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Foreword 

The NEA Data Bank was established to promote effective sharing of data and software developed 
in member countries in the field of nuclear technology and radiation physics applications.  
It operates a Computer Program Service (CPS) related to nuclear energy applications. The software 
library collects, compiles and verifies programs in an appropriate computer environment, ensuring 
that the computer program package is complete and adequately documented. Internationally 
agreed quality-assurance methods are used in the verification process. 

In order to obtain good results in modelling the behaviour of technological systems, two 
conditions must be fulfilled: 

1. Good quality and validated computer codes and associated basic data libraries should  
be used. 

2. Modelling should be performed by a qualified user of such codes. 

One subject to which special effort has been devoted in recent years is radiation transport. 
Workshops and training courses including the use of computer codes have been organised in the 
field of neutral particle transport for codes using both deterministic and stochastic methods. The 
area of charged particle transport, and in particular electron-photon transport, has received 
increased attention for a number of technological and medical applications. 

A new computer code was released to the NEA Data Bank for general distribution in 2001: 
“PENELOPE, A Code System for Monte Carlo Simulation of Electron and Photon Transport” 
developed by Francesc Salvat, José M. Fernández-Varea, Eduardo Acosta and Josep Sempau. A first 
workshop/tutorial was held at the NEA Data Bank in November 2001. This code began to be used 
very widely by radiation physicists, and users requested that a second PENELOPE workshop with 
hands-on training be organised. The NEA Nuclear Science Committee endorsed this request while 
the authors agreed to teach a course covering the physics behind the code and to demonstrate, 
with corresponding exercises, how it can be used for practical applications. Courses have been 
organised on a regular basis. New versions of the code have also been presented containing 
improved physics models and algorithms. 

These proceedings contain the corresponding manual and teaching notes of the  
PENELOPE-2011 workshop and training course, held on 4-7 July 2011 in Barcelona, Spain. 
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Abstract 
The computer code system PENELOPE (version 2011) performs Monte Carlo simulation of coupled 
electron-photon transport in arbitrary materials for a wide energy range, from a few hundred eV to 
about 1 GeV. Photon transport is simulated by means of the standard, detailed simulation scheme. 
Electron and positron histories are generated on the basis of a mixed procedure, which combines 
detailed simulation of hard events with condensed simulation of soft interactions. A geometry package 
called PENGEOM permits the generation of random electron-photon showers in material systems 
consisting of homogeneous bodies limited by quadric surfaces, i.e. planes, spheres, cylinders, etc. This 
report is intended not only to serve as a manual of the PENELOPE code system, but also to provide the 
user with the necessary information to understand the details of the Monte Carlo algorithm. 

Keywords: Radiation transport, electron-photon showers, Monte Carlo simulation, sampling algorithms, 
constructive quadric geometry 

Symbols and numerical values of constants frequently used in the text 
(Mohr and Taylor, 2005) 

Quantity Symbol Value 
Avogadro’s number NA 6.0221415 × 1023 mol–1 
Velocity of light in vacuum c 2.99792458 × 108 m s–1 

Reduced Planck’s constant  = h/(2π) 6.58211915 × 10–16 eV s 

Electron charge e 1.60217653 × 10–19 C 
Electron mass me 9.1093826 × 10–31 kg 
Electron rest energy mec2 510.998918 keV 
Classical electron radius re = e2/(mec2) 2.817940325 × 10–15 m 

Fine-structure constant α = e2/(c) 1/137.03599911 

Bohr radius a0 = 2/(mee2) 0.5291772108 × 10–10 m 

Hartree energy Eh = e2/a0 27.2113845 eV 

Revision date: 20 May 2011. 
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Preface 

Radiation transport in matter has been a subject of intense work since the beginning of the  
20th century. High-energy photons, electrons and positrons penetrating matter suffer multiple 
interactions by which energy is transferred to the atoms and molecules of the material and 
secondary particles are produced1

A reliable description of shower evolution is required in a number of fields. Thus, knowledge 
of radiation transport properties is needed for quantitative analysis in surface electron 
spectroscopies (Jablonski, 1987; Tofterup, 1986), positron surface spectroscopy (Schultz and Lynn, 
1988), electron microscopy (Reimer, 1985), electron energy loss spectroscopy (Reimer et al., 1992), 
electron probe microanalysis (Heinrich and Newbury, 1991), etc. Detailed information on shower 
evolution is also required for the design and quantitative use of radiation detectors (Titus, 1970; 
Berger and Seltzer, 1972). A field where radiation transport studies play an important sociological 
role is that of radiation dosimetry and radiotherapy (Andreo, 1991; Chetty et al., 2007). 

. By repeated interaction with the medium, a high-energy 
particle originates a cascade of particles which is usually referred to as a shower. In each 
interaction, the energy of the particle is reduced and further particles may be generated so that 
the evolution of the shower represents an effective degradation in energy. As time goes on, the 
initial energy is progressively deposited into the medium, while that remaining is shared by an 
increasingly larger number of particles. 

The study of radiation transport problems was initially attempted on the basis of the 
Boltzmann transport equation. However, this procedure comes up against considerable difficulties 
when applied to limited geometries, with the result that numerical methods based on the 
transport equation have only had certain success in simple geometries, mainly for unlimited and 
semi-infinite media (see, e.g., Zheng-Ming and Brahme, 1993). At the end of the 1950s, with the 
availability of computers, Monte Carlo simulation methods were developed as a powerful 
alternative to deal with transport problems. The evolution of an electron-photon shower is of a 
random nature, so that this is a process that is particularly amenable to Monte Carlo simulation. 
Detailed simulation, where all the interactions experienced by a particle are simulated in 
chronological succession, is exact, i.e., it yields the same results as the rigorous solution of the 
transport equation (apart from the inherent statistical uncertainties). 

To our knowledge, the first numerical Monte Carlo simulation of photon transport is that of 
Hayward and Hubbell (1954) who generated 67 photon histories using a desk calculator. The 
simulation of photon transport is straightforward since the mean number of events in each 
history is fairly small. Indeed, the photon is effectively absorbed after a single photoelectric or 
pair-production interaction or after a few Compton interactions (say, of the order of 10).  
With present-day computational facilities, detailed simulation of photon transport is a simple 
routine task. 

The simulation of electron and positron transport is much more difficult than that of 
photons. The main reason is that the average energy loss of an electron in a single interaction is 
very small (of the order of a few tens of eV). As a consequence, high energy electrons suffer a 
large number of interactions before being effectively absorbed in the medium. In practice, detailed 
simulation (interaction by interaction) is feasible only when the average number of collisions per 
track is not too large (say, up to a few hundred). Experimental situations which are amenable to 
detailed simulation are those involving either electron sources with low initial kinetic energies 

                                                           
1. In this report, the term particle will be used to designate either photons, electrons or positrons. 
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(up to about 100 keV) or special geometries such as electron beams impinging on thin foils.  
For larger initial energies, and thick geometries, the average number of collisions experienced  
by an electron until it is effectively stopped becomes very large, and detailed simulation is  
very inefficient. 

For high-energy electrons and positrons, most of the Monte Carlo codes currently available 
[e.g., ETRAN (Berger and Seltzer, 1988), ITS3 (Halbleib et al., 1992), EGS4 (Nelson et al., 1985), 
GEANT3 (Brun et al., 1986), EGSNRC (Kawrakow and Rogers, 2001), MCNP (X-5 Monte Carlo Team, 
2003), GEANT4 (Agostinelli et al., 2003; Allison et al., 2006), FLUKA (Ferrari et al., 2005), EGS5 
(Hirayama et al., 2005),…] have recourse to multiple-scattering theories, which allow the 
simulation of the global effect of a large number of events in a track segment of a given length 
(step). Following Berger (1963), these simulation procedures will be referred to as “condensed” 
Monte Carlo methods. The multiple-scattering theories implemented in condensed simulation 
algorithms are only approximate and may lead to systematic errors, which can be made evident 
by the dependence of the simulation results on the adopted step length (Bielajew and Rogers, 
1987). To analyse their magnitude, one can perform simulations of the same arrangement with 
different step lengths. The results are usually found to stabilise when the step length is reduced, 
while computation time increases rapidly, roughly in proportion to the inverse of the step length. 
Thus, for each particular problem, one must reach a certain compromise between available 
computer time and attainable accuracy. It is also worth noting that, owing to the nature of 
certain multiple-scattering theories and/or to the particular way they are implemented in the 
simulation code, the use of very short step lengths may introduce spurious effects in the 
simulation results. For instance, the multiple-elastic-scattering theory of Molière (1948), which is 
the model used in EGS4-based codes, is not applicable to step lengths shorter than a few times 
the mean free path for elastic collisions (see, e.g., Fernández-Varea et al., 1993b) and multiple 
elastic scattering has to be switched off when the step length becomes smaller than this value. 
As a consequence, stabilisation for short step lengths does not necessarily imply that simulation 
results are correct. Condensed schemes also have difficulties in generating particle tracks in the 
vicinity of an interface, i.e., a surface separating two media of different compositions. When the 
particle moves near an interface, the step length must be kept smaller than the minimum 
distance to the interface so as to make sure that the step is completely contained in the initial 
medium (Bielajew and Rogers, 1987). This may complicate the code considerably, even for 
relatively simple geometries. 

