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Abstract

A lot of methods exist to study the influence of uncertainties on the results of severe accidents computer codes in use for Level 2 PSA. The item “influence of uncertainties” means in that paper: uncertainty analysis or sensitivity analysis or evaluation of the probability to exceed a threshold.

These methods are often not suitable, from a theoretical point of view, when the phenomena that are modelled by the computer code are discontinuous in the variation range of influent parameters, or some input variables are statistically dependent.

After an overview of statistical and probabilistic methods to study the influence of uncertainties of input variables on the code responses, the purpose of the paper is to give a description of some mathematical methods that are interesting in the framework of severe accident studies and Level 2 PSA :

- response surfaces, and specifically the suitable methods for their validation. The use of a response surface introduces an additional error on the results of the uncertainty and sensitivity analysis. The estimation of that error is not easy to compute in most cases. We will give an overview on this problematic in case of the computation of the variance of the response.

- clustering methods, that could be useful when we want apply statistical methods based on Monte-Carlo simulation.

In the case of dependent input variables, a new sensitivity indice has been developed with the aim to obtain useful and comprehensible sensitivity indices.

Practical interest of these “new” methods should be confirmed, by applications on real problems.

1 Introduction

A lot of methods exist to study the influence of uncertainties on the results of severe accident computer codes in use for Level 2 PSA. The item “influence of uncertainties” means, in that paper, uncertainty analysis, sensitivity analysis or evaluation of the probability that a response exceeds a threshold. 

A lot of these methods could not be suitable, from a theoretical point of view, when the phenomena that are modelled by the computer code are discontinuous in the variation range of influent parameters, or some input variables are statistically dependent. The purpose of the paper is to give an overview of some mathematical methods like non linear response surfaces and clustering methods, that can be useful when we want to apply statistical methods based on Monte-Carlo simulation. For the problem of clustering, an example based on the direct containment heating phenomenon is proposed.

The use of a response surface introduces an additional error on the results of the uncertainty and sensitivity analysis. The estimation of that error is not easy to compute in most cases. We give an overview on this problematic in case of the variance of the response.

In the case of correlated input variables, a new sensitivity indice has been developed with the aim to obtain useful and comprehensible sensitivity indices.

2 Overview of methods for uncertainty analysis

Once the different sources of uncertainties have been identified and modelled, the problem is how to propagate these uncertainties through the code and how to assess the probability that a response of the code exceeds a threshold. This section presents different methods used with their advantages and drawbacks. A lot of reports exist on the subject, and we can see the bibliography of [1].

In the studies of uncertainty propagation, we are interested with the uncertainty evaluation of a response Y according to uncertainties on the input data X = (Xi, i=1,..,p) and on the functional relation f connecting Y to X. Yc is a threshold or a critical value if necessary.

2.1 Methods for propagating the uncertainties

In order to get information about the uncertainty of Y, a number of code runs have to be performed. For each of these calculation runs, all identified uncertain parameters are varied simultaneously.

According to the exploitation of the result of these studies, the uncertainty on the response can be evaluated either in the form of an uncertainty range or in the form of a probability distribution function (pdf).

2.1.1 Uncertainty range

A two-sided tolerance interval [m,M] of a response Y, for a fractile ( and a confidence level ( is given by:
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Such a relation means that one can affirm, with at the most (1-() percent of chances of error, that at least ( percents values of the response Y lies between the values m and M.

To calculate the limits m and M, the technique usually used is a method of simulation combined with the formula of Wilks. The formula of Wilks determines the minimal size N of a sample to be generated randomly according to the values of ( and ( (cf. [2] and [3] for examples)

For a two-sided statistical tolerance intervals, the formula is:
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The minimum number of calculations can be found in Table 1.

	
	One-sided statistical tolerance limit
	Two-sided statistical tolerance limit

	(/(
	0.90
	0.95
	0.99
	0.90
	0.95
	0.99

	0.90
	22
	45
	230
	38
	77
	388

	0.95
	29
	59
	299
	46
	93
	473

	0.99
	44
	90
	459
	64
	130
	662


Table 1 : Minimum number of calculations N for one-sided and two-sided statistical tolerance limits

The bounds m and M of the confidence interval of Y are obtained by retaining the minimal and maximal values of the sample {Yj, j = 1,…,N}.
This method supposes that the function g is continuous and that all uncertainties on the input data Xi are distributed according to continuous laws.

