning as intended.
SQA emphasizes determining whether or not the code, as a part of a software system, is
reliable (implemented correctly) and produces repeatable results on specified computer
hardware and a specified software environment, including compilers, libraries, etc. SQA
procedures are primarily needed during software development, testing, and modification, and
secondarily during production-computing operations.

Unfortunately, as discussed in Ref. [28], when solving complex partial differential
equations the distinct problems of mathematical correctness, algorithm correctness, and
software implementation correctness are virtually impossible to decouple. For example,
algorithms often represent non-rigorous mappings of mathematical approximations to the
underlying discrete equations. Two examples are approximate factorization of difference
operators and algorithms that are derived assuming high levels of continuity, when in reality
they are applied to problems with little or no continuity of derivatives. Whether these
algorithms are “correct” cannot be assessed in isolation from code executions, which are in
turn coupled to software implementation. One consequence is that an “obvious” numerical
inaccuracy may not be easily associated with one of mathematics, algorithms, or software.
This suggests a greater overlap between SQA and the “science” of numerical computation
than some practitioners feel comfortable with.

67

Figure 1
Integrated View of Code Verification in Computational simulation

[5]

Numerical algorithm verification, SQA, and solution verification are fundamentally
empirical. Specifically, these issues are based on observations, comparisons, and analyses of
the code results for specific input options chosen. Numerical algorithm verification centers on
careful investigations of topics such as spatial and temporal convergence rates, iterative
convergence, independence of solutions to coordinate transformations, and symmetry tests
related to various types of boundary conditions. Analytical or formal error analysis is
inadequate in numerical algorithm verification because the code must demonstrate the
analytical and formal results of the numerical analysis. Numerical algorithm verification is
conducted by comparing computational solutions with highly accurate solutions. We believe
Roache’s description of this as “error evaluation” clearly distinguishes it from numerical
error estimation.[29] Solution verification centers on estimating the numerical error for
particular applications, e.g., different mesh resolutions, when the correct solution is not
known.

SQA procedures are very well developed, as they have been in existence for at least
three decades. They are a combination of software management, inspection, and testing
procedures. However, there is ongoing debate about the precise role of SQA in CS&E, as
well as on the efficacy of particular SQA strategies and methods.[28, 30, 31] Trucano et
al.[28] emphasize three areas that are ripe for developing precise overlap between SQE and
CS&E V&V: (1) testing; (2) software lifecycle definition; and (3) code accreditation. The
latter issue is firmly in the orbit of the current paper, although we do not explicitly discuss it.

Fig. 1 depicts a top-down process with two main branches of code verification:
numerical algorithm verification and SQA practices.[5] Numerical algorithm verification,
discussed in Section 2.1.2, focuses on the accumulation of evidence to demonstrate that the
numerical algorithms in the code are implemented correctly and functioning properly. The
main technique used in numerical algorithm verification is testing, which is alternately
referred to in this paper as numerical algorithm testing or algorithm testing. SQA activities
include practices, procedures and processes primarily developed by researchers and
practitioners in the computer science and IEEE communities. Conventional SQA emphasizes
processes (management, planning, acquisition, supply, development, operation, and
maintenance), as well as reporting, administrative, and documentation requirements. One of

68

the key elements of SQA is configuration management of the software: configuration
identification, configuration and change control, and configuration status accounting. These
activities are primarily directed toward programming correctness in the source program,
system software, and compiler software. As shown in Fig. 1, software quality analysis and
testing can be divided into static analysis, dynamic testing, and formal analysis. Dynamic
testing further divides into such elements of common practice as regression testing, black-box
testing, and glass-box testing. From a SQA perspective, one could reorganize Fig. 1 such that
all of the activities listed on the left, under Numerical Algorithm Verification, could be
moved under dynamic testing. However, the computer science and IEEE communities have
shown no formal interest in the development of these activities. These activities, on the other
hand, dominate code development practice in the traditional CS&E communities.

A recent comprehensive analysis of the quality of scientific software by Hatton[32]
documented, to the disbelief of many, a dismal picture of code verification. Hatton studied
more than 100 scientific codes over a period of seven years using both static analysis and
dynamic testing. The codes were submitted primarily by companies, but also by government
agencies and universities from around the world. These codes covered 40 application areas,
including graphics, nuclear engineering, mechanical engineering, chemical engineering, civil
engineering, communications, databases, medical systems, and aerospace. Both safety-critical
and non-safety-critical codes were comprehensively represented. All codes were “mature” in
the sense that the codes were regularly used by their intended users, i.e., the codes had been
approved for production use. The total number of lines of code analyzed in Fortran 66 and 77
was 1.7 million and the total number of lines analyzed in C was 1.4 million. As the major
conclusion in his study, Hatton stated, “The T experiments suggest that the results of
scientific calculations carried out by many software packages should be treated with the same
measure of disbelief researchers have traditionally attached to the results of unconfirmed
physical experiments.” Hatton’s conclusion is disappointing, but not at all surprising in our
view.

Solution verification centers on the quantitative estimation of the numerical accuracy of
a given solution to the PDEs. Because, in our opinion, the primary emphasis in solution
verification is significantly different from that in numerical algorithm verification and SQA,
we believe solution verification should be referred to as numerical error estimation. That is,
the primary goal is attempting to estimate the numerical accuracy of a given solution,
typically for a nonlinear PDE with singularities and discontinuities. Assessment of numerical
accuracy is the key issue in computations used for validation activities, as well as in use of
the code for the intended application. Numerical error estimation is strongly dependent on the
quality and completeness of code verification.

The two basic approaches for estimating the error in a numerical solution to a PDE are
a priori and a posteriori error estimation techniques. An a priori approach uses only
information about the numerical algorithm that approximates the partial differential operators
and the given initial and boundary conditions. A priori error estimation is a significant
element of classical numerical analysis for PDEs, especially those underlying the finite
element and finite volume methods.[1, 33-38] An a posteriori approach uses all of the a
priori information, plus computational results from previous numerical solutions, e.g.,
solutions using different mesh resolutions or solutions using different order of accuracy
methods. We believe the only quantitative assessment of numerical error that can be achieved
in practical cases of nonlinear, complex, PDEs is through a posteriori error estimates.

A posteriori error estimation has primarily been approached through the use of either
Richardson extrapolation[1] or estimation techniques based on finite element
approximations.[39, 40] Richardson extrapolation uses solutions on multiply refined meshes
to estimate the spatial discretization error. It can also be used on multiply refined time-step

69

solutions to estimate temporal discretization error. Richardson’s method can be applied to
any discretization procedure for differential or integral equations, e.g., finite difference
methods, finite element methods, finite volume methods, spectral methods, and boundary
element methods. As pointed out by Roache,[1] Richardson’s method produces different
estimates of error and uses different norms than the traditional a posteriori error methods
used in finite elements.[35, 41] A Grid Convergence Index (GCI), based on Richardson’s
extrapolation, has been developed by Roache to assist in the estimation of grid convergence
error.[1, 42, 43]

Although SQA and solution verification are quite important, a detailed discussion of
these topics is beyond the scope of this paper. For further discussion of SQA issues, see, for
example, Refs. [5, 44-46]. For further discussions of numerical error estimation, see, for
example, Refs. [1, 33-38, 47-50].

2.1.2 Code Verification Procedures

From the perspective of the numerical solution of PDEs, the major components of code
verification include the definition of appropriate benchmarks for evaluating solution accuracy
and the determination of satisfactory performance of the algorithms on the benchmarks. Code
verification rests upon comparing computational solutions to the “correct answer,” which is
provided by highly accurate solutions for a set of well-chosen benchmarks. The correct
answer can only be known in a relatively small number of isolated cases. These cases
therefore assume a very important role in verification and should be carefully formalized in
test plans for verification assessment of the code.

Figure 2 depicts a method for detecting numerical algorithm deficiencies and
programming errors by using verification benchmarks. The conceptual model, or
mathematical model, is derived from the physics of interest and the mathematical
assumptions made in constructing the model. Since we are interested in benchmark solutions,
the conceptual model is chosen by what exact or highly accurate solutions are known, or new
ones that can be generated. The conceptual model is typically given by a set of PDEs and all
of the associated input data, e.g., initial conditions, boundary conditions, material properties,
nuclear cross-sections, etc. These equations are discretized, i.e., mapped from derivatives and
integrals to algebraic equations, using the numerical algorithms chosen. The discretized
equations are programmed in the computer code. When the code is exercised by solving the
benchmark problem, then the code produces computational results of interest. The results
from the code are then compared with the benchmark solution results to evaluate the
differences that occur. The comparisons are usually examined along boundaries of interest or
error norms computed over the entire solution domain. The accuracy of each of the dependent
variables or functionals of interest can be determined as part of the comparisons.

Probably the most important issue in the design and computation of verification
benchmarks is the mathematical accuracy of the benchmark solution. The AIAA Guide,[13]
suggests the following hierarchical organization of confidence or accuracy of benchmarks
(from highest to lowest): (1) analytical solutions, (2) highly accurate ordinary differential
equation numerical solutions, and (3) highly accurate numerical solutions to PDEs.
Analytical solutions are closed-form solutions to special cases of the PDEs that define the
conceptual model. These closed-form solutions are commonly represented by infinite series,
complex integrals, and asymptotic expansions. Relatively simple numerical methods are
usually used to compute the infinite series, complex integrals, and asymptotic expansions in
order to obtain the solutions of interest. The accuracy of these solutions, particularly if they
are infinite series or asymptotic expansions, must be carefully quantified, which can be very
challenging. The most significant practical shortcoming of classical analytical solutions is
that they exist only for very simplified physics, material properties, and geometries.

70

Figure 2
Method to Detect Sources of Errors in Code Verification

The second type of highly accurate solution is the numerical solution to special cases of

the general PDEs that can be mathematically simplified to ordinary differential equations
(ODE). The ODEs can be either initial value problems or boundary value problems. These
solutions commonly result from simplifying assumptions, such as simple geometries that
allow formation of similarity variables. Once an ODE is obtained, then a highly accurate
ODE solver can compute the numerical solution. Highly accurate ODE solvers typically
employ both variable integration-step and variable order of accuracy numerical methods. In
fluid dynamics, some well known ODE benchmarks are stagnation point flow, laminar flow
in two and three dimensions, Taylor-Maccoll solution for inviscid flow over a sharp cone,
and Blasius solution for laminar flow over a flat plate. Note that the Blasius solution would
be a useful benchmark for assessing the accuracy of CFD code that solves the boundary layer
equations. However, it would not be a good benchmark for testing a Navier-Stokes code
because the Blasius solution also relies on the approximations assumed in the boundary layer
theory. As would be expected, there would be a difference between a highly accurate Blasius
solution and a highly accurate Navier-Stokes solution because of the different modeling
assumptions involved in each. The modeling assumptions must be the same between the
benchmark solution and the code being tested. The only question that should be answered in
Fig. 2 is related to numerical accuracy and correctness of the code being tested.

The third type of highly accurate solution is numerical solution to more complex PDEs,
i.e., more complex than those obtained from analytical solutions or ODE numerical solutions.
The accuracy of these type benchmark solutions clearly becomes a more questionable issue
compared to analytical solutions or ODE solutions. In the literature, for example, one can
find descriptions of computational simulations that are considered to be “benchmark
solutions” by the author, but are later found to be lacking. Although it is common practice to
conduct code-to-code comparisons, we argue that these types of comparisons are of very
limited value unless highly demanding requirements are imposed on the numerical solution
that is considered as the “benchmark.”[51] These requirements will be discussed in detail in

71

section 3.1
During the last decade a technique has been developed for constructing a special type of

analytical solution that is specifically used for testing numerical algorithms and computer
codes; it is referred to as the “Method of Manufactured Solutions” (MMS).[1, 52] The MMS
is a method of custom-designing verification benchmarks of wide applicability, where a
specific form of the solution function is assumed to satisfy the PDE of interest, rather than a
major simplification of the PDE of interest. This function is inserted into the PDE, and all the
derivatives are analytically derived. Typically these derivatives are derived by using
symbolic manipulation software such as MATLAB® or Mathematica®. The equation is
rearranged such that all remaining terms in excess of the terms in the original PDE are
grouped into a forcing-function or source term. This source term is then added to the original
PDE so that the assumed solution function satisfies the new PDE exactly. When this source
term is added to the original PDE, one recognizes that we are no longer dealing with
physically meaningful phenomena, although we remain in the domain of mathematical
interest. This realization can cause some researchers or analysts to claim that the solution is
no longer relevant to computational simulation. The fallacy of this argument is emphasized
by noting that in verification we are only dealing with testing of the numerical algorithms and
coding: not the relationship of the code results to physical responses of the system. Since the
solution to the modified PDE was “manufactured”, the boundary conditions for the new PDE
are analytically derived from the solution chosen. For the three types of common boundary
conditions, one can use the chosen solution function to: a) simply evaluate solution on any
boundary of interest, i.e., a Dirichlet condition, b) analytically derive a Neumann type
boundary condition and apply it on any boundary, and c) analytically derive a boundary
condition of the third kind and apply it on any boundary. MMS could be described as finding
the problem, i.e., the PDE, for which we have assumed a solution.

