

Post-Test Calculation and Uncertainty Analysis of the Experiment QUENCH-07 with the System Code ATHLET-CD

H. Austregesilo, Ch. Bals, K.Trambauer

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Germany

Workshop on Evaluation of Uncertainties in Relation to Severe Accidents and Level 2 Probabilistic Safety Analysis

Aix-en-Provence, November 7-9, 2005

Topics

- Introduction:
 - Short description of the code ATHLET-CD
 - Short description of the QUENCH facility and of test QUENCH-07
- Post-Test Calculation of QUENCH-07
 - Input data
 - Main results of reference calculation
- Sensitivity analysis
 - Methodology
 - Main results
- Conclusions

ATHLET-CD

<u>Analysis of Thermal-Hydraulics of Leaks and Transients</u> with Core Degradation

- Mechanistic code for beyond design basis and severe accidents
- Assessment of accident management systems and procedures
- Simulation of processes in primary and secondary coolant systems:
 - Loss of coolant, core heat-up, degradation, melting, relocation
 - Release and transport of fission products and aerosols
 - Mechanical and thermal loads of reactor pressure vessel
- Calculation of source terms for containment analyses
- Status of development: core damage before gross relocation

ATHLET-CD: Main Modules (I)

- RCS Thermal-Hydraulics (ATHLET):
 - two-fluid modelling
 - additional balance equations for non-condensable gases
 - one-dimensional heat conduction within structures
 - control simulation module for the description of control, protection and balance-of-plant systems
- Core Degradation (ECORE):
 - simulation of fuel and control rods, as well as BWR core structures
 - mechanical fuel rod behaviour, including thermal expansion, ballooning and cladding rupture
 - cladding oxidation (parabolic rate equations)
 - melting and relocation of cladding Zircaloy, absorber rods and guide tubes, fuel and oxidized cladding

ATHLET-CD: Main Modules (II)

- Fission Products and Aerosol Release (FIPREM):
 - fission products release and diffusion inside the grain
 - up to 24 elements or release groups considered
- Fission Product and Aerosol Transport (SOPHAEROS):
 - deposition, transport and agglomeration processes
 - gas phase chemistry
- Heat-up and Melting within Debris Bed (MESOCO):
 - 2D balance equations with 3 components: particles, melt and gases

QUENCH test section and bundle cross section (FZKA 6412)

Main Features of Test QUENCH-07

- First experiment with a boron carbide absorber rod in the bundle
- Main objectives:
 - Determination of the impact of a B₄C absorber rod on a pre-oxidized LWR fuel rod bundle at high temperatures:
 - Impact of absorber rod failure on fuel rod degradation
 - Impact of absorber rod on bundle behaviour during cooldown
 - Information on gas generation after failure of absorber rod cladding and guide tube due to oxidation of B₄C, in particular additional H₂ generation and release of CO, CO₂, CH₄.
 - Additional heat-up due to the oxidation of B₄C and its contribution to the temperature escalation of fuel rods
 - Information on the B₄C stainless steel Zry interactions

Boundary conditions for QUENCH-07

Nodalization of QUENCH test section for ATHLET-CD

Input Data for ATHLET-CD

- Basis: standard data sets used for the calculation of previous QUENCH experiments, specially for QUENCH-06 (ISP-45)
- Modelling options as recommended in the code User's Manual, except calculation of Zr oxidation at temperatures above 1773K (correlation of Prater-Courtright instead of Urbanic-Heidrick)
- Steam/argon inlet temperatures:
 Temperatures measured by thermocouple T511 minus 100K
- External resistance per heated rod: 4 mΩ

Calculated and measured axial temperature profiles

Oxidation phase (t = 2700 s)

Start of transient phase (t = 3150 s)

Test section temperatures at elevation 950 mm

- code reproduces satisfactorily thermal behaviour of test bundle
- clad temperatures at the end of first heat-up phase are underestimated
- good agreement with respect to the start of temperature escalation due to oxidation
- code overestimates shroud temperature excursion due to oxidation at the final heat-up phase
- shroud failure was not reproduced by the code

Integral H₂ production

- good agreement up to start of oxidation escalation
- code strongly underestimates H₂ production during quench
- calculation did not consider:
- oxidation of external shroud surface
- oxidation of Mo-electrodes (about 22 g H₂)
- possible cracking of oxide layer due to thermal shock
- total amount of H₂ generation:

calc.: 92 g

exp.: 177 g

(130 g for simulated components)

> H₂ mass due to CR oxidation:

calc.: 8.7 g exp.: 8 g

Combined Sensitivity Analysis

- Application of some features of the GRS methodology for code uncertainty analyses:
 - Simultaneous variation of uncertain parameters
 - Statistical evaluation of the code results
 - Application of the Wilks formula:
 - number of code calculations independent of number of input and output parameters
 - number of code calculations only depends only on the desired statistical tolerance limits (e.g. for a two-sided statistical tolerance, a minimum of 93 calculations are required for a 95% probability and a 95% confidence level)
- Support software SUSA:
 - input of uncertain parameters and probability distributions
 - automatic generation of ATHLET-CD input data sets (total: 100)
 - statistical evaluation of code results