The advantage of using this technique is that the number of code calculation needed is independent of the number of uncertain parameters, but we can obtain large confidence intervals on the bounds.

2.1.2 Density of probability

The uncertainty evaluation in the form of a pdf gives richer information than a confidence interval. But the determination of this distribution can be expensive in computing times. The following paragraphs describe the various methods available for this evaluation.

2.1.2.1 Methods of Monte-Carlo 

The method of Monte-Carlo is used to build pdf, but also to assess the reliability of components or structures or to evaluate the sensitivity of parameters. Monte Carlo simulation consists of drawing samples of the basic variables according to their probabilistic characteristics and then feeding them into the performance function. In this way, a sample of response {Yj, j = 1,..,N} is obtained.

The pdf is obtained by fitting a law on the sample {Yj, j = 1,..,N}. This fitting is a well known problem and many tests exist and are adapted to the law tested (Chi-square, Kolmogorov-Smirnov, Anderson-Darling...]). Degrees of confidence can be associated to the fitting.

It is obvious that the quality of the fitting depends on the number of simulations carried out and on the good repartition of these simulations in the random space, especially if the tails of distributions are one of the interests of the study. It is necessary to notice that no rule exists, when there is no a priori knowledge on the type of pdf, to determine the number of simulations necessary to obtain this distribution with confidence.

It is necessary to select the points, which bring the maximal information, but the determination of these points remains an open question.

The principal advantage of the method of Monte-Carlo, is that this method is valid for static, but also for dynamic models and for probabilistic model with continuous or discrete variables. The main drawback of this method is that it requires a large number of calculations and can be prohibitive when each calculation involves a long and onerous computer time.

2.1.2.2 Method of moments

Another method to obtain the density of probability of the response is to calculate the first four moments by using the Gauss integration method and then to fit a distribution of probability to these moments by using the Pearson or Johnson methods (cf. [4] and [5]).

The first objective is to evaluate the first moments of the random response Y. The expectation of Y can be calculated by,:
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where fx is the joint density distribution of X.

This equation can be evaluated by a squaring method of Gauss. This method allows the integration of a continuous function with the desired precision. It consists in the discretisation of the interval of integration in a number of X-coordinates xi to which a weight wi is associated. The number of X-coordinates is a function of the desired precision. For an continuous function g(x), we obtain: 
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Practically, a set of order j orthogonal polynomial {pj(x)}j=0,1,2... are associated to the weight function W(x). These polynomials verify the following relations:
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The N X-coordinates of a squaring formula with a weight function W(x) are the zeros of the polynomial pN(x), which has exactly N zeros in the interval [a, b]. These polynomials are generally defined by relations of recurrence. The weights are calculated by solving the system of linear equations: 
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Then the average is evaluated from:
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and the moment of order k from:
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From the first four moments knowledge, it is possible to determine the associated distribution of Pearson.

Pearson and al. ([3]) show that one can define in an approximate way a density of probability from the average, the standard deviation and two additional coefficients called coefficients of Fisher:

The coefficient of symmetry: [image: image9.wmf]3
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The coefficient of flatness: [image: image10.wmf]4

4

2

2

s

m

b

g

=

=

 

Where (1 is the Skweness and (2 theKurtosis.

A great number of continuous distributions can be written in the following form:
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where the parameters a1, a2, p1 and p2 can be real or imaginary and f(x0) is defined by the condition [image: image12.wmf]ò
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The distribution law, which depends on 4 parameters, can be expressed according to m,[image: image13.wmf]2
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. The set of these distribution laws is called the family of Pearson. The curves can have several shapes (bell-shaped curve, curved in J, curved in U).

This method is efficient to estimate a pdf if the number of random variables is small.

2.2 Sensitivity analysis

Sensitivity measures of the importance of inputs uncertainties on the uncertainty of the response is an important information that provides guidance as to where to improve the state of knowledge in order to reduce the output uncertainties most effectively, or better understand the modelling. If experimental results are available to compare with calculations, sensitivity measures provide guidance where to improve the models of the computer code. A state of the art has been carried out and is presented in [6].