In the present report, we describe the 2011 version of PENELOPE, a Monte Carlo algorithm and 
computer code for the simulation of coupled electron-photon transport. The name is an acronym 
that stands for PENetration and Energy LOss of Positrons and Electrons (photon simulation was 
introduced later). The simulation algorithm is based on a scattering model that combines numerical 
databases with analytical cross section models for the different interaction mechanisms and is 
applicable to energies (kinetic energies in the case of electrons and positrons) from a few 
hundred eV to ~1 GeV. Photon transport is simulated by means of the conventional detailed 
method. The simulation of electron and positron transport is performed by means of a mixed 
procedure. Hard interactions, with scattering angle θ or energy loss W greater than pre-selected 
cut-off values θc and Wc, are simulated in detail. Soft interactions, with scattering angle or 
energy loss less than the corresponding cut-offs, are described by means of multiple-scattering 
approaches. This simulation scheme handles lateral displacements and interface crossing 
appropriately and provides a consistent description of energy straggling. The simulation is fairly 
stable under variations of the cut-offs θc,Wc and these can be made quite large, thus speeding up 
the calculation considerably, without altering the results. A characteristic feature of our code is 
that the most delicate parts of the simulation are handled internally; electrons, positrons and 
photons are simulated by calling the same subroutines. Thus, from the users’ point of view, 
PENELOPE makes the practical simulation of electrons and positrons as simple as that of 
photons (although simulating a charged particle may take a longer time). 

PENELOPE in its present form is the result of continued evolution from the first version, 
which was released in 1996. The present version incorporates significant changes and additions 
to the previous versions (1996, 2000, 01, 03, 05, 06, 08 and 10), which aim at improving both 



PREFACE 

PENELOPE-2011: A CODE SYSTEM FOR MONTE CARLO SIMULATION OF ELECTRON AND PHOTON TRANSPORT, © OECD 2011 xiii 

reliability and generality of the code system. As for the physics, the modelling of inelastic 
collisions has been improved by replacing the discrete optical-oscillator-strength of the 
Sternheimer-Liljequist model by a continuous distribution, which yields more realistic energy-loss 
spectra of electrons and positrons. PENELOPE now generates tables of radiative yields and photon 
number yields of electrons and positrons, to help defining range rejection strategies. A minor 
bug in the implementation of Bielajew’s alternate random hinge method has been corrected. The 
innermost parts of the geometry package PENGEOM have been re-written to reduce the effects of 
round-off errors. This was accomplished by considering fuzzy quadric surfaces, which swell or 
shrink slightly when a particle crosses them. The distribution package includes two examples of 
main programs: pencyl (for transport in cylindrical geometries), and penmain (for generic 
quadric geometries); minor bugs and inconsistencies in these programs have also been corrected. 

The present document is intended not only to serve as a manual of the simulation package, 
but also to provide the user with the necessary information to understand the details of the 
Monte Carlo algorithm. The first chapters of the report deal with the fundamentals of Monte Carlo 
simulation and physical interaction models. In Chapter 1 we give a brief survey of random 
sampling methods and an elementary introduction to Monte Carlo simulation of radiation 
transport. The cross sections adopted in PENELOPE to describe particle interactions, and the 
associated sampling techniques, are presented in Chapters 2 and 32

The PENELOPE package includes the Fortran source files, the database, various 
complementary tools, and the code documentation. It is distributed by the NEA Data Bank

. Chapter 4 is devoted to mixed 
simulation methods for electron and positron transport. Additional information on physical 
interaction models for electron and photon transport used in PENELOPE and other Monte Carlo 
codes, with references to relevant publications and data resources, can be found in Salvat and 
Fernández-Varea (2009). In Chapter 5 we introduce concepts and quantities of common use in 
radiation dosimetry, and we describe the Monte Carlo calculation of intermediate dosimetric 
quantities (linear energy absorption for electrons, photons and positrons). The latter are useful, 
e.g., to implement track length estimators for the absorbed dose. A relatively simple, but very 
effective, method to handle simulation in quadric geometries is presented in Chapter 6. The 
Fortran 77 simulation package PENELOPE, the example main programs, and other complementary 
tools are described in Chapter 7, which also provides instructions to operate them. Information 
on relativistic kinematics and numerical methods is given in Appendices A and B, respectively. 
Appendix C contains a detailed study of photon polarisation, described in terms of the density 
matrix and the Stokes parameters. Finally, Appendix D is devoted to simulation of electron/ 
positron transport under external, static electric and magnetic fields. 
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Chapter 1

Monte Carlo simulation. Basic
concepts

The name “Monte Carlo” was coined in the 1940s by scientists working on the nuclear-
weapon project in Los Alamos to designate a class of numerical methods based on the
use of random numbers. Nowadays, Monte Carlo methods are widely used to solve
complex physical and mathematical problems (James, 1980; Rubinstein, 1981; Kalos
and Whitlock, 1986), particularly those involving multiple independent variables where
more conventional numerical methods would demand formidable amounts of memory
and computer time. The book by Kalos and Whitlock (1986) gives a readable survey of
Monte Carlo techniques, including simple applications in radiation transport, statistical
physics and many-body quantum theory.

In Monte Carlo simulation of radiation transport, the history (track) of a particle is
viewed as a random sequence of free flights that end with an interaction event where
the particle changes its direction of movement, loses energy and, occasionally, produces
secondary particles. The Monte Carlo simulation of a given experimental arrangement
(e.g., an electron beam, coming from an accelerator and impinging on a water phantom)
consists of the numerical generation of random histories. To simulate these histories we
need an “interaction model”, i.e., a set of differential cross sections (DCS) for the rele-
vant interaction mechanisms. The DCSs determine the probability distribution functions
(PDF) of the random variables that characterise a track; 1) free path between successive
interaction events, 2) type of interaction taking place and 3) energy loss and angular
deflection in a particular event (and initial state of emitted secondary particles, if any).
Once these PDFs are known, random histories can be generated by using appropriate
sampling methods. If the number of generated histories is large enough, quantitative
information on the transport process may be obtained by simply averaging over the
simulated histories.

The Monte Carlo method yields the same information as the solution of the Boltz-
mann transport equation, with the same interaction model, but is easier to implement
(Berger, 1963). In particular, the simulation of radiation transport in complex geome-
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tries is straightforward, while even the simplest finite geometries (e.g., thin foils) are
very difficult to be dealt with by the transport equation. The main drawback of the
Monte Carlo method lies in its random nature: all the results are affected by statistical
uncertainties, which can be reduced at the expense of increasing the sampled popu-
lation and, hence, the computation time. Under special circumstances, the statistical
uncertainties may be lowered by using variance-reduction techniques (Rubinstein, 1981;
Bielajew and Rogers, 1988).

This Chapter contains a general introduction to Monte Carlo methods and their
application to radiation transport. We start with a brief review of basic concepts in
probability theory, which is followed by a description of generic random sampling meth-
ods and algorithms. In Section 1.3 we consider the calculation of multidimensional
integrals by Monte Carlo methods and we derive general formulas for the evaluation
of statistical uncertainties. In Section 1.4 we present the essentials of detailed Monte
Carlo algorithms for the simulation of radiation transport in matter. Sections 1.5 and
1.6 are devoted, respectively, to the evaluation of statistical uncertainties and to the use
of variance-reduction techniques in radiation transport studies.

