

GENERATION-IV INTERNATIONAL FORUM RISK AND SAFETY WORKING GROUP ACTIVITIES IN SUPPORT OF NON-WATER-COOLED REACTORS

Tanju Sofu Risk and Safety Working Group

CACNEUFRJPZAKRRUGBUS

Generation-IV International Forum (GIF)

- Near term focus:
 - Strengthen the position of Generation-IV systems to have an impact on climate change
 - Support the transition from development to deployment and strengthen GIF's relevance for industry
- Design goals:
 - Sustainability
 - Long term fuel supply
 - Minimized waste and stewardship burden
 - Safety
 - Excellence in safety in reliability
 - Very low likelihood and degree of core damage
 - Economics
 - Improved life cycle cost advantage
 - Reduced financial risk
 - Proliferation resistance and physical protection
 - Unattractive materials diversion pathways
 - Enhanced physical protection

thermal spectum)

GIF Risk and Safety Working Group (RSWG)

- RSWG Mission:
 - Promote a consistent approach on safety/risk and regulatory issues between six Gen-IV systems
 - Establish safety principles, objectives, and attributes based on GIF safety goals to inform R&D plans
 - Maintain interfaces with IAEA, OECD/NEA (CNRA/CNSI), and other regulatory stakeholders on safety of advanced reactors

• Focus areas:

- Development of safety standards for specific advanced reactor designs
 - Participation in, and contributions to, IAEA's safety standards development
- Implementation of risk-informed approach as an overlay of technology-neutral Integrated Safety Assessment Methodology (ISAM)
- Establishing safety and safeguards/security interfaces in collaboration with GIF Proliferation Resistance and Physical Protection Working Group
- Development of methodologies for selection and treatment of "practically eliminated accidents" and mechanistic source term assessments

Safety Design Criteria and Guidelines for select Gen-IV Systems

- GIF RSWG collaborated with system steering committees for development of safety design criteria and guidelines
 - Requirements for design, fabrication/construction, inspection/testing, and operation of Generation-IV systems
 - Intended to fill the gap between the high-level GIF safety goals and the country-specific regulatory requirements
 - Criteria and guidelines maintain the structure of IAEA safety standards
- Accomplishments to date:

•

- Requirements for SFR, LFR, GFR, and VHTR systems are completed
- Two SFR safety design guidelines reports are also published
 - <u>https://www.gen-4.org/gif/jcms/c_9366/risk-safety</u>
 - https://www.gen-4.org/gif/jcms/c_93020/safety-design-criteria
- Published reports formally reviewed by NEA/WGSAR and IAEA's Nuclear Energy and Safety & Security Departments

RSWG "Basis of Safety Approach" for Gen-IV Reactors

https://www.gen-4.org/gif/jcms/c_178828/bsa-update-v4-clean

- Defense-in-depth as the foundation of Gen-IV safety approach to achieve safety-by-design (so that safety is "built-in," not "added on")
 - Reliance on inherent and passive safety principles with sufficient grace period for operator actions
 - Optimal risk-reduction to achieve robust and tolerant designs without cliff-edges
- Risk-informed approach based on deterministic and probabilistic insights over full range of plant states (including severe plant conditions) for both internal events and external hazards
 - Establish the role of plant equipment in prevention and mitigation at each layer of defense
 - Achieve a prevention/mitigation balance
 - Assure independence of safety design features at each layer of defense
 - Provide adequate design margins to address uncertainties
- Integrated Safety Assessment Methodology (ISAM) as a technology-neutral toolkit to support the design efforts, and to evaluate risk & safety

pertise | Collaboration | Excellence

Integrated Safety Assessment Methodology (ISAM)

- Qualitative Safety Review (QSR): A "check-list" approach for systematic review of design characteristics and requirements to ensure desired safety attributes as a preparatory step
- Phenomena Identification and Ranking (PIRT): Categorization and ranking of the phenomena in terms of their importance to safety and relevant state of knowledge to identify the gaps and need for additional research/testing
- Objective Provision Tree (OPT): A tool for identifying the provisions for prevention, or control and mitigation, of accidents that could potentially damage the reactor
 - As a complimentary step to PIRT for selecting the "Lines of Protection" against identified phenomena
 - Also, a preliminary step to PRA in preparation of event and fault trees
- Probabilistic Risk Assessments (PRA): A stochastic approach to assess risk by addressing the likelihood and consequence of event sequences to assure broader coverage of accident space
- Deterministic and Phenomenological Analyses (DPA): Traditional safety assessments for the system's response to anticipated operational occurrences, design basis accidents, and design extension conditions
 GEN (N International Forum

Back up pages

Integrated Safety Assessment Methodology (ISAM)

Risk-Informed Approach

 An iterative process, complementary to deterministic approach, for alternative searches of event sequences by examining both their probability and consequences to characterize risk

Design development/update

(OSR, PIRT, OPT)

PRA development/update to refine

the list of AOOs, DBAs, and DECs

Evaluate risk against frequency-consequence target