We can distinguish two kinds of sensitivity analysis:

· local sensitivity analysis based on differential analysis and non probabilistic tool;

· global sensitivity analysis with the aim of ranking the parameters according to their contribution on the code response variance, based on the variance of conditional expectation.

2.2.1 Sensitivity indices for global sensitivity analysis

To apportion the variation in the output to the different parameters, many techniques could be used (see [6] for more details), each yielding different measures of sensitivity. 

A usual approach is to base the sensitivity analysis on a linear regression method, which is based on the hypothesis of a linear relation between response and input parameters. This, in case of severe accident is often restrictive. However, the method is simple and quick, and provides useful insights in case of a restricted number of sampling. Three different sensitivity coefficients have been considered, each one providing a slightly different information on the relevance of a parameter: Standardized Regression Coefficients (SRC), Partial Correlation Coefficients (PCC) and Correlation Coefficients (CC). These occurrences should be analysed, the first one possibly through the examination of the correlation matrix and the second one calculating the model coefficient of determination R2.

Depending on the nature of the studied code, it can be more accurate to use sensitivity methods developed for non-monotonous or non linear models. In case of non-linear but monotonous models, we can perform rank transformations and calculate associated indices: standardized rank regression coefficients (SRRCs) and partial rank correlation coefficients (PRCCs). The rank transform is a simple procedure, which involves replacing the data with their corresponding ranks. We can also calculate a coefficient of determination based on the rank R2*. The R2* will be higher than the R2 in case of non-linear models. The difference between R2 and R2* is a useful indicator of nonlinearity of the model. 

For non linear and non monotonous models, two methods exist: the Sobol method and the Fourier Amplitude Sensitivity Test (FAST). The general idea of these methods is to decompose the total variance of the response, in terms corresponding to uncertainty on the input parameter taken independently, in terms corresponding to the interaction between two parameters, in terms corresponding to the interaction between three parameters, etc… The Sobol indices are calculated by Monte-Carlo simulation. The problem of these methods, and specially Sobol method, is that a good estimation of these indices requires a great number of calculations. (i.e. 1000 simulations per random input). Thus it is necessary first to calculate a response surface validated in the domain of variation of the random variables (see section 3). 

All these methods assume that the random input variables are statistically independent.

2.2.2 Sensitivity indices in case of dependent random variables

This part is more detailed in reference [7]. It is done in the framework of a PhD at INRIA, co-funded by CEA. The problem of sensitivity analysis for model with dependant inputs is a real one, and concerns the interpretation of sensitivity indices values.

We use the usual sensitivity measure from the variance of conditional expectation:
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in case of Y=f(X1, …, Xp).

When inputs are statistically independent, the sum of these sensitivity indices is equal to 1. In case of an use of Sobol’s method to estimate the Si indices, all terms in the decomposition are mutually orthogonal if inputs are independent, and so we can obtain a variance decomposition of model output. Dividing this decomposition by output variance, we can obtain exactly that the sum of all order indices is equal to 1.

If we don’t assume that the inputs are independent, the terms of model function decomposition are not orthogonal, so it appears a new term in the variance decomposition. That is this term with implies that the sum of all order sensitivity indices is not equal to 1. Effectively, variabilities of two correlated variables are linked, and so when we quantify sensitivity to one of this two variables we quantify too a part of sensitivity to the other variable. And so, in sensitivity indices of two variables the same information is taken into account several times, and sum of all indices is thus greatest than 1.

We have studied the natural idea: to define multidimensional sensitivity indices for groups of correlated variables.

Consider the model:

Y=f(X1, …, Xp)

where
(X1, …, Xp)  = Y=f(X1, …, Xi, Xi+1, ..., Xi+k1, Xi+k1+1, …, Xi+k2, …, Xi+k(l-1)+1, …, Xp),

Xi+1 = (Xi+1, ..., Xi+k1),

Xi+2 = (Xi+k1, ..., Xi+k2),

...

Xi+l = (Xi+k(l-1), ..., Xp),

X1, …, Xi are independent inputs, and  Xi+1, …, Xi+l are l groups of intra-dependent or intra-correlated inputs.