Using MMS in code verification requires the ability to insert the analytically derived
source term and boundary conditions into the code being tested, and that this insertion be
verified in the sense of code verification. This technique verifies a large number of numerical
aspects in the code, such as, the numerical method, differencing or finite element technique,
spatial-transformation technique for grid generation, grid-spacing technique, and correctness
of algorithm coding. Although the MMS has been used in various forms for checking
computer codes for a number of years, recent extensions and generalizations of the method
have proven very effective. As pointed out by a number of researchers in this topic, solutions
in MMS must be carefully chosen to achieve the desired test results. For example, solutions
should be chosen so that as many terms as possible in the original PDE are brought into play.
This includes any submodels affecting terms in the original PDE, as well as any mathematical
transformations of physical space to computational space. MMS has proven to be so effective
that we will specifically add it to the list of three types of highly accurate solutions described
earlier in this section.

In code verification the key feature to determine is the observed, or demonstrated, order
of accuracy from multiple numerical solutions. As discussed in a number of references,[1,
52] Richardson extrapolation is used in combination with the known exact solution and
results from two different mesh resolutions to determine the observed order of accuracy from
a code. A typical plot of observed order of accuracy versus mesh resolution is shown in Fig.
3. When the mesh is sufficiently resolved, the numerical solution enters the asymptotic
convergence region with regard to spatial resolution. In this region the observed order of
accuracy becomes a constant. By computing the observed order of accuracy in testing a code
one can make two strong statements concerning accuracy. First, if the observed order is
greater than zero, then the code converges to the correct solution as the mesh is refined. If the
observed order of accuracy is zero, then the code will converge to an incorrect answer.

72

Second, if the observed order of accuracy matches (or nearly matches) the formal order of
accuracy, then the code demonstrates that it can reproduce the theoretical order of accuracy
of the numerical method. This statement belies the fact that in many practical cases, the
theoretical order of accuracy of a complex code is actually not known rigorously, or it is a
mixed order scheme. When an empirical convergence study is in disagreement with a
claimed formal order of accuracy, it may be the case that both sides of this comparison must
be subject to close analysis.

Figure 3

Observed order of accuracy as a function of mesh resolution for two Navier-Stokes
codes[53]

Researchers have found a number of reasons why the observed order of accuracy can be

less than the formal accuracy when the latter is rigorously known. Some of the reasons are:
(1) a programming error exists in the computer code, (2) the numerical algorithm is deficient
is some way, (3) insufficient grid resolution so that the grid is not in the asymptotic
convergence region of the power series expansion for the particular system response quantity
(SRQ) of interest, (4) the formal accuracy for interior grid points is different than the formal
accuracy for boundary conditions with derivatives resulting in a mixed order of accuracy, (5)
singularities, discontinuities, and contact surfaces interior to the domain of the PDE, (6)
singularities and discontinuities in the boundary conditions, (7) highly stretched meshes, (8)
inadequate convergence of an iterative procedure in the numerical algorithm, and (9) over-
specified boundary conditions. It is beyond the scope of this paper to discuss these in detail,
however some of the representative references in these topics are [1, 33, 52, 54-63]. For the
types of benchmarks we will concentrate on in this paper, we will focus on testing candidate
codes for reasons (1) – (4).

2.2 Validation Activities

2.2.1 Fundamentals of Validation

Various researchers and engineering standards documents[4, 5, 13-15, 64] have pointed
out that there are two key, and distinct, issues in validation: a) quantification of the accuracy
of the conceptual model by comparisons with experimental data, and b) estimation of the

73

accuracy of the conceptual model for its intended use. The definition of validation, given at
the beginning of Section 2, is not particularly clear on the issue and, as a result, the definition
has been interpreted to include both issues, and also been interpreted to only include the first
issue. The first issue is typically referred to as model fidelity assessment, or assessment of
validation metrics, and the second issue is usually referred to as adequacy assessment of the
model for applications of interest, or predictive capability estimation. Figure 4 depicts these
two issues, as well as the input information these two issues require.

Figure 4
Two Aspects of Model Validation

It is clear from Fig. 4 that model fidelity assessment by comparison of model results to

experimental results is distinctively different from adequacy assessment of the model relative
to accuracy requirements for applications that may, or may not, be very well defined. The
most recent engineering standards document dealing with V&V, referred to as the ASME
Guide[14] takes the view that both aspects of validation are fundamentally combined in the
term “validation.” The AIAA Guide,[13] however, takes the view that “validation” only deals
with the first aspect; assessment of model accuracy, with no implication that model accuracy
is “good” or “bad”. Uncertainty is involved in the assessment, both in terms of experimental
measurement uncertainty and in terms of the computational simulation, primarily because
input quantities needed from the experiment are not available. The second aspect is regarded
as a separate activity related to predictive capability. Stated differently, the AIAA Guide
takes the perspective that predictive capability uses assessed model accuracy as input, but
predictive capability also incorporates: a) additional uncertainty estimation resulting from
extrapolation of the model beyond the existing experimental database to future applications
of interest, and b) comparison of the accuracy requirements needed by a particular
application relative to the estimated accuracy of the model for that specific applications of
interest. Both perspectives are useful and workable, but the terminology clearly means
different things and, as a result, one must be careful in discussions and writing on the subject.

Work by the ecological community[65, 66] and recent work by the hydrology
community[67] in Europe have independently developed very similar ideas to those being
developed in the US with regard to V&V. Rykiel[65] makes a important practical point,
especially to analysts and decision makers, concerning the difference between the philosophy

74

of science viewpoint and the practitioner’s view of validation: “Validation is not a procedure
for testing scientific theory or for certifying the ‘truth’ of current scientific understanding …
Validation means that a model is acceptable for its intended use because it meets specified
performance requirements.” Refsgaard and Henriksen[67] have recommended terminology
and fundamental procedures for V&V that are applicable to a much wider range of
simulations than just hydrological modeling. Their definition of validation makes the two
aspects of validation in Fig. 4 quite clear: “Model Validation: Substantiation that a model
within its domain of applicability possesses a satisfactory range of accuracy consistent with
the intended application of the model.” An additional crucial issue stressed by Refsgaard and
Henriksen, and corroborated by both the AIAA and ASME Guides, is: “Validation tests
against independent data that have not also been used for calibration are necessary in order to
be able to document the predictive capability of a model.” Stated differently, the key issue in
validation is assessment of the model in a “blind” test with experimental data, whereas the
key issue in calibration is adjustment of physical modeling parameters to improve agreement
with experimental data. It is difficult, and sometimes impossible, to make blind comparisons,
e.g., when well-known benchmark validation data is available for comparison. However, we
must be extremely cautious in making conclusions of predictive accuracy of models when the
analyst has seen the data. Knowing the “correct answer” before hand is extremely seductive,
even to a saint.

An additional fundamental, as well as practical, aspect of validation in a real
engineering environment has been the introduction of the concept of a validation
hierarchy.[13, 14] Because of the infeasibility and impracticality of conducting true
validation experiments on most complex or large scale systems, the recommended method
(and we would agree that it is logically necessary) is to use a building-block approach. This
approach divides the complex engineering system of interest into three or more progressively
simpler tiers: subsystem cases, benchmark cases, and unit problems. In the reactor safety
field a very similar concept has been used for some time and it is usually referred to as
separate effects testing. The strategy in the tiered approach is to assess how accurately the
computational results compare with the experimental data at multiple degrees of physics
coupling and geometric complexity. The approach is extremely useful in that: (1) it
recognizes that there is a hierarchy of complexity in systems, physics and geometry, (2) the
hierarchy requires a very wide range of experienced individuals to construct it; often
discovering subsystem or component interactions that had not been recognized before, (3)
models, or submodels, can be tested at any of the tiers of complexity, and (4) it recognizes
that the quantity, accuracy and cost of information that is obtained from experiments varies
radically over the range of tiers. Each comparison of computational results with experimental
data allows an inference of model accuracy concerning tiers both above and below the tier
where the comparison is made. The construction and use of the validation hierarchy is
particularly important in situations were the complete system of interest cannot be tested. For
example, in the nuclear power industry very similar ideas to the validation hierarchy have
been used in safety studies and probabilistic risk assessment for abnormal environment
scenarios.

An example of a hierarchical structure for a complex, multidisciplinary system was
presented in Ref. [68]. The example features an air-breathing, hypersonic cruise missile. The
missile is assumed to have an autonomous guidance, navigation, and control (GNC) system,
an on-board optical target seeker, and a warhead. Figure 5 shows the system-level
hierarchical validation structure for the hypersonic cruise missile. The missile is referred to as
the complete system, and the following are referred to as systems: propulsion, airframe,
GNC, and warhead. The hierarchy shown is not unique, nor is it necessarily optimum for
every computational-simulation perspective of the missile system. In addition, the structure

75

shown in Fig. 5 focuses on the airframe system and the aero/thermal protection subsystem for
the purpose of analyzing the aero/thermal performance of the missile.

Figure 5

Validation Hierarchy for a Hypersonic Cruise Missile[68]

2.2.2 Characteristics of Validation Experiments
With the critical role that validation experiments play in assessment of model accuracy

and predictive capability, it is fair to ask: Exactly what is a validation experiment? Or, How
is a validation experiment different from other experiments? In an attempt to answer these
questions, we first suggest that traditional experiments could generally be grouped into three
categories. The first category comprises experiments that are conducted primarily to improve
the fundamental understanding of some physical process. Sometimes these are referred to as
physical-discovery experiments. The second category of traditional experiments consists of
those conducted primarily for constructing or improving mathematical models of fairly well
understood physical processes. Sometimes these are referred to as model calibration
experiments. The third category of traditional experiments includes those that determine or
improve the reliability, performance, or safety of components, subsystems, or complete
systems. These experiments are sometimes called “proof tests” or “system performance
tests.”

The present authors and colleagues[2, 3, 16, 69-73] have argued that validation
experiments constitute a new type of experiment. A validation experiment is conducted for
the primary purpose of determining the predictive accuracy of a computational model, or
group of models. In other words, a validation experiment is designed, executed, and analyzed
for the purpose of quantitatively determining the ability of a mathematical model and its
embodiment in a computer code to simulate a well-characterized physical process. Thus, in a
validation experiment “the code is the customer” or, if you like, “the computational analyst is

76

the customer.” Only during the last 10 to 20 years has computational simulation matured to
the point where it could even be considered as a customer in this sense. As modern
technology increasingly moves toward engineering systems that are designed, and possibly
even fielded, based predominately on CS&E, then CS&E itself will increasingly become the
customer of experiments.

We argue that there are three aspects that should be used to optimize the effectiveness
and value of validation experiments: (1) early in the planning process, define the goals and
the expected results of the validation activity, (2) design the validation experiment by using
the code in a predictive sense and also account for the capability limitations of the
experimental facility, and (3) develop a well-thought-out plan for analyzing and
quantitatively comparing the computational and experimental results.[73] The first aspect,
defining the goals and expected results, deals with issues, such as: clear determination how
the validation activity relates to the application of interest (typically through the validation
hierarchy); identification of what physics modeling issues are being tested; deciding if the
validation activity intended to severely test the model or make the model look good;
specification of what is required from both the computational and experimental aspects of the
validation activity to conclude that each aspect was deemed a “success;” and laying out the
steps that would be taken if the model (or the experimental results) looks surprisingly good or
surprisingly bad.

In the second aspect above, “design” means using the code to directly guide design
features of the experiment, such as: geometry, initial and boundary conditions, material
properties, sensor locations, and diagnostic techniques, e.g. strain gauges, thermocouples,
optical techniques, and radiation detectors. Even if the accuracy of the code predictions is not
expected to be high, the code can frequently guide much of the design of the experiment.
Using the code, and the goals of the validation activity, one can also guide the required
accuracy needed of the experimental measurements, or the number of experimental
realizations needed to obtain a specific statistical result. Suppose, through a series of
exploratory calculations for a particular application of the code, an unexpectedly high
sensitivity to certain physical parameters is found. If this unexpected sensitivity has an
important impact on the application of interest, a change in the design of the validation
experiment may be needed, or indeed, a completely separate validation experiment may be
called for. Also, the limitation of the experimental facility should be directly factored into the
design of the experiment. Examples of facility or diagnostic limitations are: inability to
obtain the range of parameters, e.g., load, temperature, velocity, time, radiation flux, needed
to meet the goals of testing the model, inability to obtain the needed accuracy of
measurements (both system response quantities and model input quantities), and inability to
measure all of the needed input quantaties, e.g., initial conditions, boundary conditions,
material properties, needed for the code simulation.

The third aspect above refers to the importance of rigorously analyzing and
quantitatively comparing the computational and experimental results. As shown in top
portion of Fig. 4, this type of quantitative comparison is now called a validation metric and is
an active topic of research.[4, 74-79] Validation metrics use statistical procedures to compare
the results of code calculations with the measurements of validation experiments. Because we
emphasize that the overarching goal of validation experiments is to develop quantitative
confidence so that the code can be used for its intended application, we have argued the
central role of validation metrics. Stated differently, we believe predictive capability should
be built directly on quantitative measures of agreement that have been demonstrated in
previous assessments of the model using experimental data, as opposed to obscure or vague
declarations that the model is “valid,” and then making predictions. In the statistical inference
literature, there has been a long history of the development of statistical procedures for

77

closely related inference tasks. However, most of these procedures yield either probabilistic
measures of agreement, such as hypothesis testing, or they are directed at calibration of
models, such as Bayesian updating.

