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Introduction

Optical model potentials (OMP) are the best available description for nucleon{nucleus (NA) scattering of low
and medium energy projectiles with the only requirement to know the nucleus and its density distribution.
The driving agent is supposed to be the nucleon{nucleon (NN) interaction. An appraisal of OMP ideas and
developments can be found in the book by Feshbach [1]. The notion e�ective interaction is used to signal
medium modi�cations of NN interactions, potentials and scattering amplitudes which enter in nonrelativistic
and relativistic OMP calculations. Pauli blocking and mean �eld corrections are the predominant medium
e�ects and they have consistently been used in e�ective interaction calculations [2]. We show in Fig. 1 a result
calculated with the Hamburg e�ective interaction of 1982. Newly established are corrections which modify
directly meson and nuclear properties of boson exchange models [3].

E�ective interactions are used in di�erent contexts and a restriction of the notion, as it is used here,
appears necessary. We associate with an e�ective interaction an operator which contains only variables and
reference parameters which can be speci�ed a posteriori for any nuclear target. This approach fuses an NN
interaction with a many body scattering theory a priori and, after target speci�cation, a modest calculation
yields readily the OMP. Developments of t{matrices and nuclear matter g{matrices have always supported
this line of thought and folding models comprise methods and algorithm for the fusion of e�ective interactions
(including the phenomenological e�ective interactions) with a speci�c nucleus. We are here only concerned
about some features of e�ective interactions.

Watson multiple scattering theory and KMT use the two body t{matrix which can be derived i.) from
the experimental free t{matrix [4], ii.) two body t{matrices computed from some meson exchange model,
of which Nijmegen, Paris [5] and Bonn [6] are representative and our nonlinear meson exchange model is in
progress [7], iv.) phenomenological NN potentials | Hamada{Johnston, Reid and some of Nijmegen [8] and v.)
quantum inversion potentials determined directly from NN partial wave phase shifts [9]. The nuclear matter
approach of the OMP uses Brueckner theory and the two body g{matrix, in connection with local density
approximation (LDA), as e�ective interaction [10]. The g{matrix can be calculated from any of the mentioned
NN potentials. Relativistic e�ective interactions have also been proposed but have never reached the popularity
as nonrelativistic formulations. The relativistic Dirac OMP, initiated by Walecka and made a success by Clark
et al. [2], belongs to another class and does not use the concept of an e�ective NN interaction.

Several potential models give on{shell equivalent best �ts to the newest NN data but are o�{shell not
equivalent due to di�ering nonlocalities. The dispute about the importance of nonlocality has also hit e�ective
interaction and OMP calculations. Few{body calculations show surprisingly little to now di�erence due to o�{
shell di�erences with the exception of nuclear matter saturation and equilibrium or the triton binding energy
[11]. Phenomenological three body forces can heal the problem but the results are not generally accepted. An
inclusion of three body forces in OMPs have not been seriously considered. We shall be concerned about the
o�{shell di�erences in e�ective interactions and their e�ects upon the OMP and elastic scattering observables
respectively. These results have been numerically realized by Dr. Arellano during a recent visit in Hamburg and
we shall concentrate on some relevant results and conclusions from this work [12]. Finally, some preliminary
studies for the �{meson, as a candidate for mesonic medium modi�cations, is given.

1Specialists' Meeting on the Nucleon{Nucleus Optical Model up to 200 MeV, Commissariat �a l'Energie Atomique, Bruy�eres-le-
Châtel (France), 13.{15. November 1996, Organised by the OECD Nuclear Energy Agency Nuclear Science Committee and the
Commissariat �a l'Energie Atomique, Bruy�eres-le-Châtel
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Figure 1: 40Ca(p,p) at 160 MeV. This classical result is supposed to demonstrate the importance of medium
e�ects.