We wrote monodimensional non  independent variables (X1, …, Xp) like multidimensional independent variables (X1, …Xi, Xi+1, Xi+2,…, Xi+l).

Thus we define first order sensitivity indices:
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To connect this to monodimensional variables, if j ( [1 ; i], we have:
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and if j ( [i ; i+l], for example if j = i + 2:
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Like in classical analysis, we can also define higher order indices and total sensitivity indices.

It is important to note that if all input variables are independent, those sensitivity indices are clearly the same than (1). And so, multidimensional sensitivity indices can well be interpreted like a generalisation of usual sensitivity indices (1).

In practice, the multidimensional sensitivity indices can be assess from Monte-Carlo methods like in Sobol’ or McKay’ methods (cf. [6]). The assessment is often time consuming. Some computational improvements, based on the idea of dimension reduction, are in progress and very promising. Conclusions on this point are expected at the end of the year.

2.3 Methods for assessing the probability to exceed a threshold

The probability Pf to exceed a threshold according to a specified perfomance criterion or failure criterion is given by:

M = performance criterion – given criterion limit = g(X1, X2,…,Xn)

The performance function, also named the limit state function, is given by M = 0. The failure event is defined as the space where M < 0, and the success event is defined as the space where M > 0. Thus a probability of failure can be evaluated by the following integral:
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where fX is the joint density function of X1 ,X2,…, Xn, and the integration is performed over the region where M < 0. Because each of the basic random variables has a unique distribution and they interact, the integral (2) cannot be easily evaluated. Two types of methods can be used to estimate the probability of failure: Monte Carlo simulation with or without variance reduction techniques and the approximate methods (FORM/SORM). More details are available in [8], [9] and [10].

2.3.1 Monte Carlo Simulation

Direct Monte Carlo simulation techniques can be used to estimate the probability Pf defined in Eqs. (2). Monte Carlo simulation (Figure 1) consists of drawing samples of the basic variables according to their probabilistic characteristics and then feeding then into the performance function. An estimate of the probability of failure Pf can be found by:
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where Nf is the number of simulation cycles in which g(.) < 0, and N the total number of simulation cycles. As N approaches infinity, [image: image20.wmf]f
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 approaches the true probability of failure. The accuracy of the estimation can be evaluated in terms of its variance computed approximately as
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It is recommended to measure the statistical accuracy of the estimated probability of failure by computing its coefficient of variation as
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The smaller the coefficient of variation, the better the accuracy of the estimated probability of failure. It is evident from (3) that as N approaches infinity, [image: image23.wmf])
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For a small probability of failure and a small number of simulation cycles, the variance of [image: image25.wmf]f
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 can be quite large. Consequently, it may take a large number of simulation cycles to achieve a specific accuracy.

The amount of computer time needed for the direct Monte Carlo method is large, specially in our case where each simulation cycle involves a long calculation performed by a severe accident computer code.
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Figure 1 : Reliability assessment by Monte-Carlo simulation

More efficient Monte-Carlo methods have been developed and define the family of “Variance reduction techniques”. In comparison with Monte-Carlo method, for a same number of runs, the accuracy on the failure probability with a variance reduction techniques is better. [8], [10] describe these methods : Importance sampling, Stratified sampling, Latin hypercube sampling, Adaptative sampling, Conditional expectation, Directional simulation, Antithetic variates…

Latin hypercube sampling is one of the most efficient method for the propagation of the uncertainty, but it is not efficient generally for the assessment of small probability.

2.3.2 Approximated methods (FORM/SORM)

The first- and second-order reliability methods (FORM/SORM) consist of 4 steps (Figure 2):

· the transformation of the space of the basic random variables X1, X2,…,Xn into a space of standard normal variables,

· the research, in this transformed space, of the point of minimum distance from the origin on the limit state surface (this point is called the design point),

· an approximation of the failure surface near the design point,

· a computation of the failure probability corresponding to the approximating failure surface.

FORM and SORM apply to problems where the set of basic variables are continuous.
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Figure 2 : Reliability assessment with FORM/SORM methods

Transformation of space

The choice of the transformation to be used depends on the characteristics of the joint density of random input vector X. The most current transformations are the transformation of Rosenblatt when the joint density is known, and the transformation of Nataf, when the probabilistic model is only made up of the marginal densities and of the matrix of covariance. 