As proposed in Refs. [78, 79], we currently believe that useful validation metrics should
include several characteristics. Some of the recommended characteristics concerning a metric
are: (1) explicitly include an estimate of the numerical error in the computed system response
quantity (SRQ), or exclude the numerical error because it has been demonstrated to be small
relative to the measurement uncertainty, (2) include in some explicit way an estimate of the
measurement uncertainty in the experimental data for the system response quantities of
interest, (3) depend on the number of experimental measurements that have been made of the
SRQ, e.g., multiple replications of the measurements of the SRQ, and multiple measurements
of a SRQ over a range of input quantities, and (4) exclude any indications, either explicit or
implicit, of the level of adequacy of agreement between computational and experimental
results. This last recommendation refers to the common practice of declaring the
computational results “valid” if the results pass through the uncertainty bands of the
experimental measurements.

During the past several years, a group of researchers at Sandia National Laboratories
has been developing methodological guidelines and procedures for designing and conducting
a validation experiment.[2-4, 16, 69-73] These guidelines and procedures have emerged as
part of a concerted effort in the NNSA ASC program to provide a rigorous foundation for
V&V for computer codes that are important elements of the U.S. nuclear weapons
program.[80] Historically, they were first developed in their current form in a joint
computational and experimental program conducted in a wind tunnel, however, they apply
over a wide range of CS&E.

Guideline 1: A validation experiment should be jointly designed by experimentalists,

model developers, code developers, and code users working closely together
throughout the program, from inception to documentation, with complete candor
about the strengths and weaknesses of each approach.

Guideline 2: A validation experiment should be designed to capture the essential physics
of interest, including all relevant physical modeling data and initial and boundary
conditions required by the code.

Guideline 3: A validation experiment should strive to emphasize the inherent synergism
between computational and experimental approaches.

Guideline 4: Although the experimental design should be developed cooperatively,
independence must be maintained in obtaining both the computational and
experimental results.

Guideline 5: A hierarchy of experimental measurements of increasing computational
difficulty and specificity should be made, for example, from globally integrated
quantities to local measurements.

Guideline 6: The experimental design should be constructed to analyze and estimate the
components of random (precision) and bias (systematic) experimental errors.

These guidelines are applicable to any tier in the validation hierarchy discussed with regard
to Fig. 5. A detailed discussion of each of these six guidelines is beyond the scope of the
present work. The reader is referred to the given references for an in-depth discussion of what
these guidelines mean, how they can be implemented, and the difficulties that can be
encountered. Some of these guidelines will be incorporated into the recommendations for the
construction of validation benchmarks, Section 4.1.

78

3. Recommendations for Verification Benchmarks

The discussion of SSBs in verification, as well as in validation, is divided into the

recommended features of the benchmark itself and how one should compare a code being
tested (referred to as the candidate code) to the benchmark results. The characteristics we
recommend here for SSBs are not discipline specific, but can be applied to many fields of
physics and engineering.

3.1 Construction of Verification Benchmarks

As discussed in Section 1.1, Introduction, Ref. [5] suggested three characteristics for the
construction of a SSB: a) the purpose of the benchmark should be clearly stated, b) the
definition and description of the benchmark should be precisely stated, and c) the benchmark
should be well documented. We agree with these characteristics and we add an additional
characteristic that should be incorporated in their construction: d) the accuracy of the
benchmark should be carefully assessed and the pedigree of the evidence should be explained
in detail.

3.1.1 Purpose and Scope of the Benchmark

The description given in the purpose and scope of the benchmark should be a textual
description: no equations or symbols. The reason for this is that we believe that an electronic
database of verification benchmarks should be constructed in the future, similar to the ideas
expressed by Rizzi and Vos discuss.[11] With an electronic database, one could search the
database for key words that would assist in finding those benchmarks that could be applicable
to particular problems of interest. In addition, the purpose and scope of the benchmark should
be described from various perspectives.

The first perspective of the information given in the description is the general class of
physical process being modeling in the benchmark. For example, in fluid dynamics the
description should give the general characteristics such as: steady vs. unsteady, class of fluid
assumed (e.g., continuum vs. non-continuum, viscous or inviscid, Newtonian vs. non-
Newtonian, Reynolds-Averaged Navier-Stokes equations vs. large eddy simulation vs. direct
numerical simulation, compressible vs. incompressible, single phase vs. multi-phase), spatial
dimensionality and what coordinate system is used, perfect gas, and all auxiliary models that
are assumed (e.g., assumptions for a gas with vibrationally excited molecules, chemically
reacting gas assumptions, thermodynamic property assumptions, transport property
assumptions, assumptions on chemical models, reactions, and rates, and turbulence model
assumptions.) In solid dynamics, for example, the description should include equations of
state assumptions, such as choice of independent variables in tables, solid behavior
assumptions varying from elasticity to visco-plasticity, assumptions about material failure,
and assumptions about mixture behavior for complex non-homogeneous materials. Note that
the description should be with respect to the class of physics that is modeled in the
benchmark, not the actual physics of interest.

Second, the benchmark description should include the initial conditions and boundary
conditions exactly as they were characterized in the benchmark. Some examples in fluid
dynamics are: steady state flow between parallel plates with infinite dimension in the plane of
the plates, flow over a circular cylinder of infinite length with undisturbed flow far from the
cylinder, and flow over an impulsively started cube in an initially undisturbed flow. Some
examples in solid dynamics are: externally applied loads or damping, contact models, joint
models, explosive loads or impulsive loads, and impact conditions (geometry and velocity).
Included with boundary conditions would be a statement of all of the pertinent geometry

79

dimensions, or non-dimensional parameters characterizing the problem, if any. In the
statement of “infinity” boundary conditions, it must be clearly stated exactly what was used
in the benchmark. For example, if the numerical solution benchmark imposed an undisturbed
flow condition at some finite distance from an object in a fluid, then that should be carefully
described. However, one could also impose an undisturbed flow condition at infinity using
coordinate stretching away from the object by mapping infinity to a finite point.

Third, the benchmark description should include the types of physical applications the
benchmark is relevant to. Some examples in fluid dynamics are: laminar wake flows,
turbulent boundary layer separation over a smooth surface, impulsively started flows, laminar
diffusion flames, shock/boundary layer separation, and natural convection in an enclosed
space. Some examples in solid dynamics are: linear structural response under impulsive
loading, wave propagation excited by energy sources, explosive fragmentation, crater
formation and evolution, and penetration events. This type of information in the description
will be particularly useful to individuals searching for benchmarks that are more or less
related to their actual application of interest.

Fourth, it should be stated what type of benchmark this is. As discussed in section 2.1.2,
Code Verification Procedures, it is quite important to state if it is: (1) an analytical solution,
(2) a manufactured solution, (3) an ODE numerical solution, or (4) a PDE numerical solution.
If the benchmark is a type 1 or type 2, then one must be able to accurately compute the
observed order of accuracy of the candidate code. If the benchmark is a type 3 or type 4, then
it is doubtful that the observed order of accuracy can be computed for the candidate code
because the accuracy of the numerical solutions from the benchmark will probably not be
adequate. As a result, only an accuracy assessment of SRQs of interest from the candidate
solutions could be made by comparison with the benchmark solution.

And fifth, the benchmark should state what numerical algorithm or software quality
issues are being tested. Some examples are: test of the numerical method to capture a strong
shock wave in three dimensions, test to determine if the numerical method can accurately
approximate specific types of discontinuities or singularities that occur either within the
solution domain or on the boundary, test of the numerical method to compute re-contact
during large plastic deformation of a structure, test of the numerical method in computing a
denotation front in a granular mixture, and test of the numerical method in computing shock-
induced phase transitions. In this facet of the description one should also include if any type
of physics coupling is being tested by using the benchmark. For example, does the
benchmark test the coupling of a shock wave and chemically reacting flow, or does the
benchmark test the coupling of thermal stresses in addition to mechanical stresses during
large plastic deformation of a structure? Or does the method test only an isolated physics
phenomenon?

To better clarify how these five descriptive perspectives would be applied in practice,
we will discuss four different types of benchmarks in fluid dynamics:

Type 1 Benchmark Example (Ref. [81])
Title: Unsteady, incompressible, laminar, Couette flow, using the Navier-Stokes

equations
Initial Conditions and Boundary Conditions: Initial-boundary value problem, two-

dimensional Cartesian coordinates, impulsive flow between flat plates, one plate
instantaneously accelerates relative to a stationary plate with the fluid initially at rest.

Related Physical Problems: Impulsively-started, laminar flows
Type of Benchmark: Analytical solution given by an infinite series
Numerical and/or Code Features Tested: Interaction of inertial and convective terms in

one dimension; initial value singularity on one boundary at time zero.

80

Type 2 Benchmark Example (Ref. [82-84])
Title: Steady, incompressible, turbulent flow, using one and two-equation turbulence

models for the Reynolds-Averaged-Navier-Stokes equations
Initial Conditions and Boundary Conditions: Boundary value problem, two-dimensional

Cartesian coordinates, arbitrary boundary geometry, boundary conditions of the first,
second, and third kind can be specified.

Related Physical Problems: Incompressible, internal or external turbulent flows, wall-
bounded and free-shear-layer turbulent flows.

Type of Benchmark: Manufactured solution given with source terms to be added
Numerical and/or Code Features Tested: Interaction of inertial, convective, and

turbulence terms in two Cartesian dimensions for RANS models.

Type 3 Benchmark Example (Ref. [81])
Title: Steady, incompressible, laminar flow of a boundary layer for a Newtonian fluid
Initial Conditions and Boundary Conditions: Initial-boundary value problem, in two-

dimensional Cartesian coordinates, flow over a flat plate with zero pressure gradient.
Related Physical Problems: Attached, laminar boundary layer growth with no separation.
Type of Benchmark: Blasius solution; numerical solution of a two-point boundary value

problem
Numerical and/or Code Features Tested: Interaction of viscous and convective terms in a

boundary layer attached to a flat surface.

Type 4 Benchmark Example (Ref. [85])
Title: Steady, incompressible, laminar flow using the Navier-Stokes equations
Initial Conditions and Boundary Conditions: Boundary value problem, two-dimensional

Cartesian coordinates, flow inside a square cavity with one wall moving at constant
speed (except near each moving wall corner), Rl=104.

Related Physical Problems: Attached laminar flow with separation, laminar free-shear
layer, flow with multiply induced vortices.

Type of Benchmark: Numerical solution given by a finite element solution
Numerical and/or Code Features Tested: Interaction of viscous and convective terms in

two dimensions; two-points on the boundary that are nearly singular.

3.1.2 Mathematical Description of the Benchmark
A clear and complete description should be given of the partial differential or ordinary

differential equations for the mathematical problem being solved. We want to stress here that
the mathematical description of the benchmark must not include any feature of the
discretization or numerical methods used to solve the PDEs and ODEs. The mathematical
description should include:

a) Clearly state all of the assumptions used to formulate the mathematical problem

description.
b) Define all symbols used in the mathematical description of the benchmark, including

any non-dimensionalization used, and units of all dimensional quantities.
c) State the PDEs, ODEs, or integral equations being solved, including all secondary

models, or submodels. The statement of these models must be given in differential
and/or integral form, not in discretized form. Some examples of secondary models
that would be given are: equation of state, thermodynamic models, transport property
models, chemical reaction models, turbulence models, emissivity models, constitutive

81

models for materials, material contact models, externally applied loads, opacity
models, neutron cross-section models, etc.

d) Give a complete and unambiguous statement of all of the initial conditions and
boundary conditions used in continuum mathematics form. The stated initial
conditions and boundary conditions are those that are actually used for the solution to
the PDEs and ODEs, not those that one would like to use in some practical
application of the computational model. For example, if the benchmark solution is a
numerical solution of a PDE, a type 4 benchmark, and the numerical solutions uses an
outflow boundary condition imposed at a finite distance from the flow region of
interest, then that condition (in continuum mathematics form) should be given.

e) State all of the system response quantities (SRQs) of interest that are produced by the
benchmark for comparison with the candidate solutions. The SRQs could be
dependent variables in the mathematical model, functionals of dependent variables, or
various types of probability measures of dependent variables or functionals. Examples
of functionals are forces and moments acting on an object in a flow field, heat flux to
a surface, location of boundary layer separation or reattachment point or line, and
location of a vortex center. Functionals of interest should be stated in continuum
mathematics form, not discrete form. Examples of probability measures are
probability density functions and cumulative distribution functions.

f) If any quantities provided in the description of the mathematical model are uncertain,
a precise characterization of the uncertainty of the quantity should be given. For
example, if a quantity is given by a probability density function, then the family of
distributions should be stated, along with all of the parameters defining a specific
distribution.

The overarching goal is to provide an unambiguous, reproducible mathematical

characterization of the benchmark problem that eliminates all potential disagreement about
what was mathematically intended. We believe that this goal must be ruthlessly pursued and
achieved. Judgment or opinions about what mathematics is apparently intended for a
benchmark, must be replaced with explicit specification.

A comment should be made here about the practice of incorporating numerical
approximations or features directly into the mathematical models of the physics. An example
in fluid dynamics is seen in large eddy simulations (LES) of turbulence. Many researchers,
but not all, that solve the LES equations will define the length scale of turbulence to be
modeled as that determined by the local discretization scale used in the numerical simulation.
That is, the subgrid turbulence scale is defined to be all spatial scales smaller that the local
mesh that they happen to be using. An example in fracture dynamics is seen in modeling
crack propagation through a material. Some researchers, but thankfully fewer in recent times,
will define the spatial scale of the crack tip to be either the same as the local mesh resolution
used in a particular numerical solution.