E�ective Interactions

The nuclear matter approach uses the two body t{ and g{matrix as e�ective interaction. The standard approach
is a q{space representation of the Lippmann{Schwinger equation in partial waves
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and similarly the Brueckner{Bethe{Goldstone equation for nuclear matter
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with angle averaged Pauli blocking Q(q;K; kF ) and a single particle energy
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(q2 +K2) + U(q;K; kF ; �): (3)

which contains the crucial self energy U(q;K; kF ). To be more speci�c, we often use the Paris potential in
momentum space, but traditionally as a momentum dependent interaction in r{space
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For the evaluation of half o�{shell t{matrices we are using the Van Leeuwen and Reiner [13] extension of o�{shell
wave functions by the inhomogeneous Schr�odinger equation�

k2 +
d2

dr2
� `(`+ 1)

r2
� V`(r)

�
 `(k; q; r) = (k2 � q2)u`(qr): (5)
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The solution  `(k; q; r) vanishes at the origin and its asympotic behavior is

lim
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For coupled systems this procedure requires�
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lim
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JST
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Coulomb corrections can be readily included but, generally, a Coulomb interaction is added to the hadronic
OMP using a homogeneous charged sphere or Fermi distribution. From the half o�{shell wave function the
fully o�{shell t{matrix can be computed but we shall not make use of it in this contribution. Inverse scattering
theory was used to determine local, energy independent r{space NN potentials with the purpose to compare
them as on{shell equivalent to the genuine Paris and Bonn{R momentum dependent potentials [14].

Some well known expressions are used for discussions. The half o�{shell t-matrix
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A convenient measure of the half o�{shell continuation is the Kowalski{Noyes f{ratio

f`(p; k; e) =
t`(p; k; e)

t`(k; k; e)
:

In-Medium Full{Folding Optical Potential

The OMP is formulated as an antisymmetrized convolution of an e�ective interaction with the target ground
state. The target is described within a shell model which is �tted to reproduce elastic electron scattering charge
form factors and other structure relevant properties. For nuclei o� the stability line or in an excited state
one relies on theoretical predictions. The nuclear matter approach identi�es the reaction matrix as e�ective
interaction with the implication that this reduces at higher energies to the t{matrix. The results and conclusions
of a most complete calculation is reproduced next [12].

A calculable expression for the optical potential in medium emerges after a systematic reduction of the many
body propagator when represented in terms of the target ground state spectral function [15]. To lowest order
in a series expansion of the two-body propagator in a �nite nucleus, this interaction can be identi�ed with the
g{matrix solution of the Brueckner-Bethe-Goldstone equation for interacting nucleons in in�nite nuclear matter
and evaluated at nuclear density �(R) in the nucleus. This interaction retains nuclear medium correlations
associated with the nuclear mean �elds and Pauli blocking. The in-medium full{folding optical potential then
reads

U(~k 0; ~k;E) =
4

(2�)3

Z
d~R ei~q�

~R�(R)
1

�̂(R)

Z
d~P

� �[k̂(R)� P ]
D
1
2
( ~K � ~P � ~q)

���g
~K+~P

(E + � ; ~R )
��� 12 ( ~K � ~P + ~q)

E
A
; (9)

with the de�nitions
~K = 1

2
(~k + ~k 0) ; ~q = ~k � ~k 0 : (10)

Thus, the optical potential requires the calculation of g{matrices o�{shell as their relative momenta obey
no constraints apart from those imposed by the ground state mixed density of the target. Furthermore, no
assumptions are introduced on the nature of the momentum dependence of the optical potential, thus retaining
all non localities arising from the genuine momentum dependence of the NN e�ective interaction. Actual
calculations involve determining g{matrices at several densities and over a wide range of total CM momenta,
features fully accounted for in [12]. In Fig. 2 we show some o�{shell t{ and g{matrices for several potentials.
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Figure 2: 1S0 diagonal t{ (left) and g{ (right) matrices at ! = 30 MeV (top) and ! = 200 MeV (bottom). We
show results for the SM94 inversion potential (full line), the original Paris potential (dotted) and the Par1.3
inversion potential (dashed).

In the context of a medium independent internucleon interaction, as when the free t{matrix is used to
represent the NN e�ective interaction, the integral over the spatial coordinate can be performed separately from
the motion of the target nucleons. Using the mixed density one recovers the expression for the full{folding
optical potential in the zero density approximation [16], namely U(~k 0; ~k;E) ! Uo(~k

0; ~k;E), where
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E
A
: (11)

The dependence of the optical potential on o�{shell t{matrices becomes explicit in the above expression.
The feasibility of the full{folding model to investigate particular signatures of the e�ective interaction o�{shell
will depend on the sensitivity of NA scattering observables to the use of t{matrices with manifestly distinctive
behaviors o�{shell. An important constraint for such study is that the e�ective interactions, t{matrices in this
limit, agree on{shell. To the extent this constraint is met one can attain the di�erences in the NA scattering
observables to the di�erences of the interactions o�{shell.