In the Gaussian space, the surface of failure is defined by G(u) = g[T-1(u)].
Design point research

The Hasofer-Lind indice (HL is defined as the minimal distance between the failure surface and the origin of the Gaussian Space. The calculation of (HL consists in solving the following problem of optimisation under constraint:
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The point associated with this minimal distance is often called the design point. It corresponds to the point of maximum of probability of failure and is noted u*. Indeed, in the Gaussian Space, the joint density of the vector U is symmetrical in rotation with respect to the origin and thus involves that the design point coincides with the most probable point of the failure.

The probability of failure can be calculated by:
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where [image: image28.wmf]j

N

 is the multi-normal standard distribution of dimension N. 

FORM method

Approximate method FORM (First Order Reliability Method) consists in approaching the surface of failure by a hyper plane tangent to the surface of failure at the design point. Then an estimate of the probability of failure is obtained by:

Pf = ((-(HL)

where ( is related to cumulative distribution of the standard normal law. The precision of this approximation depends on the non-linearity of the failure surface.

The knowledge of this design point makes it possible to determine the most influential variables on reliability. By supposing that there is a single design point and that the index of reliability defined by Hasofer and Lind (HL is positive, the vector directional cosine unit ( is defined by (=u*/(HL.

The components (i are also called factors of sensitivity and the factors (i² are interpreted like factors of importance associated to the variables Ui. A variable associated with one significant (i is regarded as having a significant influence on the probability of failure.

If the linear approximation is not satisfactory, more precise evaluations can be obtained to from approximations to higher orders of the failure surface at the design point. [10] describes some improvements of second order called SORM Methods, based on an approximation of the failure surface by a quadratic surface at the design point.

Another idea to contribute to the validation of a result FORM or to improve the precision of the result is to use a method of simulation in the vicinity of the design point u*. The methods of importance sampling and directional simulation are the most used.

For an importance sampling (Figure 3) around the design point, the probability of failure is estimated by:
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where h(u) is the density of importance defined by a multinormal distribution centred on the point of design.
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Figure 3 : Conditional importance Sampling

2.3.3 Comparison of Monte-Carlo methods and FORM/SORM

The Monte Carlo simulation methods are completely general, and apply to any distribution of the basic random variables, including discrete random variables. Furthermore, there is no requirements on the failure functions – only the sign of the failure function is being used.

FORM and SORM are analytical and approximate methods, and their accuracy is generally good for small probabilities (10-3-10-8). The analytical properties enable the methods to yield relatively inexpensive sensitivity factors. The basic random variables must be continuous, and the failure function must be continuous. With the optimisation procedures presently used in most cases, the failure functions should be smooth.

For small order probabilities FORM/SORM are extremely efficient as compared to simulation methods, if the number of random variables is not too high. The CPU-time is for FORM approximately linear in the number of basic variables n, and the additional CPU-time for a SORM computation grows approximately with n2. The absolute computation time depends on the time necessary to evaluate the failure function. This time may in fact depend on the actual values of the basic variables. Extreme values may take longer due to increased non-linearities in the problem. The CPU-time is independent of the probability level, assuming a constant time for evaluation of the failure function.

The following table summarizes the advantages and drawbacks of Monte-Carlo simulation and FORM/SORM methods.
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Table 2 : Comparison of the characteristics of reliability methods

3 Response surface methods

3.1 Principle

To avoid the problem of long computer time in the method of Monte-Carlo, it can be interesting to build an approximate mathematical model called response surface or surrogate model or meta-model.
The aim of the method is to approximate f(X) by a simple mathematical model, such as an nth order polynomial [image: image30.wmf])
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 with undetermined coefficients, from a database of computations (see for example [11]). Different types of response surface can be used: polynomial, thin plate splines, neural networks, generalised linear model (GLM), PLS (Partial Least Squares) regression… For some family of response surfaces, experimental design tools could be useful to optimise the size of the database.

Input data in a response surface method (RSM) are:
–a sample D of points (x(i), z(i)), where x is the random vector (x1, …, xp), z=f(x) and P(X,Z) the probability law of the random vector (X,Z) (unknown in practice) ;

–a family F of response surface function f(x,c), where c is either a parameter vector or a index vector that identifies the different elements of F.