Input parameters for sensitivity analysis (I)

index	parameter	input data	unit	distribution	min. value	max. value	reference calculation	discrete options
1	External heater rod resistance	WHRES0	mΩ	uniform	3.6	4.4	4.0	
2	Deviation of steam inlet temperature to T511	DELTA	K	uniform	-80	-120	-100	
3	Factor for conductivity of shroud insulation	FSUSA1	-	uniform	0.8	1.2	1.0	
4	Factor for heat capacity of shroud insulation	FSUSA2	-	uniform	0.8	1.2	1.0	
5	Factor for conductivity of heater rods	FSUSA3	-	uniform	0.8	1.2	1.0	
6	Factor for heat capacity of heater rods	FSUSA4	-	uniform	0.8	1.2	1.0	
7	Factor for argon conductivity (top of shroud)	FSUSA5	-	uniform	0.5	2.0	1.0	
8	Nodalization at top of bundle	PAR08	-	discrete	1	3	1	1: node length 10 cm 2: node length 5cm 3: node length 3.3cm
9	Correlation for Zr oxidation	IOXMOD	-	discrete	15	19	15	15: Cathcart + Prater/Courtright 16: Cathcart + Urbanic/Heidrick 19:Leistikov + Prater/Courtright
10	Correlation for B ₄ C –SS interaction	IB4CSS	-	discrete	3	7	7	3:JAERI 5:Belovsky 7:Nagase

Input parameters for sensitivity analysis (II)

index	parameter	input data	unit	distribution	min. value	max. value	reference calculation	discrete options
11	Correlation for B ₄ C oxidation	ICRB4C	-	discrete	1	7	7	1:mod Steinbrück 5:Steinbrück 7:VERDI/BOX data
12	Factor for HTC due to convection to vapour	FSUSA6	-	uniform	0.8	1.2	1.0	
13	HTC to argon (jacket tube)	PAR13	W/m ² K	uniform	10	20	15	
14	HTC to air (containment)	PAR14	W/m ² K	uniform	5	20	10	
15	Limit of steam availability for oxidation red.	OXXLIM	-	log. uniform	0.1	0.5	0.1	
16	Limitation of protective oxide layer	HROXLM	mm	uniform	0.1	0.3	0.2	
17	Fraction of bundle area assigned to bypass flow	PAR17	1	uniform	0.01	0.1	0.05	
18	Gap conductivity in the heated rods	HTCGAP	W/m ² K	uniform	500	1500	500	
19	Emissivity of heated rods	EPS	-	normal $\sigma = 0.1$	0.6	1.0	0.8	
20	Factor for surface area due to porosity	FAREA	-	uniform	1.0	3.0	2.0	
21	Melt temperature of absorber guide tube	CRTAM	K	uniform	1423	1523	1473	

Cladding temperature of outer ring at elevation 950 mm

Uncertainty and Sensitivity Analysis of Test QUENCH 07 with ATHLET-CD 1.1L

Two-sided tolerance limits

Sample Size = 100, BETA = 0.95, GAMMA = 0.95

Total generated H₂ mass

Uncertainty and Sensitivity Analysis of Test QUENCH 07 with ATHLET-CD 1.1L

Two-sided tolerance limits

Sample Size = 100, BETA = 0.95, GAMMA = 0.95

Sensitivity Coefficients

Time point of temperature escalation

Total generated H₂ mass

Sensitivity coefficients of main uncertainty parameters

			Sensitivity coefficients					
Index	Description	Range of variation	Temperature escalation	Total H ₂ mass	H ₂ due to B ₄ C			
1	electrical resistance	± 10%	0.436	-0.322	-0.324			
3	conductivity of shroud insulation	± 20%	0.360	-0.304	-0.174			
5	conductivity of fuel pellets	± 20%	0.324	-0.093	-0.049			
7	Ar conductivity in top of shroud	± 50%	0.178	-0.261	-0.094			
8	nodalization upper part of bundle	3.3-10 cm	-0.095	0.139	0.215			
9	correlation for Zr oxidation	15,16,19	0.195	0.134	0.005			
11	correlation for B ₄ C oxidation	1,5,7	0.151	-0.051	-0.047			
12	HTC convection to cooling gas	± 20%	0.488	-0.453	-0.547			

Main findings of the sensitivity analysis (I)

- Main sources of code uncertainties:
 - convective heat transfer between cladding and steam-argon mixture
 - input value for the external electrical resistance (controls the actual power generated within rods)
 - input of material properties, mainly the thermal conductivity of test section components and cooling gases
- Non-prototypic aspects of the test facility have a considerable influence on code results
- Small variations of input parameters can affect considerably the good agreement between experiment and prediction obtained with the reference calculation

Main findings of the sensitivity analysis (II)

- Influence of chosen nodalization not so strong as expected a priori.
 Finer nodalization in the upper part of test bundle leads to:
 - increased cladding temperatures
 - earlier start of temperature escalation
 - higher hydrogen production
- Choice of correlations for Zr oxidation plays a secondary role on code uncertainties
- Main uncertainty parameters affect mostly the H₂ generation before cooldown. Their influence on H₂ production during quench is considerably reduced.
- Modelling of B₄C-SS interaction and B₄C oxidation does not affect significantly the calculated global thermal behaviour nor total H₂ production

Summary and Conclusions (I)

- Post-test calculation of QUENCH-07 showed a good overall agreement with experimental results concerning thermal-hydraulic behaviour of test bundle
- Combined sensitivity analysis provided additional information about the influence of several code input parameters and modelling options on the simulation of main phenomena observed experimentally
- Results indicate that the main experimental measurements lay within the uncertainty range of the calculated data, except for the increased hydrogen production after cooldown initiation:
 - Potential need for further modelling improvement

Summary and Conclusions (II)

- Main contributors to the uncertainty of code results:
 - heat transfer coefficient due to forced convection to steam/argon
 - thermal conductivity of shroud insulation
 - input value for the external heater rod resistance
- Uncertainties on modelling of B₄C oxidation do not affect significantly the total calculated H₂ release rates
- This study was a first step towards a more general application of the GRS uncertainty methodology for the simulation of severe accidents
- Further steps shall include similar analyses for in-pile experiments (e.g. PHÉBUS) and for the TMI-2 accident, in order to extend:
 - the range of phenomena covered by the simulation
 - the database needed for the determination of uncertainty parameters