A simple kinematical e�ect usually overlooked, but explicitly accounted for in these calculations, is that the
full{folding approach calls for matrix elements of energy E + � in the laboratory frame. In the limit of the free
t{matrix for the NN interactions, the energy of the interacting pair in its CM is given by E + �� 1

4m
( ~K + ~P )2.

Therefore, the maximum energy of the pair in its CM is E+ �, the energy of the beam plus the average binding
energy of the target nucleons. In the case of optical potentials for nucleons at 500 MeV, for instance, t{matrices
of up to �1 GeV in the laboratory frame are required. This more demanding sampling of the NN e�ective
interaction is a result of the unconstrained kinematics allowed by the Fermi motion of the nucleons in the
nucleus.

A few comments are pertinent regarding further approximations in the treatment of the t{matrix and which
limit an assessment of the o�{shell behavior of the NN interaction in NA scattering. A simplifying assumption,
commonly used in alternative full{folding calculations [17, 18], is that the t{matrix varies very weakly with

respect to the NN CM momentum ~K + ~P . Thus, the magnitude of this momentum is �xed to the (asymptotic)
on{shell value of the incoming projectile, Ko, and the t{matrix is approximated by

t
~K+~P

(!) � t
~Ko
(!) : (12)

Thus, t{matrices are evaluated at a �xed energy equal, in the NN CM, to one{half the energy of the beam.
Here one has neglected all e�ects associated with the Fermi motion in the NN CM momentum dependence. The
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Figure 3: 40Ca(p,p) at 40 MeV (left) and 200 MeV (right), taken from [12]. The genuine Paris Potential (dashed
line), Paris inversion potential (solid line). In the cross section the two results are hardly to distinguish.

resulting full{folding calculations sample the t{matrix o�{shell through the dependence on ~P in the relative
momenta exclusively. This approximation seems adequate at beam energies near 300 MeV. Its application at
lower or higher energies, however, needs further considerations as the NN t{matrix exhibits a sizable NN CM
momentum dependence [19]. In the low energy region, apart from the fact that medium e�ects need to be
incorporated in the model, the underlying kinematics prescribed by the full{folding leads to the sampling of
the t{matrix in regions where it varies signi�cantly as the low energy behavior of the interactions becomes
dominant. In the high energy regime, in turn, di�culties arise from the opening of inelastic channels such as
those associated with pion production or ��resonances. The actual merit of the theory of the optical potential
needs to be assessed with a consistent incorporation of such additional degrees of freedom.

Calculations of di�erential cross sections and analysing powers were made for proton elastic scattering for
40Ca for 40 to 500 MeV. In Fig. 3 we compare results of the genuine Paris potential (dashed line) to a calculation
using the phase equivalent inversion potential (full line). Using the inversion potentials based on SM94 does
not alter this result. This con�rms the high quality of the Paris potential at low energies. For both energies
the di�erences are surprisingly small, which leads to the conclusion that OMPs are insensitive to given o�{shell
di�erences. The di�erence between theory and experiment at 40 MeV is not understood. In Fig. 4 we compare
the calculation using the Paris potential with the results using the SM94 inversion potential (full line). At
higher energies these calculations show that the use of the best available on-shell potentials is mandatory for
the optical model.

Parametrization Scheme for E�ective Interactions

We are making here reference to an algorithm which has been developed for the representation of t{ and g{
matrix elements [20] for its use in the program DWBA91 by J. Raynal [21]. This program is a completely
restructured form of the well known antisymmetrized DWBA program by Schaefer and Raynal [22] and it
includes now a fully consistent treatment of the elastic channel OMP and the transition operator using the
same density dependent e�ective interaction. The OMP in r{space is fully antisymmetrized and the nonlocal
OMP is numerically solved as integro{di�erential equation.