We strongly argue against the practice of connecting physical modeling scales, either
spatial or temporal, with numerical discretization scales. Our arguments are particularly
compelling when verification benchmarks are the issue. The reasons for our objection are two
fold. First, combining physics modeling with numerical approximations intertwines two very
different issues. Models of physics should be stated in a way that does not, in any way,
depend on how the numerical solution is obtained. Mathematical models of physics should
depend only on physics assumptions and spatial and temporal scales. Second, if one defines a
physics model to be dependent on numerical solution approximations then as one changes
numerical approximations, e.g., mesh resolution, the physics model, by definition, changes.
Suppose one wanted to use a different class of numerical methods to solve the mathematical

82

model, such as a higher order method, then, even with the same mesh resolution, two
different numerical solutions would exist; neither one would have any meaning with respect
to the differential equations stated in the mathematical model. Mixing physics modeling and
numerical solution approximations is, in our view, as bad a mixing different dimensional
units; it makes no sense. Physics modeling scales, typically dimensional scales in length or
time, should be defined based on physical scales defined in the differential equations
describing the process of interest.

3.1.3 Accuracy Assessment of the Benchmark

The numerical accuracy of the benchmark should be clearly assessed and the means of
assessment should be carefully described. The assessment procedure and the accuracy
assessment result should be described for each SRQ that is provided by the benchmark. The
accuracy assessment should be provided, if appropriate, as a function of: a) spatial
coordinate, b) temporal coordinate, and c) parameters provided in the solution, e.g., Reynolds
number, Mach number, externally applied load, heat flux, and boundary condition parameter.
In general, the accuracy assessment of the SRQs depends on all the independent variables and
parameters in the model. The purpose of this assessment is to provide a definitive pedigree
for the benchmark that is unambiguous and objective. This task clearly becomes more
difficult as we progress from simpler analytic to more complex benchmarks. Perversely, in
some sense pedigree is less noteworthy for analytic problems because it is more obvious.
Whereas, it is extremely important for numerical PDE benchmarks exactly because it is so
difficult to produce. False pedigrees often lie at the heart of failed, complex, benchmark
efforts centered on numerical PDE solutions. Many managers and organizations are fond of
complex, high-visibility, benchmarks, but they commonly turn into a mirage when the details
of the benchmark are examined.

The accuracy of the benchmark will depend greatly on the type of benchmark solution
computed. We now discuss particular accuracy assessment issues unique to each type of
benchmark:

Type 1 Benchmark (analytical solution)
 If the benchmark solution is given in terms of a closed-form solution, the accuracy is

usually near machine precision. (By “closed-form solution” we mean a solution that
can be expressed analytically in terms of a bounded number of well-known functions.
We also presume that the derivation of the solution can be fully comprehended by the
people who use it as a benchmark. If the derivation is incomplete or otherwise not
fully available for critical scrutiny, it is unlikely that the benchmark will be widely
used. If the analytical solution is given by an infinite series, then the accuracy is
determined by the rate of convergence and how many terms are included before the
sequence is truncated. One cannot estimate the accuracy of these type analytical
solutions by simply comparing how much the solution changes by adding one more
term in the infinite series. If the analytical solution contains an integral, or iterative
solution of an algebraic or transcendental equation, one must estimate the numerical
error involved. If the benchmark is not a closed-form solution, then one must very
carefully estimate accuracy. For example, in the Type 1 Benchmark Example given in
Section 3.1.1, the solution for the unsteady Couette flow is given by an infinite series.
The convergence rate of the series depends drastically on the time chosen. For times
near zero, the convergence rate is extremely poor compared to large times, because of
the existence of the singularity at time equal zero.

Type 2 Benchmark (manufactured solutions)

83

 Manufactured solutions are all composed of well-known, elementary, functions, such
as circular functions and exponential functions. The accuracy issue in manufactured
solutions centers on the accuracy, or reliability, of all of the source terms that are
derived and then are placed on the right-hand-side of the PDE. The two texts[1, 52]
dealing with MMS recommend a number of practices and procedures that are very
helpful in MMS. Some of these are: a) do not try to derive the source terms by hand;
only use symbolic manipulation software, such as Mathematica® or MATLAB®, to
derive them; b) when they are derived, do not try to program them by hand; it is
recommended to electronically copy them from the symbolic manipulator output
directly into the software solving the PDEs; c) if one desires to check the reliability of
the output from the symbolic manipulation software, then one should use two
different software packages; and d) when picking the manufactured solution form and
its associated free parameters, try to pick a solution form and it parameters so that
when the solution is substituted into the original PDE, all of the terms in the original
PDE are reasonably balanced in magnitude.

Type 3 Benchmark (ODE numerical solution)
 Benchmark solutions obtained by the numerical solution to a set of ODEs can be of

two types, either an initial value problem (IVP) or a boundary value problem (BVP).
The accuracy of solutions to IVPs and BVPs primarily depends on the sophistication
and reliability of the numerical integrator used to compute the solution. For
benchmark solutions it is recommended that a high-order accuracy integration
technique be used, along with a variable step-size procedure that is adjusted according
to a user-specified, per-step, relative error criterion. If possible, two different
numerical integrators should be used and the results compared. It is recommended
that the order of accuracy of the ODE integrator be at least 3 or 4 orders higher than
the formal order of accuracy of the candidate solution being tested. If a fixed-order
accuracy method is used, then one can use Richardson extrapolation to estimate the
error of the numerical solution for each SRQ of interest. An example of an efficient,
high-order accuracy procedure is an embedded Runge-Kutta method of order 6 or 7.
Additional complexity, and inaccuracy, is introduced if one numerically solves a
BVP. For BVPs, one must have user-specified control of the error along all of the
boundaries where boundary conditions are specified. If a singularity exists along any
boundary, or as an initial condition, then one must develop methods to estimate how
the numerical error near the singularity propagates into the solution domain. If the
singularity is very well behaved, for example, the leading edge singularity in the
Blasius solution, then the numerical solution should not incur additional error.

Type 4 Benchmark (PDE numerical solution)
 Benchmark solutions obtained by the numerical solution of a set of PDEs are, by far,

the most questionable with regard to their accuracy assessment. Compared to the
Type 1-3 benchmarks, Type 4 benchmarks require a great deal more detail with
regard to accuracy assessment. We will not list here all of the requirements we
recommend for a Type 4 benchmark, but we will give a sample of types of
information needed so that someone could not only understand the estimated accuracy
of the benchmark, but also to evaluate the strength of the procedure used to estimate
the accuracy: a) Describe all of the iterative procedures and convergence criteria used
in any aspect of the numerical solution, e.g., the iterative procedure and convergence
criteria for iterative solution of a nonlinear BVP, iterative procedure and convergence
criteria for intra-time-step iterations; b) Compute a series of solutions using at least

84

three different mesh resolutions and use Richardson’s extrapolation to estimate the
numerical error over the entire solution domain for each of the SRQs of interest. Also,
using the multiple mesh resolution results, estimate the observed order of accuracy of
the solution for each SRQ and compare it with the formal order of accuracy expected
from the method. One could argue that some of the a posteriori finite element error
estimation procedures, such as, recovery methods or residual methods, could be used
instead of Richardson extrapolation.[39, 40]

 There are some practical difficulties with most of these methods: First, some only
provide global error norms instead of error estimates on SRQs of interest, such as
error estimates of local dependent variables, second, some only provide error
estimates to within some unknown constant, third, essentially none of these methods
have been developed for nonlinear parabolic and hyperbolic PDEs, fourth, if the PDE
or any sub-model is substantially changed, then the error estimation equation must be
re-derived, and fifth, it is poorly understood at present how the lack of continuity of
higher derivatives of dependent variables and how singularities affect these
estimators. Experience has shown that Richardson extrapolation is more robust than a
posteriori finite element error estimators, probably because Richardson extrapolation
is directly based on a power series expansion of the SRQ of interest; c) If the
benchmark problem is an IVP, compute a series of solutions using at least three
different temporal resolutions and use Richardson’s extrapolation to estimate the
numerical error over the entire solution domain for each of the SRQs of interest. Also,
using the multiple solutions, estimate the observed order of temporal accuracy and
compare it with the formal order of temporal accuracy for each SRQ. In estimating
the temporal accuracy, one must include the coupling of the temporal and spatial
accuracy in the Richardson extrapolation equations; d) If a singularity exists inside
the solution domain or on any boundary, or in the initial conditions, one must provide
strong evidence that the numerical solution is not polluted by error propagated away
from the singularity.

 A preferable approach, but one that is technically demanding, is to analytically
eliminate the singularity from the problem in some fashion. An additional method that
adds credence to a numerical solution with a singularity is to use two markedly
different numerical methods to solve the same problem and show the results from
both methods for all SRQs of interest. The Type 4 Benchmark Example given in
Section 3.1.1, the driven cavity problem, is a good example of some of the difficulties
encountered with solutions containing singularities. Prabhakar and Reddy[85])
eliminated the two singularities in the moving-lid corners by replacing the fixed speed
of the moving lid with a speed that varies spatially near each of the corners. They
clearly state that if they did not remove the singularities, their numerical procedure
did not converge. All earlier published solutions of the driven cavity problem, that we
are aware of, did not remove the singularities in the corners. Just because those
solutions appeared to converge with the singularities present, does not engender much
confidence, in our view, in the accuracy of those solutions.

3.1.4 Documentation of the Benchmark

The documentation should include all of the information discussed in the previous three
subsections. In addition, the documentation should include details that would possibly assist
users of the benchmarks in the following ways: a) if the candidate solution did not
satisfactorily compare with the benchmark, one might find some small detail in the
documentation which could assist the user of the benchmark in discovering the cause of the
discrepancy in their solution, b) a user of the benchmark might want to try and reproduce the

85

results presented in the benchmark, particularly if the accuracy of the candidate results are
expected to be comparable to the benchmark, yet the results differ more than expected from
the benchmark, and c) an interested researcher might want to investigate how one might
improve the accuracy, utility, or generality of the benchmark.

There are several pieces of information that should be documented, regardless of the
type of benchmark computed. Appropriate descriptions of the following should be given: a)
computer hardware used, b) operating system and version, c) compiler type and version and
any pertinent compiler options used, d) arithmetic precision, e) programming language used
in the source code, f) computer run time for each of the solutions documented in the
benchmark, and, of course, g) authorship of the benchmark results, their affiliated
organizations, and possibly the funding agency for the work. Some of the additional
information that should be included in the documentation differs significantly for each type
of benchmark. We give some examples below:

Type 1 Benchmark (analytical solution)
 The analytical solution should be documented in the traditional form of equations and

explanatory text. If the benchmark solution is given by an infinite series, a description
should be given of the method used to estimate the error due to truncation of the
series. If all the terms in the series are of the same sign, then one method that has been
used is to compute a curve fit of the magnitude of each term as a function of the
number of the term in the series. If the terms are of alternating sign, then a curve fit of
the magnitude of the sum of pairs of terms can be computed. With a proper choice of
functional form, the curve fit can then be extrapolated to infinity. Then the sum of the
truncated terms can be computed to estimate the error due to the truncated series.

 If the benchmark solution is given by an integral, or iterative solution of an algebraic
or transcendental equation, the numerical method used to compute the integral and the
iterative solution should be given.

 Adequate references must be provided for the analytical solution, along with its
derivation, if possible. The references should be publicly available.

Type 2 Benchmark (manufactured solutions)
 The source terms for the manufactured solution should be included in the

documentation in two forms: a) a traditional form for analytical equations, and b) a
form that is programmed in a commonly used programming language, such as C++ or
FORTRAN. One should be able to electronically copy the programming language
form and insert it into a computer code, or into an input file for a code.

 The symbolic manipulation software used to derive the source terms should be stated,
along with the version number of the software. If two different symbolic manipulation
software packages are used to serve as a check, then this should be stated. If this is
done, one should be certain that each package is unrelated to the other. For example,
the symbolic manipulation kernel in MATLAB® from the MathWorks is the same as
that in Maple™ from Maplesoft.

Type 3 Benchmark (ODE numerical solution)
 A detailed description should be provided of the numerical method used to solve the

ODE. If the numerical integrator is contained in a software package, then provide: a)
a description and version number of the package, and b) information concerning what
type of code verification has be documented on the package. If possible, the software
package should be included in the documentation of the benchmark.

 If any tabular data is used in any mathematical sub-model, then all of the numerical

86

data should be provided, along with a description of the interpolation procedure used
for the tabular data.

Type 4 Benchmark (PDE numerical solution)
 A detailed description should be provided of all of the numerical methods used in all

aspects of the solution procedure. This would include a large number of details, such
as: a) describe all of the numerical algorithms used to discretize the PDEs and all sub-
models, including any parameters or constants that might be associated with the
numerical algorithms, e.g., artificial damping parameters, and smoothing parameters,
b) if the geometry contains any complexity, then a detailed description should be
given of the geometry and how it was computed, c) describe how the spatial mesh
was generated, especially all of the clustering features of the mesh, and provide the
coordinates of all mesh elements, d) describe how all of the multiply refined meshes
are related to one another, for example, were the multiple meshes generated starting
with the finest mesh and then coarsening, or was it done in reverse, e) state the formal
order of accuracy of all of the numerical methods used to solve the PDEs, including
computation of numerically computed Jacobians in mapping the physical space to the
computational space, and any numerical processing procedures (such as interpolation,
integration, or differencing) used to compute SRQs of interest, f) provide a
description of the computer code, along with version, and a statement if the code is
available for public dissemination, and g) either include the code verification
documentation in the benchmark documentation, or provide references concerning
what code verification has been done and documented.