The aim of a RSM is, in consideration of the sample D, to determine the function f0 in F that has the behaviour the nearest of f. The best function in the family F is then the function f0 that minimized the risk function :
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If assumptions of normal distributions and constant standard deviations are done, the loss function is defined, by
L(z, f(x, c)) = (x,f)²= [z(x) - f(x, c)]² 
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In practice an empirical risk function is used:

Before any use of response surface, it is necessary to qualify it for a foreseen utilisation. This qualification keeps a part of subjectivity. The characteristic « good approximation » is subjective and depends on the use of the response surface. The use could introduce additional constraints. For example, we can need constraints like conservatism, a bound on the remainder, a better accuracy in a interest area (distribution tail…)… For reliability studies, a good representation of the domain of maximum of failure probability is often sufficient and it is not necessary to seek a good quality of approximation in the entire field of variation of the input parameters. If the response surface is used in a problem where the knowledge of uncertainties is imprecise, it is not judicious to seek response surfaces explaining 99,9% of the variability.

3.2 Validation of a response surface

In any case, we expect from a response surface qualities of approximation and prediction:

1. the quality of approximation is given by statistical analyses carried out on the bases of point used to build the surface (this set of points is called here “training set”);

2. the quality of prediction is obtained by statistical analyses carried out on points not belonging to the building base (this set of points is called the "base of test").

A simple method to qualify a response surface is to compare indicators obtained from the response surface with those obtained directly with the code, if it is possible to calculate it. These indicators can be: average, standard deviation, number of values in an interval, or results of uncertainty or sensitivity analyses. It is necessary to check the coherence and the consistency of the results and that the same hierarchy is obtained for the most influential parameters.

Different statistical tools, often under assumptions like Gauss-Markov assumptions, etc., can be used to quantify the quality of the response surface like variance analysis, coefficient of linear correlation between outputs of the code and the response surface, R² statistics and confidence area 1- for coefficients c… The Figure 4 gives an example of a graphical tool for the comparison.
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Figure 4 : Linear relationship between the outputs of the function g and the response surface

Feedback on the response surface

Explicit response surface function are more understandablefor physicist. It is the case for the different families, apart neural networks (NNRS). NNRS and GLM are more suitable for continuous and complex models. But their practical work with neural networks and GLM models assume an experience :

· for neural network : number of layer, choice of activation function…

· for GLM, choice of the response probability distribution, link function…

The practical problems encountered by the use of the response surface method are in:

· the analysis of strongly non-linear phenomena where it is not obvious to find a family of adequate functions (multi-layer neural networks can bring a solution); 

· the analysis of discontinuous phenomena: a solution is to build a preliminary function of classification and to calculate response surfaces for each branch of the bifurcation (see section 4).

One question often encountered is : is the size and the quality of the database sufficient ?

A simple analyse consists in studying the convergence of some statistics (mean, variance or other) when the database is truncated. The Figure 5 gives an example. Convergence of the variance and estimation of the bias could be assess by use of Bootstrap method. [12] gives a  theoretical example.
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Figure 5 : Convergence of statistics with the size of the database
3.3 About the impact of response surface error

The use of a response surface or a surrogate model in an uncertainty and sensitivity analysis implies generally a bias or an error on the results of the uncertainty and sensitivity analysis, because the difference between the two models is never a random noise.

Usual questions are: 

· What is the impact of this “error” on the results of an uncertainty and sensitivity analysis made on a response surface?

· Can we deduce results on the “true” function from results obtained from a response surface?

If we consider only the variance of the result and sensitivity analysis as defined by (1), we can figure the difficulty of the question. We note ((x1, …, xp) the “residual function” between the response surface SR and the studied function f:

((x1, …, xp) = SR(x1, …, xp) - f(x1, …, xp)

Assume that we have a good approximation of the residual function. Then (-SR appears as a good approximation of the true function.

Assume that all Xi are independent, and sensitivity analysis have been done on the two function SR and (, and we note SSR,i and S(,i the computed sensitivity analysis.