The input of DWBA91 requires the e�ective interaction to be a local operator in relative coordinates whose
plane wave matrix elements optimally reproduce on{ and o�{shell g{matrix elements. As linear combination
of operators we distinguish central, tensor, spin{orbit, quadratic spin{orbit and `2 terms. This decomposition

5



Figure 4: 40Ca(p,p) at 400 MeV (left) and 500 MeV (right), taken from [12]. Paris inversion potential (dashed
line), SM94 inversion potential (solid line).

is an extension of the traditional form used in inelastic NA scattering. The problem of interest is to match on{
and o�{shell matrix elements in accordance with DWBA91 input requirements

ge�� (q; k;E(k)) :=

5X
�=1

n(�)X
i=1

hq�jO�(�i)jk�iV�;i(E); � = (L0LJST ) (13)

with

O�(�i) =
n
PS ; ~L � ~S; S12; L2; (~L � ~S)2

o e��ir
r

PT : (14)

Ranges and strengths are �2 �tted using all partial waves J � 4 and using several hundred points of a discrete
q; k mesh.

~g e�(�; V (E); q; k;E(k)) � ~g(q; k;E(k))!�(q; k);
~g := (g�1(q1; k1); : : : ; g�l(qm; kn)) (15)

We are using SVD methods for minimizing the Euclidian norm with respect to strengths V�;i(E). Ranges �i
were �xed a priori in the search. Results of this parametrization have been successfully used in (pp
) and (np
)
Bremsstrahlung calculations [23].

NN{Potentials from Inverse Scattering and Boson{Exchange

Contrary to a derivation of NN potentials from a dynamical model, quantum inversion translates experimental
phase shifts directly into a potential with the assumption of a radial Schr�odiger equation as equation of motion
for each partial wave. We have developed such inversion algorithm for single and coupled channel NN systems
as well as for meson{nucleon and meson{meson scattering potentials [24, 9]. Inversion potentials reproduce, by
dint of its construction, the input phase shifts with a local energy independent (but channel dependent) r-space
potential. Such potentials have the advantage of extreme simplicity as compared with the meson exchange
potentials which are generally nonlocal in q{ as well as in r{space. It has been the goal of several recent
investigations to �nd de�ciencies of inversion potentials in comparison with meson exchange potentials with the
purpose to �nd unique substructure e�ects. OMP calculations are one of the corner stones in this endeavour to
see di�erences in microscopic optical model potentials which use either the meson theoretical Paris potentials
with its explicit momentum dependence or the inversion potentials to the Paris potential phase shifts. Inversion
guarantees only an exact on{shell equivalence of the two body t{matrix, but not of the g{matrix.
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As fundamental equation of motion enters the radial Schr�odinger equation for the two particle system�
� d2

dr2
+
`(`+ 1)

r2
+
2�(E)

�h2
V`(r)

�
�`(r; k) = k2�(r; k); (16)

with the local potential V`(r) determined from the asymptotic phase shifts

lim
r!1

�(r; k) = exp(i�`(k)) sin(kr �
`�

2
+ �`(k)): (17)

This problem is solved with the Gelfand{Levitan{Marchenko integral equations for single and coupled channels.
The results are the same for Gelfand{Levitan and Marchenko equations but the numerical part contains di�erent
hurdles. The Marchenko approach is given in its salient features.

In the Marchenko inversion enter the experimental data as S{matrix

S`(k) = exp 2i�`(k) (18)

for each partial wave. An input kernel is evaluated from this data

F`(r; t) := � 1

2�

Z 1

�1

h+` (rk)[S`(k)� 1]h+` (tk) dk: (19)

The Marchenko fundamental equation

A`(r; t) + F`(r; t) +

Z 1

r

K(r; s)F (s; t) ds = 0 (20)

yields with the solution kernel A`(r; t) the potential

V`(r) = �2 d
dr
A`(r; r): (21)

This algorithm applies in matrix form to coupled system of equations. The Gelfand{Levitan fundamental
equations are using di�erent boundary conditions and thus an input kernel which is calculated from the Jost{
functions. The algorithm applies for all systems which can be cast into the form of a Sturm{Liouville equation
which happily coincides directly with the radial Schroedinger equation.

