94-Pu-239(n,g)

ID 32
Type H - High priority request
Target 94-Pu-239
Reaction (n,g)
Quantity SIG - Cross section
Incident energy 0.1 eV - 1.35 MeV
Accuracy 1-11 %
Field(s) Fission
Subfield Fast Reactors (VHTR)
Accepted date 12-Sep-2008
Status Work in progress
Latest review date 28-Apr-2022

Requester

Prof. Massimo SALVATORES at CADARACHE, FR

Project (context)

NEA WPEC Subgroup 26

Impact

Design phases of selected reactor and fuel cycle concepts require improved data and methods in order to reduce margins for both economical and safety reasons. A first indicative nuclear data target accuracy assessment was made within WPEC Subgroup 26 (SG-26). The assessment indicated a list of nuclear data priorities for each of the systems considered (ABTR, SFR, EPR, GFR, LFR, ADMAB, VHTR, EPR). These nuclear data priorities should all be addressed to meet target accuracy requirements for the integral parameters characterizing those systems (see the accompanying requests originating from SG-26).

Requested accuracy is required to meet target accuracy for k-eff for all fast reactors and the VHTR. Requirements become more stringent when inelastic cross sections would be allowed less stringent target accuracies (eg for inelastic of 243Am, 238U, but also 239Pu) Details are provided in the OECD/NEA WPEC Subgroup 26 Final Report: "Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations" (link to WPEC Subgroup 26 Report in PDF format, 6 Mb ).

Accuracy

 

Energy Range Initial versus target uncertainties (%)
  Initial ABTR SFR EFR GFR LFR ADMAB VHTR
    λ=1 λ≠1,a λ≠1,b λ=1 λ≠1,a λ≠1,b λ=1 λ≠1,a λ=1 λ≠1,a λ=1 λ≠1,a λ=1 λ≠1,a λ=1 λ≠1,a
0.498 - 1.35 MeV 18 10 7 5 11 8 7 7 5     7 5 7 5    
183 - 498 keV 12 6 4 3 7 5 4 5 4     4 3 5 4    
67.4 - 183 keV 9 5 4 3 6 4 4 5 3 6 4 4 3 5 3    
24.8 - 67.4 keV 10 6 4 3 7 5 4 5 4 5 4 5 3 5 4    
9.12 - 24.8 keV 7 6 4 3 6 4 4 5 3 4 3 5 3 5 3    
2.03 - 9.12 keV 16 7 5 4 7 5 4 4 3 3 2 6 4 4 3    
0.10 - 0.54 eV 1.4                             0.8 0.7

 

Justification document

OECD/NEA WPEC Subgroup 26 Final Report: "Uncertainty and Target Accuracy Assessment for Innovative Systems Using Recent Covariance Data Evaluations" (link to WPEC Subgroup 26 Report in PDF format, 6 Mb ).

Comment from requester

Given the present state of knowledge the above target accuracies are very tight. However, any attempt that significantly contributes to reducing the present accuracy for this quantity is strongly encouraged. Any such attempt will significantly enhance the accuracy with which reactor integral parameters may be estimated and will therefore impact economic and safety margins.

Review comment

See appendix A of the attached report.

Entry status

Work in progress (as of SG-C review of May 2018)

Main recent references

Please report any missing information to hprlinfo@oecd-nea.org

Experiments

  • S. Mosby et al., Improved neutron capture cross section of Pu-239, PRC 89 (2014) 034610, EXFOR 14383
  • S. Mosby et al., 239Pu(n,g) from 10 eV to 1.3 MeV, NDS 148 (2018) 312
  • S. Mosby et al., Unifying measurement of 239Pu(n,g) in the keV to MeV energy regime, PRC 97 (2018) 041601
  • R. Perez Sanchez et al., Simultaneous Determination of Neutron-Induced Fission and Radiative Capture Cross Sections from Decay Probabilities Obtained with a Surrogate Reaction (to infer the neutron-induced fission and radiative capture cross sections of 239Pu), Phys. Rev. Lett. 125 (2020) 122502

Theory/Evaluation

Validation