The assessment of V(E(f(X1, …, Xp)/Xi)) from SSR,i and S(,i is obtained from:
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The computation of the covariance term requires a Monte-Carlo simulation. Then it is generally impossible to deduce results on the “true” function from results obtained from a response surface.

Only cases where results can be deduce are :

1. SR is a truncated model obtained from a decomposition of f in a orthogonal functional basis;

2. The residual function ( is not very sensitive of the variables X1, …, Xp, then we can consider ( as a random variable independent of X1, …, Xp and f(X1, …, Xp).
Then Sf,i = V(E(f(X1, …, Xp)/ Xi)) / V(Y) is estimated by 

SSR,i / (V(((x1, …, xp))+V(SR(x1, …, xp)))
If we are interested by the impact of the residual function only on a quantile, useful results, based only on differential analysis, are available if FORM/SORM methods are used to compute an approximation of a quantile (see [13]).

4 Discontinuous model

4.1 Principles

For discontinuous function, no usual response surface family is suitable. In practice, discontinuous behaviour means generally that more than one physical phenomenon is implemented in the function f. Then, to avoid misleading in interpretation of results of uncertainty and sensitivity analysis, discriminant analysis should be used to define areas where the function is continuous. Statistical analysis are led on each continuous area.

Different methods are available in statistical tools (like R or WEKA) or mathematical softwares:

· neural networks with sigmoid activation function ([14]),

· GLM models with a logit link or logistic regression ([15]),

· Vector support machine (an extension of neural network ([16],[17]),

· Decision tree and variants like random forest… ([18])

Freeware toolboxes exists and are very easy to use.

Practical problems are often encountered if the sample is « linearly separable ». The Figure 6 shows an example. If  we have a first set of data (see black “potatoes”), there is not an unique separator function (black lines) that explain all the set. If new calculations are done, and we obtain two new “potatoes” (see blue potatoes), then the prediction error could be non negligible with the previous separator functions. Works are in progress to develop methods that permit to obtain a robust separator function like the red line. Support vector machines and methods based on Decision Trees are very promising for that case.
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Figure 6 : Problem of robustness in linear clustering

4.2 Example

The interest of these discriminant methods has been studied on an example, in the framework of a contract with the PSA Level 2 project at IRSN.

In this example, we study the direct containment heating (DCH) phenomenon. The response is the presence of corium in the containment outside the reactor pit; it is a discrete response with value 0 (no corium) or 1 (presence). Nine input variables, statistically independent, are taken into account:

· MCOR : mass of corium, uniformly distributed between 20 000 and 80 000 kg;

· FZRO : fraction of oxyded Zr, uniformly distributed between 0,5 and 1,

· PVES : primary pressure, uniformly distributed between 1 and 166 bars,

· DIAM : break size, uniformly distributed between 1 cm and 1 m,

· ACAV : section de passage dans le puits de cuve (varie entre 8 and 22 m 2 )

· FRAC : fraction of corium entrainée directly ejected in the containment, uniformly distributed between 0 and 1,

· CDIS : discharge coefficient at the break, uniformly distributed between 0,1 and 0,9,

· KFIT : adjustment parameter, uniformly distributed between 0,1 and 0,3,

· HWAT : water height in the reactor pit, discrete random variable (0 or 3 meter)

The calculations have been performed with the RUPUICUV module of Escadre Mod 1.2 in 2000. The module has been significantly improved since 2000; the following results have in practice not physically meaning.

A database of 300 calculations is available. The inputs vectors for these calculations have been generated randomly in the variation domain.

The database has been splitted in two databases :

· A training set with the first 200 calculations,

· a test base with the other 100 calculations.

Statistical characteristics of these sets are given in Tables 3 and 4.