1.1 Elements of probability theory

The essential characteristic of Monte Carlo simulation is the use of random numbers
and random variables. A random variable is a quantity that results from a repeatable
process and whose actual values (realisations) cannot be predicted with certainty. In
the real world, randomness originates either from uncontrolled factors (as occurs, e.g.,
in games of chance) or from the quantum nature of microscopic systems and processes
(e.g., nuclear disintegration and radiation interactions). As a familiar example, assume
that we throw two dice in a box; the sum of points on their upper faces is a discrete
random variable, which can take the values 2 to 12, while the distance x between the
dice is a continuous random variable, which varies between zero (dice in contact) and
a maximum value determined by the dimensions of the box. On a computer, random
variables are generated by means of numerical transformations of random numbers (see
below).

Let x be a continuous random variable that takes values in the interval xmin ≤ x ≤
xmax. To measure the likelihood of obtaining x in an interval (a,b) we use the probability
P{x|a < x < b}, defined as the ratio n/N of the number n of values of x that fall within
that interval and the total number N of generated x-values, in the limit N →∞. The
probability of obtaining x in a differential interval of length dx about x1 can be expressed
as

P{x|x1 < x < x1 + dx} = p(x1) dx, (1.1)

where p(x) is the PDF of x. Since 1) negative probabilities have no meaning and 2)
the obtained value of x must be somewhere in (xmin,xmax), the PDF must be definite
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positive and normalised to unity, i.e.,

p(x) ≥ 0 and

∫ xmax

xmin

p(x) dx = 1. (1.2)

Any “function” that satisfies these two conditions can be interpreted as a PDF. In Monte
Carlo simulation we shall frequently use the uniform distribution,

Uxmin,xmax(x) ≡

{
1/(xmax − xmin) if xmin ≤ x ≤ xmax,

0 otherwise,
(1.3)

which is discontinuous. The definition (1.2) also includes singular distributions such as
the Dirac delta, δ(x− x0), which is defined by the property

∫ b

a

f(x)δ(x− x0) dx =

{
f(x0) if a < x0 < b,

0 if x0 < a or x0 > b
(1.4)

for any function f(x) that is continuous at x0. An equivalent, more intuitive definition
is the following,

δ(x− x0) ≡ lim
∆→0

Ux0−∆,x0+∆(x), (1.4′)

which represents the delta distribution as the zero-width limit of a sequence of uniform
distributions centred at the point x0. Hence, the Dirac distribution describes a single-
valued discrete random variable (i.e., a constant). The PDF of a random variable x
that takes the discrete values x = x1, x2, . . . with point probabilities p1, p2, . . . can be
expressed as a mixture of delta distributions,

p(x) =
∑
i

pi δ(x− xi). (1.5)

Discrete distributions can thus be regarded as particular forms of continuous distribu-
tions.

Given a continuous random variable x, the cumulative distribution function of x is
defined by

P(x) ≡
∫ x

xmin

p(x′) dx′. (1.6)

This is a non-decreasing function of x that varies from P(xmin) = 0 to P(xmax) = 1. In
the case of a discrete PDF of the form (1.5), P(x) is a step function. Notice that the
probability P{x|a < x < b} of having x in the interval (a,b) is

P{x| a < x < b } =
∫ b

a

p(x) dx = P(b)− P(a), (1.7)

and that p(x) = dP(x)/dx.
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The n-th moment of p(x) is defined as

⟨xn⟩ ≡
∫ xmax

xmin

xn p(x) dx. (1.8)

The moment ⟨x0⟩ is simply the integral of p(x), which is equal to unity, by definition.
However, higher-order moments may or may not exist. An example of a PDF that has
no even-order moments is the Lorentz or Cauchy distribution,

pL(x) ≡
1

π

γ

γ2 + x2
, −∞ < x <∞. (1.9)

Its first moment, and other odd-order moments, can be assigned a finite value if they
are defined as the “principal value” of the integrals, e.g.,

⟨x⟩L = lim
a→∞

∫ +a

−a

x
1

π

γ

γ2 + x2
dx = 0. (1.10)

However, the second and higher even-order moments are infinite, irrespective of the way
they are defined.

The first moment, when it exists, is called the mean or expected value of the random
variable x,

⟨x⟩ =
∫
x p(x) dx. (1.11)

The expected value of a function f(x) is defined in a similar way,

⟨f(x)⟩ ≡
∫
f(x) p(x) dx. (1.12)

Since f(x) is a random variable, it has its own PDF, π(f), which is such that the
probability of having f in a certain interval of length df is equal to the probability of
having x in the corresponding interval or intervals1. Thus, if f(x) is a monotonically
increasing function of x (so that there is a one-to-one correspondence between the values
of x and f), p(x) dx = π(f) df and

π(f) = p(x) (df/dx)−1 . (1.13)

It can be shown that the definitions (1.11) and (1.12) are equivalent. If f(x) increases
monotonically with x, the proof is trivial: we can start from the definition (1.11) and
write

⟨f⟩ =
∫
f π(f) df =

∫
f(x) p(x) dx,

which agrees with (1.12). Notice that the expectation value is linear, i.e.,

⟨a1f1(x) + a2f2(x)⟩ = a1⟨f1(x)⟩+ a2⟨f2(x)⟩, (1.14)

1When f(x) does not increase or decrease monotonically with x, there may be multiple values of x
corresponding to a given value of f .
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where a1 and a2 are arbitrary real constants.

If the first and second moments of the PDF p(x) exist, we define the variance of x
[or of p(x)] by

var(x) ≡ ⟨(x− ⟨x⟩)2⟩ =
∫

(x− ⟨x⟩)2 p(x) dx = ⟨x2⟩ − ⟨x⟩2. (1.15)

The square root of the variance, σ ≡ [var(x)]1/2, is called the standard deviation (and
sometimes the standard uncertainty); it gives a measure of the dispersion of the random
variable (i.e., of the width of the PDF). The Dirac delta is the only PDF that has zero
variance. Similarly, the variance of a function f(x) is defined as

var{f(x)} = ⟨f 2(x)⟩ − ⟨f(x)⟩2. (1.16)

Thus, for a constant f(x) = a, ⟨f⟩ = a and var{f} = 0.

1.1.1 Two-dimensional random variables

Let us now consider the case of a two-dimensional random variable, (x, y). The corre-
sponding (joint) PDF p(x, y) satisfies the conditions

p(x, y) ≥ 0 and

∫
dx

∫
dy p(x, y) = 1. (1.17)

The marginal PDFs of x and y are defined as

q(x) ≡
∫
p(x, y) dy and q(y) ≡

∫
p(x, y) dx, (1.18)

i.e., q(x) is the probability of obtaining the value x and any value of y. The joint PDF
can be expressed as

p(x, y) = q(x) p(y|x) = q(y) p(x|y), (1.19)

where

p(x|y) = p(x, y)

q(y)
and p(y|x) = p(x, y)

q(x)
(1.20)

are the conditional PDFs of x and y, respectively. Notice that p(x|y) is the normalised
PDF of x for a fixed value of y.

The expectation value of a function f(x, y) is

⟨f(x, y)⟩ =
∫

dx

∫
dy f(x, y) p(x, y). (1.21)

The moments of the PDF are defined by

⟨xnym⟩ =
∫

dx

∫
dy xnym p(x, y). (1.22)
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In particular,

⟨xn⟩ =
∫

dx

∫
dy xn p(x, y) =

∫
xnq(x) dx. (1.23)

Again, the only moment that is necessarily defined is ⟨x0y0⟩ = 1. When the correspond-
ing moments exist, the variances of x and y are given by

var(x) = ⟨x2⟩ − ⟨x⟩2 and var(y) = ⟨y2⟩ − ⟨y⟩2. (1.24)

The variance of x+ y is

var(x+ y) = ⟨(x+ y)2⟩ − ⟨x+ y⟩2 = var(x) + var(y) + 2 cov(x, y), (1.25)

where
cov(x, y) = ⟨xy⟩ − ⟨x⟩ ⟨y⟩ (1.26)

is the covariance of x and y, which can be positive or negative. A related quantity is
the correlation coefficient,

ρ(x, y) =
cov(x, y)√
var(x) var(y)

, (1.27)

which takes values from −1 to 1. Notice that cov(x, x) = var(x). When the variables x
and y are independent, i.e., when p(x, y) = px(x) py(y), we have

cov(x, y) = 0 and var(x+ y) = var(x) + var(y). (1.28)

Moreover, for independent variables,

var{a1x+ a2y} = a21 var(x) + a22 var(y). (1.29)

1.2 Random-sampling methods

The first component of a Monte Carlo calculation is the numerical sampling of random
variables with specified PDFs. In this Section we describe different techniques to gen-
erate random values of a variable x distributed in the interval (xmin, xmax) according to
a given PDF p(x). We concentrate on the simple case of single-variable distributions,
because random sampling from multivariate distributions can always be reduced to
single-variable sampling (see below). A more detailed description of sampling methods
can be found in the textbooks of Rubinstein (1981) and Kalos and Whitlock (1986).