Documentation of each verification benchmark should be in an electronic format that is

widely usable and robust across many computer operating systems. Adobe Portable
Document Format (PDF) is the most commonly used and it has many desirable
characteristics, but it should be supplemented with additional file formats for specialized
information. For example, tabular data could be in ASCI text files or in Microsoft Excel files;
high resolution digital photographs should be in easily usable formats, such as, tiff, PDF, and
JPEG; digital video files in formats such as QuickTime, MPEG, or AVI; and computer
software should be provided in common languages such as C++, Fortran, or Java. This last
item would be necessary for documenting the source terms in MMS.

Discussion of how an electronic database of V&V benchmarks could be setup is
discussed in Section 5, Implementation Issues.

3.2 Comparing Candidate Code Results with Verification Benchmarks

As discussed in the Introduction, Section 1, we are only interested in comparisons of a

candidate code with a benchmark for the purpose of assessing accuracy of the results of the
candidate code. Issues with respect to computing speed performance or robustness of the
candidate code, are not of particular interest here. Given this context, how one would want to
report results from comparing a candidate solution to a benchmark solution depends on the
purpose of making the comparison. Suppose the purpose of the comparison is similar to one
of the following: a) make a preliminary assessment of accuracy of a code that is in
development, b) investigate the accuracy of a new numerical algorithm implemented in a
code, or c) conduct a proprietary investigation of the accuracy of a code that is in competition
with a your own commercial code. We would characterize all of these types of comparison as
“informal,” in the sense that the results of the comparison are for restricted or preliminary
use.

87

In this paper we are interested in discussing “formal” comparisons of candidate results
and benchmark results. Some examples of the use of formal comparisons are: a) a potential
software customer may want to compare the accuracy obtained from competing commercial
codes, b) a large organization that develops its own codes for internal use for high-
consequence systems may want to determine how its codes compare with industry standard
benchmarks, c) a governmental regulatory organization may want to require certain
verification benchmarks be passed before a code could be used for performing work funded
by that governmental organization, or other governmental organizations, d) an accident
investigation committee may want to try and determine if there were any deficiencies in the
software that was used to analyze the performance and safety of the system that failed, and e)
a commercial software company may want to use the results of formal comparisons of its
code with benchmarks in its marketing program.

Even though we are interested in formal comparisons, we believe that these
comparisons should not be included in the benchmark database. Our viewpoint is contrary to
those expressed by Rizzi and Vos[11] and Vos et al.[12] However, one must recognize that
the type of database they have envisioned, and those that have been constructed in Europe,
are formed using a weaker form of benchmarks than those described here. They believe that
comparison results that have been obtained should be included in the database, if the
individuals who computed the results so choose. It is our view that if the benchmarks in the
database are indeed SSBs, then the comparisons add nothing to the database. If the new
solution results have met all of the stringent requirements for inclusion in the database, then
the new solution could be included as a new benchmark for the same problem, or possibly
replace the existing benchmark if it has a stronger pedigree than the existing benchmark. As
discussed in Section 5, Implementation Issues, there must be a well defined and formal
review process for deciding which solutions can be included in the SSB database.

To achieve some of the goals suggested for formal comparisons, the documentation of
the comparisons should contain much of the same information described earlier in sections
3.1.1 through 3.1.4. The key piece of information that is of interest in the documentation is:
Did the candidate code pass the benchmark? The most common method of answering this
question is by comparing a computed result for a SRQ from a candidate code with the
comparable result from a SSB. Although this comparison is useful, it has two significant
disadvantages. First, the accuracy requirement for comparing the candidate and benchmark
SRQs is quite arbitrary. For example, should one require an accuracy of 1% or 0.1% or
machine precision accuracy when comparing results? To say that the accuracy required
depends on the application of interest, defeats the purpose of the benchmark. Second, the
accuracy of the candidate result will depend directly on the mesh and temporal resolution
used in the computed result. That is, the candidate result will depend in a continuous manner
on mesh and temporal resolution used. As discussed in Section 2.1.2, Code Verification
Procedures, the most definitive test of the accuracy of a code is determining the observed
order of accuracy.

For type 1 and 2 benchmarks, the accuracy of the benchmarks should be adequate to
determine the observed order of accuracy using the benchmark and solutions from two
different mesh resolutions of the candidate. For a type 3 benchmark, this may not be possible
because the accuracy of the benchmark may not be adequate. For a type 4 benchmark, it is
essentially assured that the accuracy of the benchmark will not be adequate to reliably
determine the observed order of accuracy of the candidate. As a result, different measures of
“pass” and “fail” must be assigned to each type of benchmark compared with.

If an observed order of accuracy can be computed for the candidate, there are two
criteria one might use to determine pass/fail. One may choose to require that the observed
order of accuracy of the candidate match its stated formal order of accuracy. Or, one may

88

choose the weaker criteria that the observed order of accuracy of the candidate be positive,
i.e., the minimum requirement that it converged to the correct answer. Regardless of which
criteria is chosen, the observed order of accuracy should be reported in the documentation as
a plot of observed order of accuracy as a function of mesh and/or temporal resolution. In this
plot, one can discern the observed order of accuracy in the asymptotic region for the
particular SRQ.

If the observed order of accuracy cannot be computed for the candidate, then one is left
with simply comparing the candidate result for an SRQ with the corresponding benchmark
result. If this comparison is used, it is recommended that the results be shown as a difference
between the candidate and the benchmark as a function of mesh and/or temporal resolution. If
the candidate is capable of computing the solution as accurately as the benchmark, then the
difference plotted would start to show erratic results for fine mesh resolutions.

4. Recommendations for Validation Benchmarks

In Section 2.2.2, Characteristics of Validation Experiments, we briefly discussed our

views on the unique characteristics of validation experiments. As pointed out, a validation
experiment is more than a traditional, high quality, experiment. It must provide information
that is typically not available in traditional experiments, and it is optimized for a non-
traditional customer: model builders and simulation analysts. Since most traditional
experiments available in the published literature have not been designed as validation
experiments, some of the recommended characteristics to be discussed for SSBs will seem
rather idealistic and impractical to obtain. However, as new experiments are conducted in the
future, these recommendations could be used for the design and acquisition of new high
quality validation benchmarks.

High quality validation benchmarks will be much more feasible to obtain at the lower
tiers of the validation hierarchy. As one proceeds to higher tiers, i.e., more complex systems,
in the hierarchy, the number and importance of the unmeasured input quantities will decrease
the ability to critically assess the computational model of interest. Stated differently,
comparing experimental data obtained from complex systems with computational results
inevitably becomes a process of calibrating the very large number of either unmeasured or
poorly known parameters in the models. As will be seen in the following section, most of the
recommendations for construction of validation benchmarks deal with the common theme:
measurement and documentation by the experimentalist of essentially all input quantities
needed in the code so as to minimize the degree of calibration of the physics modeling
parameters.

4.1 Construction of Validation Benchmarks

As discussed with regard to Fig. 4, validation benchmarks are intended to address the

issue of model accuracy assessment. Issues with regard to accuracy requirements for a
particular application, or the accuracy of the model when it is extrapolated to other intended
uses, are not addressed in validation benchmarks. In addition, issues regarding code
verification, solution verification, and modeling assumptions are not dealt with in the
validation benchmark, as those issues are properly addressed in Section 4.2, Comparing
Candidate Code Results with Validation Benchmarks. As we have emphasized, there is
logical dependence of the quality of validation upon verification.

To clarify some of the characteristics discussed in the following material, we give an
example of a hypothetical benchmark experiment in fluid dynamics. This example is carried
through the discussion of each of the following subsections. Not every detailed piece of

89

experimental information needed for the benchmark is discussed in this example, but we
concentrate of those elements of the experiment that are not commonly included in execution
and documentation of an experiment.

4.1.1 Purpose and Scope of the Benchmark

Listed in the following are the important elements that should be included in the
description of the purpose and scope of the validation benchmark:

a) A textual description should be given of the primary types of physics, or coupled

physics, that the benchmark is intended to test in the computational modeling. If
appropriate, a description should be given that is segregated into two categories of the
importance of physics being tested: the primary physical processes occurring in the
experiment, and the secondary physical processes occurring. This categorization will
assist computational analysts and physics model developers in searching the
validation database for experiments that are aligned with their immediate interests. In
the design of validation experiments, one should maximize the effect of the physics of
interest, and minimize the effects all other physical processes not of interest. An
example in fluid dynamics is the following:

 Primary physics occurring—incompressible, turbulent flow with large separated
regions over a circular cylinder with heat transfer.

 Secondary physics occurring—small effect of variable thermodynamic and transport
properties near a heated surface and in a wake region.

b) Provide a list of both quantitative and qualitative SRQs measured in the experiment.

We have found that qualitative measurements, for example, video imaging of the
physics phenomena during the experiment, can be very useful in guiding the
computational analyst in the appropriate assumptions that should be made for
modeling of the experiment and also for aiding the experimentalist in diagnosing any
unforeseen problems with the experiment. For our fluid dynamics example, one has:

 System responses quantitatively measured—three-dimensional, unsteady, velocity
measurements in streamwise planes normal to the cylinder, and high-frequency,
surface pressure measurements in or near the wake of the cylinder.

 System responses qualitatively measured—flow-field visualization provided by
marker-dye injection, and high-speed, digital video imaging of the flow field.

c) A description should be given of what engineering applications the benchmark could

be related to that would occur at higher levels in a validation hierarchy. Since
complex engineering systems, or subsystems, of interest occur at higher tiers in the
validation hierarchy, some examples should be provided so that electronic searches of
the validation database could find benchmarks that may be of interest to a wide range
of applications. Concerning our fluid dynamics example:

 Related applications of interest—flow inside heat exchangers, natural convection
inside cavities, liquid cooling of internal combustion engines, forced and natural
convection over circuit boards.

4.1.2 Description of the Benchmark, Experimental Technique, and Facility

A wide variety of detailed information should be provided concerning not only the
SRQs measured in the experiment, but also all computer code input data needed,
experimental measurement techniques, data reduction and processing techniques, the
experimental facility, etc. Some examples of the required information are the following:

90

a) Description of the geometry of the experiment conducted, along with any

supplementary experiments that were conducted in support of the benchmark
experiment. A supplementary geometry could be one that the computational analyst
could simulate with much higher accuracy and confidence than the primary geometry
of interest. In our fluid dynamics example we have:

 Geometry—flow over a circular cylinder near a flat, solid wall in a water tunnel, the
cylinder was mounted at various distances from the wall, 0.0, 0.1, 0.2, and 0.5
cylinder diameters from the wall.

 Supplementary geometry—flow inside the water tunnel without the cylinder in the
test section.

b) Specification of all of the measured boundary conditions, initial conditions, material

properties, imperfections in the test geometry or experimental facility, forcing
functions, surface properties, transport properties, thermodynamic properties, mass
properties, etc. In the design of validation experiments, one should minimize the
complexities and difficulties computational analysts must deal with concerning all of
the issues just mentioned, if they are not important to assessment of the physics
models of interest. In our fluid dynamics example we have:

 Boundary conditions—a solid circular cylinder was heated over its entire length using
electrical-resistance heating, the cylinder was mounted near the bottom wall of a
water tunnel and it spanned the entire width of the test section, the tunnel had a square
cross-section 10 cm x 10 cm, the diameter of the cylinder was 1 cm. and it was placed
20 cm. from the beginning of the test section, the test section was 100 cm long, all of
the tunnel walls had a turbulent boundary layer approaching the test section, the three-
dimensional, unsteady, velocity field was measured over the entire inflow plane at the
beginning of the test section, the water temperature was measured at the beginning of
the test section, the water was de-aerated to eliminate bubbles in the water,
measurements were made for two Reynolds numbers (based on average inflow
velocity, kinematic viscosity of the water, and diameter of the cylinder) 10 and 100. X
103, time-averaged static pressure measurements were made in the middle of each
tunnel wall at three locations, at the beginning, middle, and end of the test section, the
heat flux per unit length along the cylinder was measured, the heat flux leaking from
the ends of the cylinder was measured, for 100 cm past the end of the test section each
wall of the water tunnel was set at the same diverging angle of 5 deg resulting in an
increasing cross-sectional area. Accompanying this textual description would be
detailed drawings and schematics of the geometry of interest, the water tunnel, and
measurement locations for the boundary conditions.

c) Specification of all SRQs that are both quantitatively and qualitatively measured,

along with a detailed description of the diagnostic techniques, analog-to-digital
sampling, signal filtering, and signal conditioning methods. In our fluid dynamics
example we have:

 System responses quantitatively measured—three-dimensional, unsteady, velocity
measurements in three planes normal to the cylinder, one plane was in the middle of
the cylinder, the other two planes were half-way between the middle of the cylinder
and each side wall, the planes extended from 5 diameters upstream of the cylinder to
10 diameters downstream of the cylinder, velocity measurements were made using
particle imaging velocimetry (PIV) in a rectangular grid pattern at 5000 points in each
plane, velocity measurements were made at a frequency of 1/sec for a time period of

91

1000 sec, time-averaged velocity measurements are also available over the 1000 sec
period, and high-frequency, surface pressure measurements made on the wall of the
tunnel at 0., 1. and 5 diameters downstream of the cylinder.