We have calculated inversion potentials for many available phase shifts. The most reliable phase shift
analyses are done at VPI by Arndt et al. [25] with a semiannual update and from Nijmegen whose results are
used as PWA93 [8]. In Fig. 5 are given the inversion potential results from VZ40 (likely) the best available
phase shift analysis below pion threshold. Other results, shown in the oral presentation, from PWA93 and FA96
can be obtained from the server [26] by anonymous ftp. The potentials reproduce the input phase shifts with a
numerical error � 0:02 degrees. It is obvious that the inversion approach implies the possibility to continue the
on{shell t{matrix into the o�{shell domain by inserting the inversion potentials into the Lippmann{Schwinger
equation or Brueckner{Bethe{Goldstone equation. This is the most important result of inversion in contexts
of OMP. Di�erences of o�{shell continuations were shown in Fig. 2. In a comparison of our investigation of
on{shell equivalent potentials we summarized the results in Figs. 3 and 4 and came to the conclusion that
o�{shell di�erences cannot be discerned from elastic NA scattering cross sections and spin observables. The
need of NN potentials, which reproduce precisely the on{shell data, is necessary. An example to the later claim
is given in Fig. 4. For energies below 200 MeV we con�rm equivalence between the Paris, Bonn{B and inversion
potentials from PWA93, SM95, VZ40 and VV40.

The quest for o�{shell e�ects was reason enough to continue investigations with boson{exchange models.
Some results of this solitary boson exchange model (OSBEP) are now available [7] and comparison with NN
data are very encouraging. The purpose is to show that the description of NN data provided by OSBEP is
comparable to Bonn{B, which is analogous in construction. As an important di�erence between OSBEP and
Bonn{B, the empirical form factors used in the Bonn potential are not needed in OSBEP. This is achieved by
applying a nonlinear dynamical model for the meson �elds which tries to parameterize possible e�ects from
QCD. In this context, an empirical scaling law is found to relate all meson parameters to the pion mass and
self{interaction coupling constant. Thus, OSBEP is free of phenomenological form factors and the scaling law
reduces the number of parameters with respect to the Bonn potential without de�ciencies in the description of
data.
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Figure 5: Arndt VZ40 phase shifts and inversion potentials.
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Figure 6: Observables of np scattering (top) and pp scattering (bottom) from OSBEP. Kinetic laboratory energy
is denoted, experimental data taken from [25]. We show theoretical predictions from OSBEP (full) and Bonn{B
(dotted).

Motivated by chiral invariant meson{baryon Lagrangians and spontaneous symmetry breaking, we use a
Lagrangian

L� =
1

2

�
@�@

��2 �m2�2
�� �1

2p+ 2
�2p+2 � �2

4p+ 2
�4p+2 + Lint; (22)

in which � stands for the meson �elds and Lint accounts for the interaction with nucleons and other �elds.
The nonlinearity is of utmost importance. The decoupled single meson �elds satisfy a nonlinear Klein{Gordon
equation (KGE)

@�@
��+m2� + �1�

2p+1�2�
4p+1 = 0: (23)

This equation can be solved analytically by using the ansatz � = �('), where ' is a wave solution of the linear
KGE

'(x; k) =
1p

2!kV Dk

a(k) e�ikx and 'y(x; k) =
1p

2!kV Dk

ay(k) eikx; (24)

where V is the volume of the system and Dk is a momentum dependent Lorentz{invariant function which is
later used to guarantee �nite self{scattering amplitudes. This substitution reduces (23) to an ordinary nonlinear
di�erential equation which permits direct integration. The solutions are expressed as a power series in terms of
' and Gegenbauer polynomials

�(') =

1X
n=0

C1=2p
n (w) bn '2pn+1; (25)

with

b =

(�
�1

4(p+ 1)m2

�2
� �2

4(2p+ 1)m2

) 1
2

and w =
1

b

�1

4(p+ 1)m2
:

These particular solutions �(') are solitary meson �elds. In contrast to conventional models, the OSBEP uses
the solitary meson states (25) instead of asymptotic free in{ and out{states to de�ne the propagator function.
This yields the solitary meson propagator which in momentum space has the form

iP (k2;m) =
X
n

�
C

1
2p

n (w)