1.2.1 Random-number generator

In general, random-sampling algorithms are based on the use of random numbers ξ uni-
formly distributed in the interval (0,1). These random numbers can be easily generated
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Table 1.1: Fortran 77 random-number generator.

C *********************************************************************
C FUNCTION RAND
C *********************************************************************

FUNCTION RAND(DUMMY)
C
C This is an adapted version of subroutine RANECU written by F. James
C (Comput. Phys. Commun. 60 (1990) 329-344), which has been modified to
C give a single random number at each call.
C
C The ’seeds’ ISEED1 and ISEED2 must be initialised in the main program
C and transferred through the named common block /RSEED/.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)
PARAMETER (USCALE=1.0D0/2.147483563D9)
COMMON/RSEED/ISEED1,ISEED2

C
I1=ISEED1/53668
ISEED1=40014*(ISEED1-I1*53668)-I1*12211
IF(ISEED1.LT.0) ISEED1=ISEED1+2147483563

C
I2=ISEED2/52774
ISEED2=40692*(ISEED2-I2*52774)-I2*3791
IF(ISEED2.LT.0) ISEED2=ISEED2+2147483399

C
IZ=ISEED1-ISEED2
IF(IZ.LT.1) IZ=IZ+2147483562
RAND=IZ*USCALE

C
RETURN
END

on the computer (see, e.g., Kalos and Whitlock, 1986; James, 1990; Hellekalek, 1998).
Among the “good” random-number generators currently available, the simplest ones
are the so-called multiplicative congruential generators (Press and Teukolsky, 1992). A
popular example of this kind of generator is the following,

Rn = 75Rn−1 (mod 231 − 1), ξn = Rn/(2
31 − 1), (1.30)

which produces a sequence of random numbers ξn uniformly distributed in (0,1) from
a given “seed” R0 (< 231 − 1). Actually, the generated sequence is not truly random,
because it is obtained from a deterministic algorithm (the term “pseudo-random” would
be more appropriate), but it is very unlikely that the subtle correlations between the
values in the sequence have an appreciable effect on the simulation results. The gen-
erator (1.30) is known to have good random properties (Press and Teukolsky, 1992).
However, the sequence is periodic, with a period of the order of 109. With present-
day computational facilities, this value is not large enough to prevent re-initiation in
a single simulation run. An excellent critical review of random-number generators has
been published by James (1990), where he recommends using algorithms that are more
sophisticated than simple congruential ones. The generator implemented in the Fortran
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77 function RAND (Table 1.1) is due to L’Ecuyer (1988); it produces 32-bit floating-point
numbers uniformly distributed in the open interval between zero and one. Its period is
of the order of 1018, which is virtually inexhaustible in practical simulations.

1.2.2 Inverse-transform method

The cumulative distribution function of p(x), Eq. (1.6), is a non-decreasing function of x
and, therefore, it has an inverse function P−1(ξ). The transformation ξ = P(x) defines
a new random variable that takes values in the interval (0,1), see Fig. 1.1. Owing to the
correspondence between x and ξ values, the PDF of ξ, pξ(ξ), and that of x, p(x), are
related by pξ(ξ) dξ = p(x) dx. Hence,

pξ(ξ) = p(x)

(
dξ

dx

)−1

= p(x)

(
dP(x)
dx

)−1

= 1, (1.31)

that is, ξ is distributed uniformly in the interval (0,1).

0.0

0.2

0.4

0.6

0.8

1.0

P(x)

p(x)

ξ

x

Figure 1.1: Random sampling from a distribution p(x) using the inverse-transform method.

Now it is clear that if ξ is a random number, the variable x defined by x = P−1(ξ)
is randomly distributed in the interval (xmin, xmax) with PDF p(x) (see Fig. 1.1). This
provides a practical method for generating random values of x using a generator of
random numbers uniformly distributed in (0,1). The randomness of x is guaranteed by
that of ξ. Notice that x is the (unique) root of the equation

ξ =

∫ x

xmin

p(x′) dx′, (1.32)

which will be referred to as the sampling equation of the variable x. This procedure for
random sampling is known as the inverse-transform method; it is particularly adequate
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for PDFs p(x) given by simple analytical expressions such that the sampling equation
(1.32) can be solved analytically.

The inverse-transform method can also be efficiently used for random sampling from
continuous distributions p(x) that are given in numerical form, or that are too compli-
cated to be sampled analytically. To apply this method, the cumulative distribution
function P(x) has to be evaluated at the points xi of a certain grid. The sampling
equation P(x) = ξ can then be solved by inverse interpolation, i.e., by interpolating in
the table (ξi,xi), where ξi ≡ P(xi) (ξ is regarded as the independent variable). Care
must be exercised to make sure that the numerical integration and interpolation do not
introduce significant errors. An adaptive algorithm for random sampling from arbitrary
continuous distributions is described in Section 1.2.4.

1.2.2.1 Examples

• Uniform distribution. The uniform distribution in the interval (a, b) is given by

p(x) = Ua,b(x) =
1

b− a
.

The sampling equation (1.32) for this PDF reads

ξ =
x− a
b− a

, (1.33)

which leads to the well-known sampling formula

x = a+ ξ(b− a). (1.34)

• Exponential distribution. The exponential distribution,

p(s) =
1

λ
exp(−s/λ), s ≥ 0, (1.35)

is the PDF of the free path s of a particle between interaction events (see Section 1.4.2).
The parameter λ represents the mean free path. In this case, the sampling equation
(1.32) is easily solved to give the sampling formula

s = −λ ln(1− ξ) =̆− λ ln ξ. (1.36)

The last equality (=̆) indicates that the two sampling formulas are equivalent, in the
sense that they generate random values from the exponential distribution. Their equiv-
alence follows from the fact that 1− ξ is, like ξ, a random number uniformly distributed
in (0,1). The last formula avoids one subtraction and is, therefore, somewhat faster.

•Wentzel distribution. The Wentzel distribution is defined by

p(x) =
A(A+ 1)

(A+ x)2
, 0 ≤ x ≤ 1, A > 0. (1.37)
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This distribution describes the scattering of charged particles by an exponentially-
screened Coulomb (or Yukawa) potential within the first Born approximation (Wentzel,
1927). The sampling equation (1.32) for this PDF reads

ξ = A(A+ 1)

[
1

A
− 1

A+ x

]
, (1.38)

and yields the following sampling formula,

x =
Aξ

A+ 1− ξ
. (1.39)

1.2.3 Discrete distributions

The inverse-transform method can also be applied to discrete distributions. Consider
that the random variable x can take the discrete values x = 1, . . . , N with point proba-
bilities p1, . . . , pN , respectively. The corresponding PDF can be expressed as

p(x) =
N∑
i=1

piδ(x− i), (1.40)

where δ(x) is the Dirac distribution. Here p(x) is assumed to be defined for x in an
interval (xmin, xmax) with xmin < 1 and xmax > N . The corresponding cumulative
distribution function is

P(x) =


0 if x < 1,∑[x]

i=1 pi if 1 ≤ x ≤ N ,

1 if x > N ,

(1.41)

where [x] stands for the integer part of x. Then, Eq. (1.32) leads to the sampling formula

x = 1 if ξ ≤ p1

= 2 if p1 < ξ ≤ p1 + p2
...

= j if
∑j−1

i=1 pi < ξ ≤
∑j

i=1 pi
...

(1.42)

We can define the quantities

P1 = 0, P2 = p1, P3 = p1 + p2, . . . , PN+1 =
N∑
i=1

pi = 1. (1.43)

To sample x we generate a random number ξ and set x equal to the index i such that

Pi < ξ ≤ Pi+1. (1.44)
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Figure 1.2: Random sampling from a discrete PDF using the inverse-transform method. The

random variable can take the values i = 1, 2, 3 and 4 with relative probabilities 1, 2, 5 and 8,

respectively.

The method is illustrated in Fig. 1.2 for a discrete distribution with N = 4 values.
Notice the similarity with Fig. 1.1.