 System responses qualitatively measured—marker-dye was injected along a narrow
slit parallel to the cylinder at a location of five cylinder diameters upstream of the
cylinder, digital video images were recorded of each experiment at a framing rate of
100/sec, the unsteady cellular structure in the wake of the cylinder can be seen at each
Reynolds number tested, along with the change in wake structure near the side-walls
of the test section.

4.1.3 Uncertainty Quantification of the Benchmark Measurements

Estimates of experimental uncertainty should be provided for all of the SRQs measured,
as well as of all the quantities that could be used as possible inputs for the computational
simulation, for example, boundary conditions, initial conditions, material properties,
geometrical features, etc. Some examples of the type of information that should be provided
are the following:

a) Describe all of the instrument, diagnostic, and facility calibration procedures.

Particular emphasis in calibration procedures should be placed on identifying, and
possibly estimating subtle bias errors in calibrations, e.g., shifts in diagnostic
measurements due to temperature, pressure, time, reference frequencies, etc. In the
design of validation experiments, one should attempt to use multiple diagnostic
techniques to measure both SRQs and input quantities. By comparing results from
multiple measurement techniques one can better identify possible bias (systematic)
errors in measurements. In our fluid dynamics example, one should attempt to use
different diagnostic techniques to try and identify bias errors in optical calibration of
PIV measurements. Also, attempt to use different techniques to determine possible
temperature bias effects on the high-frequency, surface pressure measurements aft of
the cylinder.

b) Describe if an input quantity needed for the computational simulation is either a

controlled or uncontrolled quantity in the experiment. A controlled quantity is one
that can be adjusted, to a large degree, by the experimentalist or by procedures related
to the operation of the experimental facility. An uncontrolled quantity is one that the
experimentalist has little or no control over, such as atmospheric weather conditions,
a missile impacting an irregular surface, turbulence spectrum and spatial variability in
a wind tunnel, and unit-to-unit variability of material samples. If a quantity is an
uncontrolled quantity, but one that can be measured, e.g., atmospheric weather
conditions, then measurement uncertainty in the measurement should be given. If the
quantity is an uncontrolled quantity, but one that is a random draw from a population,
then the population should be well characterized before the experiment. For example,
if material testing is being conducted on a number of small specimens (coupons), then
the needed input material properties should be characterized by a probability
distribution constructed by large number of random draws from the sample
population. There are also situations were there are a very limited number of
specimens and the specimens are destroyed in the characterization process. In this
case, large uncertainty exists in the characterization of the population, resulting in an
ensemble of probability distributions. Alternately, the characterization of the
specimen population would occur during the validation process by way of a
calibration activity. This latter approach, although less desirable because it combines

92

validation and calibration, is some unavoidable.

c) Estimates should be provided of both the bias error and the random (precision) error

of the quantities measured. The uncertainty in measured quantities could be
characterized as one of the following: an interval, i.e., there is a single true value that
is believed to lie in the stated interval, but no other information is available
concerning the true value; an imprecise probability distribution, i.e., the true quantity
is a random variable characterized by a known family of probability distributions, but
the parameters of the probability distribution are only stated as intervals; and a precise
probability distribution, i.e., the true quantity is a random variable characterized by a
probability distribution with accurately known parameters. It has been found that one
of the most effective methods of quantifying experimental uncertainties, particularly
bias errors, is to conduct the same experiment in multiple experimental facilities,
preferably using different diagnostic techniques. The time and cost involved in
conducting experiments at multiple facilities will commonly cause a fainting-spell
among most project managers and funding sources.

d) Description of and justification for the uncertainty quantification of each measured

quantity should be provided. Some examples of uncertainty quantification procedures
are, from least desirable to most desirable: experience of the experimentalist from
previous experiments using similar techniques in the same facility; measurement of
some of the components contributing to uncertainty, but no formal procedure for
estimating uncertainty; propagation of contributing uncertainties to formally estimate
uncertainty in an SRQ;[86] and design of experiment statistical procedures to directly
estimate the uncertainty in SRQs using multiple realizations of the experimental
measurements under varying conditions.[2, 3, 72, 87, 88] This last procedure, if
properly implemented in the design and execution of the experiment, can quantify
certain types of correlated-bias errors, such as that due to: wind tunnel flow field non-
uniformity, wind tunnel model imperfections, certain types of misalignment in a load
cell, and asymmetries in thermal heating of components.

4.1.4 Documentation of the Benchmark

The documentation should include all of the information discussed in the previous three
subsections, and all of the more traditional documentation associated with archiving high
quality experiments. In addition, the documentation should include details that would
possibly assist users of the benchmark in the following ways. First, information on the
experimental technique, experimental facility, boundary condition, initial conditions, etc, that
might help the computational modeler choose different modeling assumptions than the
experimentalist might have thought the modeler would have used. For example, the modeler
may chose to assume a three-dimensional Cartesian coordinate system instead of a two-
dimensional axisymmetric coordinate system, or the modeler may want to include the actual
nonuniformities in either the component tested for the facility being used in the experiment.
Second, another experimentalist may choose to conduct the same experiment in their facility
and submit their results to either supplement the existing benchmark, or possibly replace the
existing benchmark. Also, all of the experimental data should be easily available in
commonly used electronic format, for visual and quantitative presentation.

4.2 Comparing Candidate Code Results with Validation Benchmarks

As discussed in Section 3.2, Comparing Candidate Code Results with Verification

93

Benchmarks, we are only interested in formal comparisons of code results with validation
benchmarks. Also, as explained earlier, the code results and comparisons with the validation
benchmarks should not be included in the database.

In comparison of code results with validation data we do not feel there is an acceptable
way, in general, to answer the question: Did the code pass the validation benchmark? Our
viewpoint can be explained from two perspectives. First, we view assessment of model
accuracy by comparison with experimental data as a “continuum” in the sense of validation
metrics discussed in Section 2.2.1, Fundamentals of Validation. We believe that validation
metrics are the fundamental operators in assessing model accuracy. A validation metric is a
difference operator that can yield a deterministic result, a precise probability distribution, or
an imprecise probability distribution; and, preferably, with some type of associated
confidence measure. Stated differently, validation metrics are simply measures of agreement
between simulations and experiments that have no fundamental “good” or “bad” associated
with them. Second, to state that a benchmark is passed, one would have to have some stated
accuracy requirement for an application of interest, as discussed concerning Fig. 4. The
accuracy requirement should, we believe, be determined by the application of interest; not
some vague concept with regard to the philosophy of science or how much scatter exists in
the experimental data. In addition, validation metrics can be applied to several different SRQs
from a validation benchmark. It is expected that the metric results for some of the SRQs will
meet accuracy requirements, and some will not. Then, as we have observed in real
engineering projects, additional discussions will ensue with regard to the appropriateness of
the accuracy requirements, as well as the cost, schedule, and performance of the engineering
system of interest. The consequence of our viewpoint is that the comparison of code results
with validation benchmarks should be formally documented, but no pass or fail assignment
should be given.

The type of information that should be included in the documentation of comparison of
code results with validation benchmarks is a combination of that described earlier for
constructing verification benchmarks, especially for a type 4 benchmark, and validation
benchmarks. We only mention a few topics in the following to stress certain elements and to
add new elements that should be documented:

a) Code verification. References should be provided to document the code verification

activities that have been completed and version of the code used.

b) Solution verification. Detailed information should be provided concerning iterative

error convergence. At least three mesh resolutions and three temporal discretizations
should be computed so that Richardson’s method can be used to estimate the spatial
and temporal discretization error on each of the SRQs that are compared with the
experimental data. In addition, the observed order of accuracy should be documented,
along with the theoretical order of accuracy.

c) Computation of SRQs. In almost all fields of engineering it is traditional to compute

deterministic values for SRQs. That is, it is assumed that no uncertainty exists in any
of the input quantities, e.g., boundary conditions, initial conditions, material
properties, etc, so that a single value is computed for each of the SRQs. These
deterministic values are then compared with the experimentally measured SRQs. This
is, of course, the minimum level of comparison that should be made between code
results and experimental benchmark results. It is recommended, however, that non-
deterministic results be computed for each SRQ based on the uncertainty quoted for
each input quantity, as stated in the validation benchmark. This is usually referred to

94

as uncertainty quantification of SRQs as a function of uncertainty input quantities. As
discussed in Section 4.1.3, the uncertain input quantity could be characterized as an
interval, an imprecise probability distribution, or a precise probability distribution.
Propagation of these uncertain quantities through the computational simulation model
will likely rely on methods like Monte Carlo sampling or Latin Hypercube
sampling.[89-92]] Importantly, major increases in computational resources will be
required to compute tens or hundreds of solutions needed for the sampling techniques.
In our experience, there will be a great deal of resistance to expending this level of
computational resources for this purpose. Nonetheless, the probabilistic risk
assessment community, especially nuclear reactor safety and underground storage of
nuclear waste, has accepted this philosophy of simulation for over two decades.

d) Validation metrics. It is recommended that validation metrics be used to compare the

computed and measured SRQs, instead of the typical viewgraph norm technique.
Graphical comparisons should be included because they are a very traditional
comparison technique, however validation metrics should also be used. Since
validation metrics are in an early stage of development, there is only a limited range
of examples to draw upon. [4, 15, 76, 77, 79, 93-97] It is recommended that validation
metric results be computed for all of the SRQs measured in the experiment so that
objective information is complete rather than partial or biased toward those that “look
good.”

e) Calibration. As we have emphasized earlier in our discussion, we have carefully

distinguished between validation, i.e., assessment of model accuracy, and calibration,
i.e., activities to optimize model parameters when code results are compared with
experimental measurements. Without a doubt, the most common parameters that are
optimized are those that were not provided by the experimentalist in documentation of
the experiment. That is why we have stressed the importance of the experimentalist
providing uncertainty estimates of all input quantities that might be needed for
simulations. However, we recognize that there will probably be some “wiggle room”
for computational analysts to optimize unmeasured, and undocumented, input
quantities needed for the code that are related to physical characteristics of the
experiment. If this is done in obtaining the code results, we feel it is necessary for the
analyst to document any procedures used to optimize input quantities. Our
recommendation also applies to any numerical parameters, such as, numerical
damping, numerical smoothing, or numerical parameters such as hour-glass control of
the vibrational modes of individual elements in solid dynamics meshes.

f) Global sensitivity analysis. Here we mean an analysis which rank orders the

importance of each uncertain input for each SRQ according to the magnitude of
change of the SRQ for a unit change in each uncertain input. This is typically done by
using the sampling results from the uncertainty quantification analysis discussed
above and reprocessing the results to obtain a global sensitivity analysis. (See, for
example, Refs. [98-101] Conducting a sensitivity analysis as part of a comparison of
code results with a validation benchmark is important from two perspectives. First,
the analyst computing the results, or another analyst reading the documentation, will
obtain a deeper understanding of the importance of different input quantities with
regard to SRQs. Often, the ranking of sensitivities can be quite surprising. Second, the
experimentalist who conducted the experiment can use the sensitivity analysis to
possibly update the uncertainty estimation on some measured quantities. Also, the

95

experimentalist, or possibly a different experimental group, may choose to conduct a
new experiment and judiciously reduce the experimental uncertainty on the largest
contributors to uncertainty in SRQs.

5. Implementation Issues of a Verification and Validation Database

If verification and validation SSBs and a database to house them were to become a

reality, there would be a number of complex and difficult implementation and organizational
issues that would have to be addressed and agreed upon. Some of these would be, for
example: primary and secondary goals of the database; initial construction of the database;
review and approval procedures for entries into the database; open versus restricted use of the
database; software construction of the database; organizational control of the database;
relationship of the controlling organization to existing organizations; and, initial and long
term funding of the database. These issues are of major importance to the joint community of
individuals, corporations, non-profit organizations, engineering societies, universities, and
governmental organizations with serious interest in verification and validation.

Initial construction of a database is a technically and organizationally complex, as well
as costly, endeavor. Population of the database with relevant and high-quality benchmarks is
a community effort, and cuts across major disciplines of theory, experiment, computation,
application, and decision-making. Putting this kind of collaborative effort together hinges on
a careful plan that takes the long view for the database. The benchmark effort we describe
here makes little sense as a short-term task. Much of what we recommend clearly aims at
sustainable use of the database, with an implication that the quality and breadth of the
database improves over a long period of time. Long-term success of the database requires a
sound starting point with broad consensus as to the goals, use, access, and funding over the
long term.

There are broad organizational issues that must be address very early in the planning
stage. Will a single organization (non-profit, academic, or governmental) have responsibility
for database maintenance, configuration management, and day-to-day operation? Will the
database have a role beyond its immediate community, as we have essentially argued in this
paper? This implies that there is the goal of open access to the database for the good of the
broader community, specifically the world community in each of the traditional scientific and
engineering disciplines. But how is this goal compatible with the significant expense needed
to create the database, to maintain it, and to improve it? Financial supports and users of the
database would need to be convinced of the value returned to them for their investment. The
value back to them could be in many forms, for example, improvements in their software
products, ability to attract new customers to their software products, and use as a quality
assessment requirement for contractors to bid on new projects. If proprietary information is
used in the database, we believe it would greatly diminish, possibly eliminate, the ability to
create and sustain the database.

