The presence of several barriers serving complementary safety functions enhances confidence that radioactive waste placed in deep geological repositories will be adequately isolated and contained to protect human health and the environment. The barriers include the natural geological barrier and the engineered barrier system (EBS). The EBS itself may comprise a variety of sub-systems or components, such as the waste form, container, buffer, backfill, seals and plugs. Given the importance of this subject, the Integration Group for the Safety Case (IGSC) of the OECD Nuclear Energy Agency (NEA) sponsored a series of workshops with the European Commission to develop greater understanding of how to achieve the necessary integration for the successful design, testing, modelling and performance assessment of EBS for deep underground disposal of radioactive waste.
These proceedings present the main findings from, and the papers delivered at, the fourth NEA-EC workshop on EBS, which took place in Tokyo, Japan, in September 2006. This final workshop of the series focused on strategies and methods to demonstrate that EBS designs will fulfil the relevant requirements for long-term safety, engineering feasibility and quality assurance. The workshop highlighted that large-scale experiments have confirmed the feasibility of techniques for manufacturing and installing engineered components in disposal systems and have also provided valuable lessons to improve designs and refine practical aspects to construct and implement EBS.