If the number N of x-values is large and the index i is searched sequentially, the
sampling algorithm given by Eq. (1.44) may be quite slow because of the large number
of comparisons needed to determine the sampled value. The easiest method to reduce
the number of comparisons is to use binary search instead of sequential search. The
algorithm for binary search, for a given value of ξ, proceeds as follows:

(i) Set i = 1 and j = N + 1.

(ii) Set k = [(i+ j)/2].

(iii) If Pk < ξ, set i = k; otherwise set j = k.

(iv) If j − i > 1, go to step (ii).

(v) Deliver i.
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When 2n < N ≤ 2n+1, i is obtained after n+1 comparisons. This number of comparisons
is evidently much less than the number required when using purely sequential search.
Although the algorithm uses multiple divisions of integer numbers by 2, this operation
is relatively fast (much faster than the division of real numbers).

1.2.3.1 Walker’s aliasing method

Walker (1977) described an optimal sampling method for discrete distributions, which
yields the sampled value with only one comparison. The idea underlying Walker’s
method can be easily understood by resorting to graphical arguments (Salvat, 1987).
To this end, let us represent the PDF (1.40) as a histogram constructed with N bars of
width 1/N and heights Npi (see Fig. 1.3). Now, the histogram bars can be cut off at
convenient heights and the resulting pieces can be arranged to fill up the square of unit
side in such a way that each vertical line crosses, at most, two different pieces. This
arrangement can be performed systematically by selecting the lowest and the highest
bars in the histogram, say the ℓ-th and the j-th, respectively, and by cutting the highest
bar off to complete the lowest one, which is subsequently kept unaltered. In order to
keep track of the performed transformation, we label the moved piece with the “alias”
value Kℓ = j, giving its original position in the histogram, and we introduce the “cutoff”
value Fℓ defined as the height of the lower piece in the ℓ-th bar of the resulting square.
This lower piece keeps the label ℓ. Evidently, iteration of this process eventually leads
to the complete square (after, at most, N − 1 steps). Notice that the point probabilities
pi can be reconstructed from the alias and cutoff values. We have

Npi = Fi +
∑
j ̸=i

(1− Fj)δ(i,Kj), (1.45)

where δ(i, j) denotes the Kronecker delta (= 1 if i = j, and = 0 otherwise). Walker’s
method for random sampling of x proceeds as follows: We sample two independent
random numbers, say ξ1 and ξ2, and define the random point (ξ1,ξ2), which is uniformly
distributed in the square. If (ξ1,ξ2) lies over a piece labelled with the index i, we take
x = i as the selected value. Obviously, the probability of obtaining i as a result of the
sampling equals the fractional area of the pieces labelled with i, which coincides with
pi.

As formulated above, Walker’s algorithm requires the generation of two random
numbers for each sampled value of x. With the aid of the following trick, the x-value
can be generated from a single random number. Continuing with our graphical picture,
assume that the N bars in the square are aligned consecutively to form a segment of
length N (bottom of Fig. 1.3). To sample x, we can generate a single random value
ξN , which is uniformly distributed in (0,N) and determines one of the segment pieces.
The result of the sampling is the label of the selected piece. Explicitly, the sampling
algorithm proceeds as follows:

(i) Generate a random number ξ and set R = ξN + 1.
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Figure 1.3: Graphical representation of the inverse-transform method (top) and Walker’s

aliasing method (bottom) for random sampling from the discrete distribution shown in Fig.

1.2.

(ii) Set i = [R] and r = R− i.

(iii) If r > Fi, deliver x = Ki.

(iv) Deliver x = i.

We see that the sampling of x involves only the generation of a random number and
one comparison (irrespective of the number N of possible outcomes). The price we
pay for this simplification reduces to doubling the number of memory locations that
are needed: the two arrays Ki and Fi are used instead of the single array pi (or Pi).
Unfortunately, the calculation of alias and cutoff values is fairly involved and this limits
the applicability of Walker’s algorithm to distributions that remain constant during the
course of the simulation.

1.2.4 Numerical inverse transform for continuous PDFs

We can now formulate a general numerical algorithm for random sampling from continu-
ous distributions using the inverse-transform method. Let us consider a random variable
x that can take values within a (finite) interval (xmin, xmax) with a given PDF p(x). We
assume that the function p(x) is continuous and that it can be calculated accurately
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for any value of x in the interval (xmin, xmax). In practice, numerical distributions are
defined by a table of values, from which p(x) has to be obtained by interpolation. We
consider that the tabulated values are exact and spaced closely enough to ensure that
interpolation errors are negligible. In penelope we frequently use cubic spline log-log
interpolation (see Section B.1), which has the advantage of yielding an interpolated PDF
that is continuous and has continuous first and second derivatives.

Let us assume that the cumulative distribution function P(x) has been evaluated
numerically for a certain grid of x-values that spans the interval (xmin, xmax),

x1 = xmin < x2 < . . . < xN−1 < xN = xmax. (1.46)

Setting ξi = P(xi), we get a table of the inverse cumulative distribution function
P−1(ξi) = xi for a grid of ξ-values that spans the interval (0, 1),

ξ1 = 0 < ξ2 < . . . < ξN−1 < ξN = 1. (1.47)

In principle, the solution of the sampling equation, x = P−1(ξ), can be obtained by
interpolation in this table. The adopted interpolation scheme must be able to accurately
reproduce the first derivative of the function P−1(ξ),

dP−1(ξ)

dξ
=

(
dP(x)
dx

)−1

=
1

p(x)
. (1.48)

Notice that this function is very steep in regions where the PDF is small. Linear inter-
polation of P−1(ξ) is in general too crude, because it is equivalent to approximating p(x)
by a stepwise distribution. It is more expedient to use a rational interpolation scheme
of the type2

P̃−1(ξ) = xi +
(1 + ai + bi)η

1 + aiη + biη2
(xi+1 − xi) if ξi ≤ ξ < ξi+1, (1.49)

where
η ≡ (ξ − ξi)/(ξi+1 − ξi) , (1.50)

and ai and bi are parameters. Notice that P̃−1(ξi) = xi and P̃−1(ξi+1) = xi+1, irrespec-
tive of the values of ai and bi. Moreover,

dP̃−1(ξ)

dξ
=

(1 + ai + bi)(1− biη2)
(1 + aiη + biη2)2

xi+1 − xi
ξi+1 − ξi

. (1.51)

The parameters ai and bi are determined by requiring that[
dP̃−1(ξ)

dξ

]
ξ=ξi

=
1

p(xi)
and

[
dP̃−1(ξ)

dξ

]
ξ=ξi+1

=
1

p(xi+1)
. (1.52)

2We denote by P̃−1(ξ) the function obtained by interpolation of the tabulated values P−1(ξi).
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This implies

1 + ai + bi =
ξi+1 − ξi
xi+1 − xi

1

p(xi)
and

1− bi
1 + ai + bi

=
ξi+1 − ξi
xi+1 − xi

1

p(xi+1)
,

and it follows that

bi = 1−
(
ξi+1 − ξi
xi+1 − xi

)2
1

p(xi+1) p(xi)
, (1.53a)

ai =
ξi+1 − ξi
xi+1 − xi

1

p(xi)
− bi − 1. (1.53b)

Thus, ai and bi are determined by the values of the PDF p(x) at the grid points xi.
Once these parameters have been calculated, the sampling formula

x = xi +
(1 + ai + bi)η

1 + aiη + biη2
(xi+1 − xi) if ξi ≤ ξ < ξi+1 (1.54)

gives random values of x that are exactly distributed according to the PDF

p̃(x) =

(
dP̃−1(ξ)

dξ

)−1

=
(1 + aiη + biη

2)2

(1 + ai + bi)(1− biη2)
ξi+1 − ξi
xi+1 − xi

if xi ≤ x < xi+1. (1.55)

From Eq. (1.53a) we see that bi is always less than unity and, therefore, the denominator
in expression (1.55) is positive, i.e., p̃(x) is positive, as required for a proper PDF. To
calculate p̃(x) for a given x, we have to determine the value of η by solving Eq. (1.54).
The root that satisfies the conditions η = 0 for x = xi and η = 1 for x = xi+1 is

η =
1 + ai + bi − aiτ

2biτ

[
1−

√
1− 4biτ 2

(1 + ai + bi − aiτ)2

]
, τ ≡ x− xi

xi+1 − xi
. (1.56)

It is worth noting that the distributions p(x) and p̃(x) not only coincide at the grid
points xi, but also their integrals over the interval (xi, xi+1) are equal, i.e., p̃(x) gives
the correct probability of finding x in each interval. The PDF (1.55) turns out to be
fairly flexible and can approximate smooth PDFs over relatively wide intervals to good
accuracy. Moreover, because formula (1.54) involves only a few arithmetic operations,
random sampling will be faster than with alternative interpolation schemes that lead to
sampling formulas involving transcendental functions.