It seems that V&V databases of the type we have discussed should be constructed along
the lines of traditional engineering and science disciplines, e.g., fluid dynamics, solid
dynamics, electrodynamics, neutron transport, plasma dynamics, molecular dynamics, etc.
How each of these disciplines might begin to construct databases certainly depends on the
traditions, applications, and funding sources in each of these fields. Our views about the
implementation and organizational issues of a database are based on our background in fluid
dynamics.

This paper concentrated on the construction of SSBs primarily for the purpose of
assessing numerical accuracy in codes (verification) and assessing physics modeling

96

accuracy in codes (validation). We recognize this is a narrow view of the possible uses of
benchmarks, but we feel that SSBs are critically needed at this early stage of maturity of
computational simulation. We would suggest that a secondary purpose to the establishment
and use of SSBs would be for development of best practices in computational simulation. As
recognized by NAFEMS[6] and ERCOFTAC,[102] there is a compelling need for
improvements in professional practice in computational simulation. We feel that one could
make a convincing argument that the most common failure mode in industrial applications of
computational simulation is the practitioner using the code. Corporate and governmental
management, of course, shoulders the ultimate responsibility for mentoring and training these
experts, and monitoring their computational simulation work-products. Given the qualities of
SSBs discussed earlier, they could be viewed as very carefully documented, step-by-step,
sample problems that practitioners, new and experienced, could learn a great deal from.

Rizzi and Vos[11] and Vos et al[12] discuss how validation databases could be built
and used by a wide range of individuals and organizations. They stress the importance of
close collaboration between corporations and universities in the construction and refinement
of a validation database. In this regard, they also stress the value of workshops that are
focused on specialty topics to improve the modeling efforts and simulations that are
compared to experimental data. They discuss a number of workshops and initiatives in
Europe, primarily funded by the European Union. Often these workshops provide dramatic
evidence of the power of carefully defined and applied V&V benchmarks. One such effort
organized in the U.S., but with participants from around the world, is the series of Drag
Prediction Workshops.[103-107] These have been extraordinarily enlightening; primarily
pointing out the great variability in drag predictions for a relatively simple aircraft geometry,
and the surprisingly large differences between computational results and experimental
measurements. Results from these types of workshops could form the basis for initial
submittals for the database.

We believe an Internet-based system would provide the best vehicle for deployment of
V&V databases for three reasons. First, the ability to build, quickly share and collaborate
with an Internet-based system is now blatantly obvious. A paper-based system would be
completely unworkable, as well as decades behind the current state of information
technology. We speculate on one aspect of deployment, although this issue is beyond the
purpose of this paper, Many businesses around the world are better understanding the
competitive advantage provided by the speed of information transfer within their
organization, even if their organization is spread around the world. Thus, we expect that
corporate acceptance of a benchmark effort might hinge on Internet deployment.

Second, words that are of interest in a particular application of interest could be input to
a search engine that could find all of the benchmarks that would contain those words. The
search engine could operate much like that found in Google or Wikipedia. Functionality
could be expanded to include a relevancy-ranking feature that would further improve the
search and retrieval capability. The overall system design would include configuration,
document, and content management elements. Then the benchmarks found could be sorted
according to their relevance to the words input to the search. One could then click on the
hyperlinks embedded with any of the benchmarks found. When a particular benchmark is
displayed, one could have links from important words in the benchmark description to more
detailed information in the benchmark. And third, the computer-based system can instantly
provide much more detail concerning each benchmark.

In the long term, new validation experiments as community goals should be funded
either by the organization controlling the database or by private, non-profit, or governmental
organizations. These new results could then be entered into the database. We believe that
identification of new validation experiments should be the responsibility of both the

97

application community and the database organization. Funding for high-priority experiments
could possibly be obtained from corporations, governmental institutions, and even joint
ventures between private industrial organizations. The organizational role and facilitation of
discussions regarding which experiments should be conducted would be best served by the
database organization.

6. Concluding Remarks

In this paper we have made the argument that significantly improved methodology and

practice of V&V is necessary to achieve improved credibility in computational science and
engineering. We have discussed in detail one element of needed improvements; the design,
construction, and use of strong-sense benchmarks in V&V. If you are of the opinion that
CS&E is fully mature, and fully capable, to shoulder the new responsibilities demanded of it,
then you will have little interest in the ideas proposed here. If you are of the opinion, as we
are, that CS&E is in its early stages of development and contributions made to business,
society, and to governments, then you will be interested in our ideas. Even though the
development of strong-sense benchmarks will be slow, difficult, and costly, they are
necessary for maturation of CS&E.

While we only touched on organizational issues surrounding the construction and use of
V&V databases, these are, in fact, highly sensitive issues with aspects of business-to-business
economic competition, organizational and national prestige, and national security
implications. Increasing the level of formality of V&V by constructing databases is going to
inevitably lead to active discussions about the further improvements in university education
and professional-level training in the field of computational science. This is the inevitable
consequence of devoting large amounts of expert thought, money, and labor to the
deployment and utilization of such databases. If these databases are developed and widely
used around the world, then they are going to evolve into de facto, if not intentionally
designed, standards. There would be similarities of V&V benchmark standards to
international procedures that have developed over the last century for physical measurement
standards. However, the range of expert knowledge required for V&V benchmark standards
would be much broader than measurement standards.

Acknowledgements

The authors thank Sam Key and Curtis Ober, both of Sandia National Laboratories, for

reading a draft of this paper and providing a number of constructive suggestions for
improvements. Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

References

[1] P. J. Roache, Verification and Validation in Computational Science and Engineering.

Albuquerque, NM: Hermosa Publishers, 1998.
[2] D. P. Aeschliman and W. L. Oberkampf, "Experimental Methodology for

Computational Fluid Dynamics Code Validation," AIAA Journal, vol. 36, pp. 733-
741, 1998.

[3] W. L. Oberkampf and F. G. Blottner, "Issues in Computational Fluid Dynamics Code
Verification and Validation," AIAA Journal, vol. 36, pp. 687-695, 1998.

[4] W. L. Oberkampf and T. G. Trucano, "Verification and Validation in Computational

98

Fluid Dynamics," Progress in Aerospace Sciences, vol. 38, pp. 209-272, 2002.
[5] W. L. Oberkampf, T. G. Trucano, and C. Hirsch, "Verification, Validation, and

Predictive Capability in Computational Engineering and Physics," Applied
Mechanics Reviews, vol. 57, pp. 345-384, 2004.

[6] NAFEMS, "NAFEMS Website," National Agency for Finite Element Methods and
Standards, 2006, www.NAFEMS.org.

[7] J. Abanto, D. Pelletier, A. Garon, J.-Y. Trepanier, and M. Reggio, "Verification of
some Commercial CFD Codes on Atypical CFD Problems," AIAA Paper 2005-0682,
43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2005.

[8] NPARC, "CFD Verification &Validation: NPARC Alliance," NPARC Alliance,
2000, http://www.grc.nasa.gov/WWW/wind/valid/homepage.html.

[9] ERCOFTAC, "Portal to Fluid Dynamics Database Resources," European Research
Community on Flow, Turbulence and Combustion, 2000,
http://ercoftac.mech.surrey.ac.uk.

[10] QNET-CFD, "Thematic Network on Quality and Trust for the Industrial Applications
of CFD," 2001, www.qnet-cfd.net.

[11] A. Rizzi and J. Vos, "Toward Establishing Credibility in Computational Fluid
Dynamics Simulations," AIAA Journal, vol. 36, pp. 668-675, 1998.

[12] J. B. Vos, A. Rizzi, D. Darracq, and E. H. Hirschel, "Navier-Stokes Solvers in
European Aircraft Design," Progress in Aerospace Sciences, vol. 38, pp. 601-697,
2002.

[13] AIAA, "Guide for the Verification and Validation of Computational Fluid Dynamics
Simulations," American Institute of Aeronautics and Astronautics, Reston, VA,
AIAA-G-077-1998, 1998.

[14] ASME, "Guide for Verification and Validation in Computational Solid Mechanics,"
American Society of Mechanical Engineers, New York, NY, in preparation, 2006.

[15] T. G. Trucano, L. P. Swiler, T. Igusa, W. L. Oberkampf, and M. Pilch, "Calibration,
Validation, and Sensitivity Analysis: What's What," Reliability Engineering and
System Safety, vol. 91, pp. 1331-1357, 2006.

[16] W. L. Oberkampf and D. P. Aeschliman, "Joint Computational/Experimental
Aerodynamics Research on a Hypersonic Vehicle: Part 1, Experimental Results,"
AIAA Journal, vol. 30, pp. 2000-2009, 1992.

[17] C. J. Roy, M. A. McWherter-Payne, and W. L. Oberkampf, "Verification and
Validation for Laminar Hypersonic Flowfields, Part 1: Verification," AIAA Journal,
vol. 41, pp. 1934-1943, 2003.

[18] C. J. Roy, W. L. Oberkampf, and M. A. McWherter-Payne, "Verification and
Validation for Laminar Hypersonic Flowfields, Part 2: Validation," AIAA Journal,
vol. 41, pp. 1944-1954, 2003.

[19] IEEE, "IEEE Standard Dictionary of Electrical and Electronics Terms," New York,
ANSI/IEEE Std 100-1984, 1984.

[20] ANS, "Guidelines for the Verification and Validation of Scientific and Engineering
Computer Programs for the Nuclear Industry," American Nuclear Society, La Grange
Park, IL, ANSI/ANS-10.4-1987, 1987.

[21] IEEE, "IEEE Standard for Software Verification and Validation," Institute of
Electrical and Electronics Engineers, New York, NY, IEEE Std 1012-1998, 1998.

[22] DoD, "DoD Instruction 5000.61: Modeling and Simulation (M&S) Verification,
Validation, and Accreditation (VV&A)," Defense Modeling and Simulation Office,
Office of the Director of Defense Research and Engineering, 1996,
www.dmso.mil/docslib.

[23] DoD, "Verification, Validation, and Accreditation (VV&A) Recommended Practices
Guide," Defense Modeling and Simulation Office, Office of the Director of Defense
Research and Engineering, 1996, www.dmso.mil/docslib.

[24] J. Soudah, S. Doebling, J. Sefcik, M. Pilch, and T. Trucano, "ASC V&V Program
Strategy: Toward a Predictive Enterprise," National Nuclear Security Administration,
Washington, DC, in preparation, 2006.

[25] W. L. Oberkampf, "A Proposed Framework for Computational Fluid Dynamics Code
Calibration/Validation," AIAA Paper 94-2540, 18th AIAA Aerospace Ground
Testing Conference, Colorado Springs, CO, 1994.

[26] U. B. Mehta, "Guide to Credible Computational Fluid Dynamics Simulations," AIAA

99

Paper 95-2225, 26th AIAA Fluid Dynamics Conference, San Diego, CA, 1995.
[27] P. J. Roache, "Verification of Codes and Calculations," AIAA Journal, vol. 36, pp.

696-702, 1998.
[28] T. G. Trucano, D. E. Post, M. Pilch, and W. L. Oberkampf, "Software Engineering

Intersection with Verification and Validation of Higher Performance Computational
Science Software: Some Observations," Sandia National Laboratories, Albuquerque,
NM, SAND2005-3662P, 2005.

[29] P. J. Roache, "Code Verification by the Method of Manufactured Solutions," Journal
of Fluids Engineering, vol. 124, pp. 4-10, 2002.

[30] D. E. Post and R. P. Kendall, "Software Project Management and Quality Engineering
Practices for Complex, Coupled Multiphysics, Massively Parallel Computational
Simulations: Lessons Learned from ASCI," International Journal of High
Performance Computing Applications, vol. 18, pp. 399-416, 2004.

[31] D. E. Post and L. G. Votta, "Computational Science Demands a New Paradigm," in
Physics Today, vol. 58, 2005, pp. 35-41.

[32] L. Hatton, "The T Experiments: Errors in Scientific Software," IEEE Computational
Science & Engineering, vol. 4, pp. 27-38, 1997.

[33] J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. New York:
Springer-Verlag, 1996.

[34] C. Hirsch, Numerical Computation of Internal and External Flows: Vol. 1:
Fundamentals of Numerical Discretization. New York: John Wiley, 1988.

[35] C. Hirsch, Numerical Computation of Internal and External Flows: Vol. 2:
Computational Methods for Inviscid and Viscous Flows. New York: John Wiley,
1990.

[36] J. T. Oden, "Error Estimation and Control in Computational Fluid Dynamics," in The
Mathematics of Finite Elements and Applications, J. R. Whiteman, Ed. New York:
John Wiley, 1993, pp. 1-23.

[37] K. W. Morton, Numerical Solution of Convection-Diffusion Problems. Boca Raton,
FL: CRC Press, 1996.

[38] C. B. Laney, Computational Gasdynamics. Cambridge, UK: Cambridge University
Press, 1998.

[39] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element
Analysis. New York: John Wiley, 2000.

[40] I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability. Oxford,
UK: Oxford University Press, 2001.

[41] P. J. Roache, "Need for Control of Numerical Accuracy," Journal of Spacecraft and
Rockets, vol. 27, pp. 98-102, 1990.

[42] P. J. Roache, "Perspective: A Method for Uniform Reporting of Grid Refinement
Studies," Journal of Fluids Engineering, vol. 116, pp. 405-413, 1994.