�2
(mp�)2n

(2pn+ 1)2pn�2

D
2pn+1
k

�
~k 2 +M2

n

�pn i�F (k;Mn); (26)

9



where � = b=(2mV )p, Mn = (2pn+ 1)m and i�F (k
2;m) denotes the Feynman propagator. The normalization

Dk now is �xed to guarantee �nite self{energy diagrams. It turns out, that this is also su�cient to regularize the
NN scattering equation and thus no form factor is needed when the solitary meson propagator is used instead of
the conventional Feynman propagator in a boson exchange potential. Additionally, the self{interaction coupling
constants �� (� = �, �, �, !, �0, �1, �) of the various mesons used in the boson exchange model obey the
scaling relation

��(m�) =
p
� � ��

�
m�

m�

�p

; (27)

where � = 1 for pseudoscalar and scalar mesons and � = 2 for vector mesons. Therefore, the pion self{interaction
coupling constant �� is the only parameter to describe the meson dynamics. Together with the meson{nucleon
coupling constants, the OSBEP thus contains a total number of nine parameters. The �NN coupling constant is
set to the value g�NN=4� = 13:7 suggested by Arndt [4], the remaining parameters are adjusted to �t NN phase
shifts and deuteron properties. Finally, observables of np as well as pp scattering are obtained which agree very
well with experimental data. The description of NN data by the OSBEP seems to be indeed comparable to the
Bonn{B potential, see Fig. 6.

This model uses all mesons with a mass below 1 GeV and this includes the �{meson with a mass � 500
MeV. We see in the �{meson the best candidate for a fragile object which can easily be altered in its properties
by external �elds and generate an e�ective pion mass. Ultimately, it is intended to include the correlated two
pion exchange with full dynamics in OSBEP but this seems still far from realization. Some auxiliary studies
with inversion methods, applied to elastic �� scattering in the L=0 and T=0 and 2 channels, are discussed
next.

The �� System and �{Meson

Medium e�ects from meson and boson exchange models are related to restoration mechanisms of the broken
ciral symmetry in nuclear matter. This e�ect is less well established than medium modi�cations due to Pauli
blocking and mean �elds. This �eld of research is presently in the center of di�erent theoretical lines of thought
and some of them are found in [3].

It is beyond any doubt that the correlated two pion exchange mechanism is important for the attractive
medium range NN potential. We use our inversion algorithms [24] and generate an inversion potential for �N P33
scattering with the purpose to generate a potential which supports the �(1232){resonance. The result is shown
in Fig. 7 (top) with the reproduced phase shifts and the hadronic interaction. Aspects of these potentials have
been discussed at the Balaton conference [24]. One should draw the attention upon the short range potential
barrier. A calculation for the ��, S=0, T=0 and 2 channels yields results shown in Fig. 7 (bottom). V 2

0 is
a repulsive potential without any resonance support. The V 0

0 potential has a short range barrier which can
support a resonance in the attractive pocket. It has been claimed that this is a resonance with a width of � 500
MeV. The �00 phase shift in this channel changes very smoothly, not like what is expected from a resonance,
compare the �P33 resonance in Fig. 7. Meson exchange models are very speci�c about the �0 � 500 MeV mass.
We investigated the phase shifts with respect to small changes of the pion mass. In Fig. 8 (left) results are
shown for the �20 and �00 phase changes. The mass changes are typically 2.5% progressing from a{d, where b
represents a calculation using the correct �+ mass. These small changes simulate medium modi�cations of the
pion mass. The changes do not a�ect the �20 phase but alter �

0
0 drastically. This latter result was not expected.

In another calculation we �x the total energy, M�� = 500 MeV and vary the pion mass between 130{150 MeV
(2� = m�). The results are shown in Fig. 8 (right) for the �

0
0 phase variation. It implies a resonance feature due

to an e�ective mass of m�� 2 MeV. This high sensitivity of the two{pion system may be an important medium
e�ect which requires a more detailed study. We are concentrating our e�orts upon this mechanism within the
nonlinear boson exchange model but there exist several other theoretical approaches and experiments helping
to ascertain the proposed medium e�ect.
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Figure 7: Quantum inversion of the �N (top) and �� system (bottom) with their respective potentials.