1.2.4.1 Determining the interpolation grid

The key to ensure accuracy of the sampling is to set a suitable grid of x-values, xi
(i = 1, . . . , N), such that errors introduced by the rational interpolation (1.55) are
negligible (say, of the order of 0.01% or less). A simple, and effective strategy for
defining the x-grid is the following. We start with a uniform grid of ∼ 10 equally
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spaced x-values. The cumulative distribution function at these grid points, P(xi) = ξi,
is evaluated numerically (see below). After calculating the parameters ai and bi of the
interpolating PDF, Eq. (1.55), the interpolation “error” in the i-th interval (xi, xi+1) is
defined as

ϵi =

∫ xi+1

xi

|p(x)− p̃(x)| dx, (1.57)

where the integral is evaluated numerically using the trapezoidal rule. To reduce the
interpolation error efficiently, new points xi are added where the error is larger. The
position of each new point is selected at the midpoint of the interval j with the largest
ϵ value. After inserting each new point, the interpolation parameters ai and bi, for the
two new intervals (the two halves of the initial j-th interval) are evaluated, as well as
the corresponding interpolation errors ϵi, Eq. (1.57). The process is iterated until the
last, N -th, grid point has been set. Obviously, to reduce the interpolation error we only
need to increase the number N of grid points.

Using this strategy to set new grid points, the algorithm is self-adaptive: grid points
automatically accumulate in intervals where the PDF and its approximation (1.55) differ
most. If the number N of grid points is large enough, the functions p(x) and p̃(x) vary
smoothly within each grid interval (xi, xi+1). Then, integrals of those functions over
grid intervals can be calculated accurately by using simple quadrature formulas. In our
implementation of the algorithm, we use the extended Simpson rule with 51 equally-
spaced points,∫ xi+1

xi

f(x) dx =
h

3

[
f0 + 4

(
f1 + f3 + · · · f49

)
+ 2

(
f2 + f4 + · · ·+ f48

)
+ f50

]
− 25

90
h5f (iv)(x∗), (1.58)

where h = (xi+1 − xi)/50, fk = f(xi + kh), and f (iv)(x∗) is the fourth derivative of the
function f(x) at an unknown point x∗ in the interval (xi, xi+1).

Figure 1.4 displays the rational interpolation, Eq. (1.55), of the analytical PDF
defined in the inset and limited to the interval (0,5). The crosses indicate the points
of the grid for N = 32. Agreement between the interpolating PDF (dashed curve, not
visible) and the original distribution is striking. The rational interpolation is seen to
very closely reproduce the curvature of the original distribution, even when the grid
points are quite spaced. The lower plot in Fig. 1.4 represents the local interpolation
error ϵi in each interval of the grid (as a stepwise function for visual aid); the maximum
error in this case is 3.2 × 10−4. For a denser grid with N = 128 values, the maximum
error decreases to 8.3× 10−7.

1.2.4.2 Sampling algorithm

After determining the interpolation grid and the parameters of the rational interpolation,

xi, ξi = P(xi), ai, bi (i = 1, . . . , N), (1.59)
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Figure 1.4: Rational interpolation of the continuous PDF defined by the analytical expres-

sion indicated in the inset and restricted to the interval (0,5). The crosses are grid points

determined as described in the text with N = 32. The rational interpolating function given

by Eq. (1.55) is represented by a dashed curve, which is not visible on this scale. The lower

plot displays the interpolation error ϵi.

the sampling from the distribution (1.55) can be performed exactly by using the following
algorithm:

(i) Generate a random number ξ.

(ii) Find the interval i that contains ξ,

ξi ≤ ξ < ξi+1, (1.60)

using the binary-search method.

(iii) Set ν ≡ ξ − ξi, ∆i ≡ ξi+1 − ξi.

(iv) Deliver

x = xi +
(1 + ai + bi)∆iν

∆2
i + ai∆iν + biν2

(xi+1 − xi). (1.61)

The sampling speed decreases (slowly) when the number N of grid points increases,
due to the increasing number of comparisons needed in step (ii). This loss of speed
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can be readily avoided by using Walker’s aliasing (Section 1.2.3.1) to sample the grid
interval. Walker’s method requires only a single comparison and, hence, the algorithm
becomes optimal, at the expense of some additional memory storage. A drawback of
Walker’s method is that the sampled value x is not a continuous function of the random
number ξ. This feature impedes the use of the method for sampling the variable in a
restricted domain, as needed, e.g., in mixed simulations of electron transport. A less
sophisticated procedure to reduce the number of comparisons, which is free from this
drawback (the generated x values increase monotonically with ξ), consists of providing
pre-calculated limits (e.g., tabulated as functions of the integer variable k = [ξN ]) for
the range of interval indices i that needs to be explored. In practical calculations, this
procedure is only slightly slower than Walker’s aliasing. The present sampling algorithm,
either with Walker’s aliasing or with pre-calculated index intervals, will be referred to as
the RITA (Rational Inverse Transform with Aliasing) algorithm. In penelope, RITA is
used to simulate elastic collisions of electrons and positrons (Section 3.1), and coherent
(Rayleigh) scattering of photons (Section 2.1).

1.2.5 Rejection methods

The inverse-transform method for random sampling is based on a one-to-one correspon-
dence between x and ξ values, which is expressed in terms of a single-valued function.
There is another kind of sampling method, due to von Neumann, that consists of sam-
pling a random variable from a certain distribution [different to p(x)] and subjecting it
to a random test to determine whether it will be accepted for use or rejected. These
rejection methods lead to very general techniques for sampling from any PDF.

A

x
0

1 r (x )

   p (x ) 

Cπ (x )

Figure 1.5: Random sampling from a distribution p(x) using a rejection method.

The rejection algorithms can be understood in terms of simple graphical arguments
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(Fig. 1.5). Consider that, by means of the inverse-transform method or any other
available sampling method, random values of x are generated from a PDF π(x). For
each sampled value of x we sample a random value y uniformly distributed in the interval
(0, Cπ(x)), where C is a positive constant. Evidently, the points (x, y), generated in this
way, are uniformly distributed in the region A of the plane limited by the x-axis (y = 0)
and the curve y = Cπ(x). Conversely, if (by some means) we generate random points
(x, y) uniformly distributed in A, their x-coordinate is a random variable distributed
according to π(x) (irrespective of the value of C). Now, consider that the distribution
π(x) is such that Cπ(x) ≥ p(x) for some C > 0 and that we generate random points
(x, y) uniformly distributed in the region A as described above. If we reject the points
with y > p(x), the accepted ones (with y ≤ p(x)) are uniformly distributed in the region
between the x-axis and the curve y = p(x) and hence, their x-coordinate is distributed
according to p(x).

A rejection method is thus completely specified by representing the PDF p(x) as

p(x) = Cπ(x)r(x), (1.62)

where π(x) is a PDF that can be easily sampled, e.g., by the inverse-transform method,
C is a positive constant and the function r(x) satisfies the conditions 0 ≤ r(x) ≤ 1. The
rejection algorithm for sampling from p(x) proceeds as follows:

(i) Generate a random value x from π(x).

(ii) Generate a random number ξ.

(iii) If ξ > r(x), go to step (i).

(iv) Deliver x.

From the geometrical arguments given above, it is clear that the algorithm does
yield x values distributed according to p(x). The following is a more formal proof:
Step (i) produces x-values in the interval (x, x + dx) with probability π(x) dx, these
values are accepted with probability r(x) = p(x)/[Cπ(x)] and, therefore, (apart from
a normalisation constant) the probability of delivering a value in (x, x + dx) is equal
to p(x) dx as required. It is important to realise that, as regards Monte Carlo, the
normalisation of the simulated PDF is guaranteed by the mere fact that the algorithm
delivers some value of x.