[43] P. J. Roache, "Quantification of Uncertainty in Computational Fluid Dynamics," in
Annual Review of Fluid Mechanics, vol. 29, J. L. Lumley and M. Van Dyke, Eds.
Palo Alto, CA: Annual Reviews, 1997, pp. 126-160.

[44] D. R. Wallace, L. M. Ippolito, and B. B. Cuthill, "Reference Information for the
Software Verification and Validation Process," Rept. 500-234, 1996.

[45] B. Beizer, Software Testing Techniques. New York: Van Nostrand Reinhold, 1990.
[46] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer Software, 2nd ed. New York:

John Wiley, 1999.
[47] C. J. Roy, "Grid Convergence Error Analysis for Mixed-Order Numerical Schemes,"

AIAA Paper 2001-2606, AIAA Fluid Dynamics Conference, Anaheim, CA, 2001.
[48] L. Eca and M. Hoekstra, "An Evaluation of Verification Procedures for CFD

Applications," Proceedings of the 24th Symposium on Naval Hydrodynamics,
Fukuoka, Japan, 2002.

[49] J. Cadafalch, C. C. Perez-Segarra, R. Consul, and A. Oliva, "Verification of Finite
Volume Computations on Steady State Fluid Flow and Heat Transfer," Journal of
Fluids Engineering, vol. 124, pp. 11-21, 2002.

[50] C.-F. A. Chen, R. D. Lotz, and B. E. Thompson, "Assessment of Numerical
Uncertainty Around Shocks and Corners on Blunt Trailing-Edge Supercritical
Airfoils," Computers and Fluids, vol. 31, pp. 25-40, 2002.

[51] T. G. Trucano, M. Pilch, and W. L. Oberkampf, "On the Role of Code Comparisons

100

in Verification and Validation," Sandia National Laboratories, Albuquerque, NM,
SAND2003-2752, 2003.

[52] P. Knupp and K. Salari, Verification of Computer Codes in Computational Science
and Engineering. Boca Raton, FL: Chapman & Hall/CRC, 2002.

[53] C. J. Roy, "Verification of Euler/Navier-Stokes Codes Using the Method of
Manufactured Solutions," International Journal for Numerical Methods in Fluids, vol.
44, pp. 599-620, 2004.

[54] H. B. Keller, "Accurate Difference Methods for Linear Ordinary Differential Systems
Subject to Linear Constraints," SIAM Journal on Numerical Analysis, vol. 6, pp. 8-
30, 1969.

[55] B. N. Srivastava, M. J. Werle, and R. T. Davis, "A Finite Difference Technique
Involving Discontinuous Derivatives," Computers and Fluids, vol. 7, pp. 69-74, 1979.

[56] F. G. Blottner, "Influence of Boundary Approximations and Conditions on Finite-
Difference Solutions," Journal of Computational Physics, vol. 48, pp. 246-269, 1982.

[57] E. Turkel, "Accuracy of Schemes with Nonuniform Meshes for Compressible Fluid-
Flows," Applied Numerical Mathematics, vol. 2, pp. 529-550, 1986.

[58] O. Axelsson, Iterative Solution Methods. Cambridge, U.K.: Cambridge University
Press, 1996.

[59] M. H. Carpenter and J. H. Casper, "Accuracy of Shock Capturing in Two Spatial
Dimensions," AIAA Journal, vol. 37, pp. 1072-1079, 1999.

[60] C. J. Roy, M. A. McWherter-Payne, and W. L. Oberkampf, "Verification and
Validation for Laminar Hypersonic Flowfields," AIAA Paper 2000-2550, Fluids
2000 Conference, Denver, CO, 2000.

[61] O. Botella and R. Peyret, "Computing Singular Solutions of the Navier-Stokes
Equations with the Chebyshev-Collocation Method," International Journal for
Numerical Methods in Fluids, vol. 36, pp. 125-163, 2001.

[62] C. J. Roy and F. B. Blottner, "Assessment of One- and Two-equation Turbulence
Models for Hypersonic Flows," Journal of Spacecraft and Rockets, vol. 38, pp. 699-
710, 2001.

[63] B. Diskin and J. L. Thomas, "Analysis of Boundary Conditions for Factorizable
Discretizations of the Euler Equations," NASA/ICASE, Hampton, VA, NASA/CR-
2002-211648, 2002.

[64] D. K. Pace, "Synopsis of Fidelity Ideas and Issues," 1998 Spring Simulation
Interoperatibility Workshop Papers, 1998.

[65] E. J. Rykiel, "Testing Ecological Models: The Meaning of Validation," Ecological
Modelling, vol. 90, pp. 229-244, 1996.

[66] K. Beven, "Towards a Coherent Philosophy of Modelling the Environment,"
Proceedings of the Royal Society of London, Series A, vol. 458, pp. 2465-2484, 2002.

[67] J. C. Refsgaard and H. J. Henriksen, "Modelling guidelines-terminology and guiding
principles," Advances in Water Resources, vol. 27, pp. 71-82, 2004.

[68] W. L. Oberkampf and T. G. Trucano, "Validation Methodology in Computational
Fluid Dynamics," AIAA Paper 2000-2549, Fluids 2000 Conference, Denver, CO,
2000.

[69] M. A. Walker and W. L. Oberkampf, "Joint Computational/Experimental
Aerodynamics Research on a Hypersonic Vehicle: Part 2, Computational Results,"
AIAA Journal, vol. 30, pp. 2010-2016, 1992.

[70] W. L. Oberkampf, D. P. Aeschliman, R. E. Tate, and J. F. Henfling, "Experimental
Aerodynamics Research on a Hypersonic Vehicle," Sandia National Laboratories,
Albuquerque, NM, SAND92-1411, 1993.

[71] D. P. Aeschliman, W. L. Oberkampf, and F. G. Blottner, "A Proposed Methodology
for CFD Code Verification, Calibration, and Validation," Paper 95-CH3482-7, 16th
International Congress on Instrumentation for Aerospace Simulation Facilities,
Dayton, OH, 1995.

[72] W. L. Oberkampf, D. P. Aeschliman, J. F. Henfling, and D. E. Larson, "Surface
Pressure Measurements for CFD Code Validation in Hypersonic Flow," AIAA Paper
95-2273, 26th AIAA Fluid Dynamics Conf., San Diego, CA, 1995.

[73] T. G. Trucano, M. Pilch, and W. L. Oberkampf, "General Concepts for Experimental
Validation of ASCI Code Applications," Sandia National Laboratories, Albuquerque,
NM, SAND2002-0341, 2002.

101

[74] T. G. Trucano, R. G. Easterling, K. J. Dowding, T. L. Paez, A. Urbina, V. J. Romero,
R. M. Rutherford, and R. G. Hills, "Description of the Sandia Validation Metrics
Project," Sandia National Laboratories, Albuquerque, NM, SAND2001-1339, 2001.

[75] K. Dowding, "Quantitative Validation of Mathematical Models," ASME International
Mechanical Engineering Congress Exposition, New York, 2001.

[76] T. L. Paez and A. Urbina, "Validation of Mathematical Models of Complex Structural
Dynamic Systems," Proceedings of the Ninth International Congress on Sound and
Vibration, Orlando, FL, 2002.

[77] R. G. Hills and T. G. Trucano, "Statistical Validation of Engineering and Scientific
Models: A Maximum Likelihood Based Metric," Sandia National Laboratories,
Albuquerque, NM, SAND2001-1783, 2002.

[78] W. L. Oberkampf and M. F. Barone, "Measures of Agreement Between Computation
and Experiment: Validation Metrics," AIAA Paper 2004-2626, 34th AIAA Fluid
Dynamics Conference, Portland, OR, 2004.

[79] W. L. Oberkampf and M. F. Barone, "Measures of Agreement Between Computation
and Experiment: Validation Metrics," Journal of Computational Physics, vol. 217, pp.
5-36, 2006.

[80] D. F. Kusnezov, "Advanced Simulation & Computing: The Next Ten Years," Sandia
National Laboratories, Albuquerque, NM, SAND2004-3740P, 2004.

[81] F. M. White, Viscous Fluid Flow. New York: McGraw Hill, 1991.
[82] L. Eca, M. Hoekstra, A. Hay, D. Pelletier, and P. J. Roache, "A Manufactured

Solution for a Two-Dimensional Steady Wall-Bounded Incompressible Turbulent
Flow," Instituto Superior Tecnico, Lisbon, Portugal, IST Report D72-34, 2005.

[83] L. Eca and M. Hoekstra, "Verification of Turbulence Models with a Manufactured
Solution," ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, 2006.

[84] L. Eca and M. Hoekstra, "An Introduction to CFD Code Verification Including Eddy-
Viscosity Models," ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands, 2006.

[85] V. Prabhakar and J. N. Reddy, "Spectral/hp Penalty Least-Squares Finite Element
Formulation for the Steady Incompressible Navier-Stokes Equations," Journal of
Computational Physics, vol. 215, pp. 274-297, 2006.

[86] H. W. Coleman and W. G. Steele, Jr., Experimentation and Uncertainty Analysis for
Engineers, 2nd ed. New York: John Wiley, 1999.

[87] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters: Design,
Innovation, and Discovery, 2nd ed. New York: John Wiley, 2005.

[88] D. C. Montgomery, Design and Analysis of Experiments, 5th ed. Hoboken, NJ: John
Wiley, 2000.

[89] G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications. New York:
Springer, 1995.

[90] C. P. Robert, Monte Carlo Statistical Methods. New York: Springer-Verlag, 1999.
[91] J. C. Helton and F. J. Davis, "Latin Hypercube Sampling and the Propagation of

Uncertainty in Analyses of Complex Systems," Reliability Engineering and System
Safety, vol. 81, pp. 23-69, 2003.

[92] T. J. Santner, B. J. Williams, and W. Notz, The Design and Analysis of Computer
Experiments. New York: Springer, 2003.

[93] R. G. Hills and I. Leslie, "Statistical Validation of Engineering and Scientific Models:
Validation Experiments to Application," Sandia National Laboratories, Albuquerque,
NM, SAND2003-0706, 2003.

[94] K. J. Dowding, R. G. Hills, I. Leslie, M. Pilch, B. M. Rutherford, and M. L. Hobbs,
"Case Study for Model Validation: Assessing a Model for Thermal Decomposition of
Polyurethane Foam," Sandia National Laboratories, Albuquerque, NM, SAND2004-
3632, 2004.

[95] B. M. Rutherford and K. J. Dowding, "An Approach to Model Validation and Model-
Based Prediction--Polyurethane Foam Case Study," Sandia National Laboratories,
Albuquerque, NM, SAND2003-2336, 2003.

[96] W. Chen, L. Baghdasaryan, T. Buranathiti, and J. Cao, "Model Validation via
Uncertainty Propagation," AIAA Journal, vol. 42, pp. 1406-1415, 2004.

[97] S. Mahadevan and R. Ramesh, "Validation of reliability computational models using
Bayes networks," Reliability Engineering and System Safety, vol. 87, pp. 223-232,
2005.

102

[98] A. Saltelli, K. Chan, and E. M. Scott (eds.) Sensitivity Analysis (Wiley, New York,
2000).

[99] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in
Practice: A Guide to Assessing Scientific Models. Chichester, England: John Wiley,
2004.

[100] J. C. Helton, J. D. Johnson, C. J. Sallaberry, and C. B. Storlie, "Survey of Sampling-
Based Methods for Uncertainty and Sensitivity Analysis," Reliability Engineering and
System Safety, vol. 91, pp. 1175-1209, 2006.

[101] S. Ferson and W. T. Tucker, "Sensitivity in Risk Analyses with Uncertain Numbers,"
Sandia National Laboratories, Albuquerque, NM, SAND2006-2801, 2006.

[102] M. Casey and T. Wintergerste (eds.) ERCOFTAC Special Interest Group on Quality
and Trust in Industrial CFD: Best Practices Guidelines (European Research
Community on Flow, Turbulence, and Combustion, 2000).

[103] D. W. Levy, T. Zickuhr, R. A. Wahls, S. Pirzadeh, and M. J. Hemsch, "Data
Summary from the First AIAA Computational Fluid Dynamics Drag Prediction
Workshop," Journal of Aircraft, vol. 40, pp. 875-882, 2003.

[104] M. Hemsch, "Statistical Analysis of Computational Fluid Dynamic Solutions from the
Drag Prediction Workshop," Journal of Aircraft, vol. 41, pp. 95-103, 2004.

[105] C. L. Rumsey, S. M. Rivers, and J. H. Morrison, "Study of CFD Variation on
Transport Configurations for the Second Drag-Prediction Workshop," Computers &
Fluids, vol. 34, pp. 785-816, 2005.

[106] M. Hemsch and J. H. Morrison, "Statistical Analysis of CFD Solutions from 2nd Drag
Prediction Workshop," 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno,
NV, 2004.

[107] K. R. Laflin, S. M. Klausmeyer, T. Zickuhr, J. C. Vassberg, R. A. Wahls, J. H.
Morrison, O. P. Brodersen, M. E. Rakowitz, E. N. Tinoco, and J.-L. Godard, "Data
Summary from the Second AIAA Computational Fluid Dynamics Drag Prediction
Workshop," Journal of Aircraft, vol. 42, pp. 1165-1178, 2005.

103