Figure 8: Study of the �� s{wave scattering phase shifts with regards to small variations of the pion mass. The
inversion potentials of Fig. 7 (bottom) are used. The right side shows the phase variation as a function of the
pion mass for M�� = 500 MeV.

11



References

[1] H. Feshbach, Theoretical nuclear physics: nuclear reactions, Wiley (1992)

[2] L. Ray, G.W. Ho�mann and W.R. Coker, Phys. Rep. 212, 223 (1992)

[3] R. Rapp, J.W. Durso and J. Wambach, LANL e{print nucl{th/9611019; G. Chanfray, LANL e{print
nucl{th/9607051

[4] W.G. Love and M.A. Franey, Phys. Rev. C24, 1071 (1981), and M.A. Franey and W.G. Love, Phys.Rev.
C31,488 (1985)

[5] M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Côt�e, P. Pir�es and R. de Tourreil, Phys.Rev.
C21, 861 (1980).

[6] R. Machleidt, K. Holinde and Ch. Elster, Phys.Rep. 149, 1 (1987), R. Machleidt, in Advances in Nuclear

Physics 19 , (Eds.) J.W. Negele and E. Vogt, Plenum (1989), R. Machleidt and G.Q. Li, Phys. Rep. 242,
5 (1994)

[7] L. J�ade and H.V. von Geramb, Phys. Rev. C to appear 1/1997

[8] V.G.J. Stocks, R.A.M. Klomp, C.P.F. Terheggen and J.J. de Swart, Phys.Rev. C49, 2950 (1994), and
cited references

[9] H.V. von Geramb and H. Kohlho�, in Quantum inversion theory and applications, Lecture Notes in
Physics 427, Springer (1994), and related material Hamburg (1985{96)

[10] J.P. Jeukenne, A. Lejeune and C. Mahaux, Phys. Rep. C25, 83 (1976), and C. Mahaux Nucl. Phys.
A396, 9c (1983)

[11] W. Gl�ockle et al, in Few{Body Problems in Physics '95, Few Body Systems Suppl. 8, Springer (1996)

[12] H.F. Arellano, F.A. Brieva, M. Sander and H.V. von Geramb, Phys. Rev. C54, 2570 (1996)

[13] J.M.J. van Leeuwen and A.S. Reiner, Physica 27, 99 (1961), and M.G. Fuda and J.S. Whiting, Phys.
Rev. C8, 1255 (1973)

[14] H.V.v.Geramb and K.A.Amos, Phys. Rev. C41 1384 (1990), and M. Jetter, H. Freitag and H.V. von
Geramb, Physica Scripta 48, 229 (1993)

[15] H.F. Arellano, F.A. Brieva and W.G. Love, Phys. Rev. C52, 301 (1995).

[16] H.F. Arellano, F.A. Brieva and W.G. Love, Phys. Rev. C41, 2188 (1990).

[17] Ch. Elster, T. Cheon, E.F. Redish and P.C. Tandy, Phys. Rev. C41, 814 (1990).

[18] R. Crespo, R.C. Johnson and J.A. Tostevin, Phys. Rev. C41, 2257 (1990).

[19] H.F. Arellano, F.A. Brieva and W.G. Love, Phys. Rev. C50, 2480 (1994).

[20] H.V.v.Geramb, K.A.Amos, L.Berge, S.Br�autigam, H.Kohlho�, A.Ingemarsson, Phys. Rev. C44 (1991)
73

[21] J. Raynal, DWBA91, Saclay (1991)

[22] R. Schaefer and J. Raynal, DWBA70, Saclay (1970)

[23] M. Jetter, thesis, Hamburg (1993), and Phys. Rev. C49, 1832 (1994)

[24] M. Sander, thesis, Hamburg (1996); L. J�ade, M. Sander and H.V. von Geramb, LANL e{print server
nucl{th/9609054; M. Sander and H.V. von Geramb, LANL e{print server nucl{th/9611001

[25] R.A. Arndt, SAID, Virginia Polytechnic Institute, and R. A. Arndt, I. I. Strakovsky and R. L. Workman,
Phys. Rev. C50, 2731 (1994).

[26] Log into i04ktha.desy.de as user anonymous

12