The efficiency of the algorithm, i.e., the probability of accepting a generated x-value,
is

ϵ =

∫ b

a

r(x)π(x) dx =
1

C
. (1.63)

Graphically, the efficiency equals the ratio of the areas under the curves y = p(x) and
y = Cπ(x), which are 1 and C, respectively. For a given π(x), since r(x) ≤ 1, the
constant C must satisfy the condition Cπ(x) ≥ p(x) for all x. The minimum value of
C, with the requirement that Cπ(x) = p(x) for some x, gives the optimum efficiency.
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The PDF π(x) in Eq. (1.62) should be selected in such a way that the resulting
sampling algorithm is as fast as possible. In particular, random sampling from π(x)
must be performed rapidly, by the inverse-transform method or by the composition
method (see below). High efficiency is also desirable, but not decisive. One hundred
percent efficiency is obtained only with π(x) = p(x) (however, random sampling from
this PDF is just the problem we want to solve); any other PDF gives a lower efficiency.
The usefulness of the rejection method lies in the fact that a certain loss of efficiency
can be largely compensated with the ease of sampling x from π(x) instead of p(x). A
disadvantage of this method is that it requires the generation of several random numbers
ξ to sample each x-value.

1.2.6 Two-dimensional variables. Composition methods

Let us consider a two-dimensional random variable (x, y) with joint probability distri-
bution function p(x, y). Introducing the marginal PDF q(y) and the conditional PDF
p(x|y) [see Eqs. (1.18) and (1.20)],

q(y) ≡
∫
p(x, y) dx, p(x|y) = p(x, y)

q(y)
,

the bivariate distribution can be expressed as

p(x, y) = q(y) p(x|y). (1.64)

It is now evident that to generate random points (x, y) from p(x, y) we can first sample
y from q(y) and then x from p(x|y). Hence, two-dimensional random variables can be
generated by using single-variable sampling methods. This is also true for multivariate
distributions, because an n-dimensional PDF can always be expressed as the product of
a single-variable marginal distribution and an (n− 1)-dimensional conditional PDF.

From the definition of the marginal PDF of x,

q(x) ≡
∫
p(x, y) dy =

∫
q(y) p(x|y) dy, (1.65)

it is clear that if we sample y from q(y) and, then, x from p(x|y), the generated values of
x are distributed according to q(x). This idea is the basis of composition methods, which
are applicable when p(x), the distribution to be simulated, is a probability mixture of
several PDFs. More specifically, we consider that p(x) can be expressed as

p(x) =

∫
w(y) py(x) dy, (1.66)

where w(y) is a continuous distribution and py(x) is a family of one-parameter PDFs,
where y is the parameter identifying a unique distribution. Notice that if the parameter
y only took integer values y = i with point probabilities wi, we would write

p(x) =
∑
i

wi pi(x). (1.67)
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The composition method for random sampling from the PDF p(x) is as follows. First,
a value of y (or i) is drawn from the PDF w(y) and then x is sampled from the PDF
py(x) for that chosen y.

This technique may be applied to generate random values from complex distributions
obtained by combining simpler distributions that are themselves easily generated, e.g.,
by the inverse-transform method or by rejection methods.

Devising fast, exact methods for random sampling from a given PDF is an interesting
technical challenge. The ultimate criterion for the quality of a sampling algorithm is its
speed in actual simulations: the best algorithm is the fastest. However, programming
simplicity and elegance may justify the use of slower algorithms. For simple analyti-
cal distributions that have an analytical inverse cumulative distribution function, the
inverse-transform method is usually satisfactory. This is the case for a few elementary
distributions (e.g., the uniform and exponential distributions considered above). The
inverse-transform method is also adequate for discrete distributions, particularly when
combined with Walker’s aliasing. The adaptive sampling algorithm RITA, described in
Section 1.2.4, provides a practical method for sampling from continuous single-variate
PDFs, defined either analytically or in numerical form; this algorithm is fast and quite
accurate, but it is not exact. By combining the inverse-transform, rejection and com-
position methods we can devise exact sampling algorithms for virtually any (single- or
multivariate) PDF.

1.2.6.1 Examples

• Sampling from the normal distribution. Frequently we need to generate random
values from the normal (or Gaussian) distribution

pG(x) =
1√
2π

exp(−x2/2). (1.68)

Since the cumulative distribution function cannot be inverted analytically, the inverse-
transform method is not appropriate. The easiest (but not the fastest) method to sample
from the normal distribution consists of generating two independent random variables at
a time, as follows. Let x1 and x2 be two independent normal variables. They determine
a random point in the plane with PDF

p2G(x1, x2) = pG(x1) pG(x2) =
1

2π
exp[−(x21 + x22)/2].

Introducing the polar coordinates r and ϕ,

x1 = r cosϕ, x2 = r sinϕ,

the PDF can be expressed as

p2G(x1, x2) dx1 dx2 =
1

2π
exp(−r2/2) r dr dϕ =

[
exp(−r2/2) r dr

] [ 1

2π
dϕ

]
.
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We see that r and ϕ are independent random variables. The angle ϕ is distributed
uniformly on (0,2π) and can be sampled as ϕ = 2πξ. The PDF of r is exp(−r2/2) r and
the corresponding cumulative distribution function is P(r) = 1−exp(−r2/2). Therefore,
r can be generated by the inverse-transform method as

r =
√
−2 ln(1− ξ) =̆

√
−2 ln ξ.

The two independent normal random variables are given by

x1 =
√
−2 ln ξ1 cos(2πξ2),

x2 =
√
−2 ln ξ1 sin(2πξ2), (1.69)

where ξ1 and ξ2 are two independent random numbers. This procedure is known as the
Box-Müller method. It has the advantages of being exact and easy to program (it can
be coded as a single Fortran statement).

The mean and variance of the normal variable are ⟨x⟩ = 0 and var(x) = 1. The
linear transformation

X = m+ σx (σ > 0) (1.70)

defines a new random variable. From the properties (1.14) and (1.29), we have

⟨X⟩ = m and var(X) = σ2. (1.71)

The PDF of X is

p(X) = pG(x)
dx

dX
=

1

σ
√
2π

exp

[
−(X −m)2

2σ2

]
, (1.72)

i.e., X is normally distributed with mean m and variance σ2. Hence, to generate X
we only have to sample x using the Box-Müller method and apply the transformation
(1.70).

• Uniform distribution on the unit sphere. In radiation-transport theory, the
direction of motion of a particle is described by a unit vector d̂. Given a certain frame
of reference, the direction d̂ can be specified by giving either its direction cosines (u, v, w)
(i.e., the projections of d̂ on the directions of the coordinate axes) or the polar angle θ
and the azimuthal angle ϕ, defined as in Fig. 1.6,

d̂ = (u, v, w) = (sin θ cosϕ, sin θ sinϕ, cos θ). (1.73)

Notice that θ ∈ (0, π) and ϕ ∈ (0, 2π).

A direction vector can be regarded as a point on the surface of the unit sphere.
Consider an isotropic source of particles, i.e., such that the initial direction (θ, ϕ) of
emitted particles is a random point uniformly distributed on the surface of the sphere.
The PDF is

p(θ, ϕ) dθ dϕ =
1

4π
sin θ dθ dϕ =

[
sin θ

2
dθ

] [
1

2π
dϕ

]
. (1.74)
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Figure 1.6: Polar and azimuthal angles of a direction vector.

That is, θ and ϕ are independent random variables with PDFs pθ(θ) = sin θ/2 and
pϕ(ϕ) = 1/(2π), respectively. Therefore, the initial direction of a particle from an
isotropic source can be generated by applying the inverse-transform method to these
PDFs,

θ = arccos(1− 2ξ1), ϕ = 2πξ2. (1.75)

In some cases, it is convenient to replace the polar angle θ by the variable

µ = (1− cos θ)/2, (1.76)

which varies from 0 (θ = 0) to 1 (θ = π). In the case of an isotropic distribution, the
PDF of µ is

pµ(µ) = pθ(θ)

(
dµ

dθ

)−1

= 1. (1.77)

That is, a set of random points (µ, ϕ) uniformly distributed on the rectangle (0, 1) ×
(0, 2π) corresponds to a set of random directions (θ, ϕ) uniformly distributed on the unit
sphere.

1.3 Monte Carlo integration

As pointed out by James (1980), at least in a formal sense, all Monte Carlo calculations
are equivalent to integrations. This equivalence permits a formal theoretical foundation
for Monte Carlo techniques. An important aspect of simulation is the evaluation of the
statistical uncertainties of the calculated quantities. We shall derive the basic formulas
by considering the simplest Monte Carlo calculation, namely, the evaluation of a one-
dimensional integral. Evidently, the results are also valid for multidimensional integrals.