	
	Minimum
	Maximum
	Mean
	Standard Deviation

	MCOR
	2.0076e+004
	7.9847e+004
	5.0808e+004
	1.7673e+004

	FZRO
	0.5026
	0.9987
	0.7455
	0.1388

	PVES
	1.1070
	165.2144
	85.0661
	47.4994

	DIAM
	0.0196
	0.9976
	0.5095
	0.2851

	ACAV
	8.0148
	21.9650
	148637
	4.0527

	FRAC
	0.0023
	0.9996
	0.4776
	0.2994

	CDIS
	0.3011
	0.8953
	0.5881
	0.1805

	KFIT
	0.1012
	0.2993
	0.2013
	0.0575


Table 3 : Statistical characteristics for the training set

	
	Minimum
	Maximum
	Mean
	Standard Deviation

	MCOR
	2.0205e+004
	7.8365e+004
	4.7158e+004
	1.8165e+004

	FZRO
	0.5091
	0.9935
	0.7676
	0.1418

	PVES
	3.4885
	164.6111
	83.4687
	47.4413

	DIAM
	0.0123
	0.9860
	0.4377
	0.2876

	ACAV
	8.0224
	21.6015
	14.8661
	4.0976

	FRAC
	0.0034
	0.9981
	0.5385
	0.3101

	CDIS
	0.3074
	0.8983
	0.6017
	0.1652

	KFIT
	0.1003
	0.2960
	0.1999
	0.0597


Table 4 : Statistical characteristics for the test base

The first tool that we have tried is the generalized linear model with a logit link. For a set of all the calculations, or for each sub-samble, it is possible to find a model that explains 100% of the dispersion of the results for the training set; it is necessary to introduce interaction terms and some transformations (logarithmic or power). Then, we have a linearly separable problem. But there is some drawbacks :

· the list of the terms that are statistically significant varies strongly with the training set;

· the prediction error is around 20%.

The use of neural networks shows similar problems, because the functional structural is similar to a logistic regression.

We have then tried other methods. The Table 5 shows a synthesis of the results obtained with different methods ([18]). The WEKA software (www.cs.waikato.ac.nz/ml/weka) has been used for the study. The parameters for each method are given. For the two sets, we give the percentage of points that are badly estimated by the model. For Example Random Forest method explain perfectly the training set.

A more global indicator of the quality of the model is obtained by cross validation method, applied on the whole database.

We notice that the test error on the test base could be lower than its obtained by cross-validation (cf. J48 and Random Forest). If we define the prediction error only from a test base, this fact is often observed, when we used only a test base, and this error is generally biased.

The most efficient method for that example is the Random Forest method (note : others methods have been tried, but the results are not given here).

In practice, we have notice that the methods J48 and Random Forest are faster than the algorithms based on optimisation step (like Naïve Bayes, SVM, Neural Network…). The principle of decision trees and random forest is simple and based on the building of a set of logical combination of decision rules. They are often very readable, and have very prediction capabilities (like shown by the example).

	
	Naive Bayes
	SVM SMO
	J48
	Random Forest

	Description of the method
	Optimisation of the classification probability in a Bayesian framework under Gaussian assumptions
	Support vector machine method with SMO algorithm for the optimisation step
	Decision Tree method also named C4.5 algorithm.
	Algorithm based on a set of decision trees predictor.

	Method parameters
	-D
	-C2-E2
	-S
	-I40

	
	
	-G0.01
	-C0.25
	-K0

	
	
	-A1000003
	M2
	-S1

	
	
	-T0.001
	-A
	

	
	
	-P10-10
	
	

	
	
	-N0 -R -M
	
	

	
	
	-V-1 -W 1
	
	

	Training set
	
	
	
	

	Badly classified
	7.5%
	8.5%
	5%
	0%

	Error matrix
	10    11
	12     15
	17     10
	27    0

	
	5     168
	2      171
	0      173
	0      173

	Test set
	
	
	
	

	Badly classified
	9%
	9%
	7%
	5%

	Error matrix
	11    3
	7    7
	11   3
	10   4

	
	6     80
	2   84
	4    82
	1    85

	Cross validation (300 calculations)
	
	
	
	

	Badly classified
	8.67%
	9.33%
	9.67%
	7.33%

	Error matrix 
	26   15
	18    23
	21    20
	25    16

	
	11    248
	5     254
	9     250
	6     253


Table 5 : Results with different methods
5 Conclusions

This paper has given an overview of statistical and probabilistic methods to study the influence of uncertainties on inputs variable on the code responses.

In the use of these methods, some problems are encountered due to correlated random variables or discontinuous methods. The paper describes new results and ideas to overcome these problems.

Practical interest of these “new” methods should be confirmed, by application on real problems.
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