ID 12
Type H - High priority request
Target 92-U-235
Reaction (n,g)
Quantity SIG - Cross section RP - Cross section resonance parameters
Incident energy 100 eV - 1 MeV
Accuracy 3 %
Field(s) Fission
Subfield FBR, Thermal reactors
Accepted date 06-Nov-2007
Status Archived
Latest review date 25-Jun-2018


Dr Yasunobu NAGAYA at JAEA, JPN

Project (context)

JENDL, NEA WPEC Subgroup 29


U-235 cross sections are very important not only for major thermal reactors but for FBRs because lots of critical experiments for FBRs have been performed at critical assemblies where UO2 fuels are used as driver fuels. Experimental data obtained at such critical assemblies have a great impact on design work for FBRs. Recent studies show that calculated sodium void reactivity worths for BFS experiments underestimate the experimental results by 30-50% [1].
The significant discrepancies not only exceed the target accuracy of 20% for a FBR design but also deteriorate the design accuracy estimated with the cross-section adjustment and bias factor techniques. Thus such experimental data cannot be employed in these techniques.


The requested accuracies (relative one standard deviation) are given for energy-averaged cross sections as follows:
Energy interval and accuracy
100eV - 500eV: 5%
500eV - 1keV: 5%
1keV -2.25keV: 5%
2.25keV- 5keV: 8%
5keV - 10keV: 8%
10keV - 20keV: 8%
20keV - 30keV: 8%
30keV - 40keV: 3%
40keV - 90keV: 3%
90keV -200keV: 3%
200keV-400keV: 3%
400keV-900keV: 3%
900keV - 1MeV: 3%
(It is assumed that the resolved resonance region is below 2.25 keV and the unresolved resonance region is between 2.25 keV and 30 keV. The boundaries for the resonance regions are the same as for JENDL-3.3.)

Justification document

Reference 1: first attached document, O. Iwamoto, "WPEC Subgroup Proposal" JAEA, March 9 (2007).
Reference 2: second attached document, viewgraph for Dr. Iwamoto's proposal at the 19th WPEC meeting.

Comment from requester

The re-evaluation of U-235 cross sections has been already proposed at the 19th WPEC meeting on 18 - 20 April 2007, at the NEA Headquarters, Issy-les-Moulineaux, France.

Review comment

The proposal seems well motivated. Concerns were expressed in view of the recent changes to the evaluation that emerged from the activities of NEA/WPEC Subgroup 22 "Nuclear Data for Improved LEU-LWR Reactivity Predictions" and ENDF/B-VII benchmarking. The wider impact that new evaluations of U-235 will have, should be considered and duly accounted for by new efforts. Although, the sensitivity of the cross section for the target application is well argued, the documentation does not reveal if the problem must be uniquely attributed to the capture cross section of U-235 in the specified energy range.

Entry status

Work in progress (as of SG-C review of May 2018)
Completed (as of SG-C review of June 2019) - The request was related to an issue in the keV region identified by the JENDL project in the early 2000's. Some preliminary evaluation work was performed in the framework of WPEC/SG29 [Iwamoto:2011]. The new measurements performed at LANSCE [Jandel:2012], RPI [Danon:2017] and n_TOF [Balibrea:2017] have been used in the CIELO evaluation [Capote:2018]. The issue is now solved in all major libraries (JENDL-4.0, JEFF-3.3, ENDF/B-VIII.0).

Main recent references

Please report any missing information to hprlinfo@oecd-nea.org


  • M. Jandel et al., New Precision Measurements of the 235U(n,g) Cross Section, PRL 109 (2012) 202506, EXFOR 14149
  • A. Wallner et al., Novel Method to Study Neutron Capture of 235U and 238U Simultaneously at keV Energies, Phys. Rev. Lett. 112 (2014) 192501, EXFOR 23170
  • J. Balibrea et al., Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on Micromegas detectors, NDS 119 (2014) 10
  • Y. Danon, et al., Simultaneous measurement of 235U fission and capture cross sections from 0.01 eV to 3 keV using a gamma multiplicity detector, Nucl. Sci. and Eng. 187 (2017) 191
  • J. Balibrea et al., Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n TOF total absorption calorimeter and a fission tagging based on micromegas detectors, EPJ Conferences 146 (2017) 11021


  • R. Capote et al., IAEA CIELO Evaluation of Neutron-induced Reactions on 235U and 238U Targets, NDS 148 (2018) 254


  • O. Iwamoto et al., Uranium-235 Capture Cross-section in the keV to MeV Energy Region, International evaluation cooperation, Report NEA/WPEC-29, OECD NEA (2011)
  • M. Salvatores, et al., Methods and Issues for the Combined Use of Integral Experiments and Covariance Data: Results of a NEA International Collaborative Study, Nuclear Data Sheets 118 (2014) 38
  • G. Palmiotti, et al., Combined Use of Integral Experiments and Covariance Data, Nuclear Data Sheets 118 (2014) 596

Additional file(s)

  1. U235proposal - 250.15 KB PDF
  2. Viewgraph.U235proposal - 1.32 MB PDF