Consider the integral

I =

∫ b

a

F (x) dx, (1.78)
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which we recast in the form of an expectation value,

I =

∫
f(x) p(x) dx ≡ ⟨f⟩, (1.79)

by introducing an arbitrary PDF p(x) and setting f(x) = F (x)/p(x) [it is assumed that
p(x) > 0 in (a, b) and p(x) = 0 outside this interval]. The Monte Carlo evaluation of the
integral I is very simple: generate a large number N of random points xi from the PDF
p(x) and accumulate the sum of values f(xi) in a counter. At the end of the calculation
the expected value of f is estimated as

f ≡ 1

N

N∑
i=1

f(xi). (1.80)

The law of large numbers states that, as N becomes very large,

f → I (in probability). (1.81)

In statistical terminology, this means that f , the Monte Carlo result, is a consistent
estimator of the integral (1.78). This is valid for any function f(x) that is finite and
piecewise continuous, i.e., with a finite number of discontinuities.

The law of large numbers (1.81) can be restated as

⟨f⟩ = lim
N→∞

1

N

N∑
i=1

f(xi). (1.82)

By applying this law to the integral that defines the variance of f(x) [cf. Eq. (1.16)]

var{f(x)} =
∫
f 2(x) p(x) dx− ⟨f⟩2, (1.83)

we obtain

var{f(x)} = lim
N→∞

 1

N

N∑
i=1

[f(xi)]
2 −

[
1

N

N∑
i=1

f(xi)

]2 . (1.84)

The expression in curly brackets is a consistent estimator of the variance of f(x). In
practical simulations, it is advisable (see below) to accumulate the squared function val-
ues [f(xi)]

2 in a counter and, at the end of the simulation, estimate var{f(x)} according
to Eq. (1.84).

It is clear that different Monte Carlo runs [with different, independent sequences of
N random numbers xi from p(x)] will yield different estimates f . This implies that the
outcome of our Monte Carlo code is affected by statistical uncertainties, similar to those
found in laboratory experiments, which need to be properly evaluated to determine the
“accuracy” of the Monte Carlo result. To this end, we may consider f as a random
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variable, the PDF of which is, in principle, unknown. Its mean and variance are given
by

⟨f⟩ =

⟨
1

N

N∑
i=1

f(xi)

⟩
=

1

N

N∑
i=1

⟨f⟩ = ⟨f⟩ (1.85)

and

var(f) = var

[
1

N

N∑
i=1

f(xi)

]
=

1

N2

N∑
i=1

var{f(x)} = 1

N
var{f(x)}, (1.86)

where use has been made of properties of the expectation and variance operators. The
standard deviation (or standard error) of f ,

σf ≡
√

var(f) =

√
var{f(x)}

N
, (1.87)

gives a measure of the statistical uncertainty of the Monte Carlo estimate f . The
result (1.87) has an important practical implication: in order to reduce the statistical
uncertainty by a factor of 10, we have to increase the sample size N by a factor of
100. Evidently, this sets a limit to the accuracy that can be attained with the available
computer power.

We can now invoke the central-limit theorem (see, e.g., James, 1980), which estab-
lishes that, in the limit N →∞, the PDF of f is a normal (Gaussian) distribution with
mean ⟨f⟩ and standard deviation σf ,

p(f) =
1

σf
√
2π

exp

(
−(f − ⟨f⟩)2

2σ2
f

)
. (1.88)

It follows that, for sufficiently large values of N , for which the theorem is applicable,
the interval f ± nσf contains the exact value ⟨f⟩ with a probability of 68.3% if n = 1,
95.4% if n = 2 and 99.7% if n = 3 (3σ rule).

The central-limit theorem is a very powerful tool, because it predicts that the gen-
erated values of f follow a specific distribution, but it applies only asymptotically. The
minimum number N of sampled values needed to apply the theorem with confidence
depends on the problem under consideration. If, in the case of our problem, the third
central moment of f ,

µ3 ≡
∫

[f(x)− ⟨f⟩]3 p(x) dx, (1.89)

exists, the theorem is essentially satisfied when

|µ3| ≪ σ3
f

√
N. (1.90)

In general, it is advisable to study the distribution of the estimator to ascertain the
applicability of the central-limit theorem. In most Monte Carlo calculations, however,
statistical uncertainties are estimated by simply assuming that the theorem is satisfied,
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irrespective of the sample size. We shall adopt this practice and report Monte Carlo
results in the form f ± 3σf . In simulations of radiation transport, this is empirically
validated by the fact that simulated continuous distributions do “look” continuous (i.e.,
the “error bars” define a smooth band).

Each possible p(x) defines a Monte Carlo algorithm to calculate the integral I, Eq.
(1.78). The simplest algorithm (crude Monte Carlo) is obtained by using the uniform
distribution p(x) = 1/(b−a). Evidently, p(x) determines not only the density of sampled
points xi, but also the magnitude of the variance var{f(x)}, Eq. (1.83),

var{f(x)} =
∫ b

a

p(x)

[
F (x)

p(x)

]2
dx− I2 =

∫ b

a

F (x)

[
F (x)

p(x)
− I
]
dx. (1.91)

As a measure of the effectiveness of a Monte Carlo algorithm, it is common to use the
efficiency ϵ, which is defined by

ϵ =

(
f

σf

)2
1

T
, (1.92)

where T is the computing time (or any other measure of the calculation effort) needed
to obtain the simulation result. In the limit of large N , σ2

f and T are proportional to
N−1 and N , respectively, and hence ϵ is a constant (i.e., it is independent of N). In
practice, the efficiency ϵ varies with N because of statistical fluctuations; the magnitude
of these fluctuations decreases when N increases and eventually tends to zero. When
reporting Monte Carlo efficiencies, it is important to make sure that the value of ϵ has
stabilised (this usually requires controlling the evolution of ϵ as N increases).

The so-called variance-reduction methods are techniques that aim to optimise the
efficiency of the simulation through an adequate choice of the PDF p(x). Improving
the efficiency of the algorithms is an important, and delicate, part of the art of Monte
Carlo simulation. The interested reader is addressed to the specialised bibliography (e.g.,
Rubinstein, 1981). Although in common use, the term “variance reduction” is somewhat
misleading, since a reduction in variance does not necessarily lead to improved efficiency.
In certain cases, the variance (1.91) can be reduced to zero. For instance, when F (x)
is non-negative, we can consider the distribution p(x) = F (x)/I, which evidently gives
var{f(x)} = 0. This implies that f(x) = I for all points x in (a, b), i.e., we would obtain
the exact value of the integral with just one sampled value! In principle, we can devise a
Monte Carlo algorithm, based on an appropriate PDF p(x), which has a variance that is
less than that of crude Monte Carlo (i.e., with the uniform distribution). However, if the
generation of x-values from p(x) takes a longer time than for the uniform distribution,
the “variance-reduced” algorithm may be less efficient than crude Monte Carlo. Hence,
one should avoid using PDFs that are too difficult to sample.

1.3.1 Monte Carlo vs. numerical quadrature

It is interesting to compare the efficiency of the Monte Carlo method with that of
conventional numerical quadrature. Let us thus consider the calculation of an integral
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over the D-dimensional unit cube,

I =

∫ 1

0

du1

∫ 1

0

du2 . . .

∫ 1

0

duD F (u1, u2, . . . , uD), (1.93)

where the integrand F (u1, u2, . . . , uD) is assumed to be defined (by an analytic expression
or by a numerical procedure) in such a way that it can be calculated exactly at any point
in the unit cube. This problem is not as specific as it may seem at first sight because,
with appropriate changes of variables, we may transform the integral into a much more
general form.

To evaluate the integral (1.93) numerically, we can split the interval (0,1) into n
subintervals of length h = 1/n; the centre of the i-th subinterval (i = 1, . . . , n) is at
xi = (i−1/2)h. This sets a partition of the unit cube into N = nD cubic cells of volume
hD centred at the positions (xi1 , xi2 , . . . , xiD). The integral (1.93) can then be expressed
as the sum of contributions from each cell,

I =
n∑

i1=1

∫ xi1
+h/2

xi1
−h/2

du1 . . .
n∑

iD=1

∫ xiD
+h/2

xiD
−h/2

duD F (u1, . . . , uD). (1.94)

Within each cell, we can approximate the integrand by its Taylor expansion about the
centre of the cell,

F (u1, . . . , uD) = F (xi1 , . . . , xiD) +
D∑
j=1

(uj − xij)
[
∂F (u1, . . . , uD)

∂uj

]
{uℓ=xiℓ

}

+
1

2

D∑
j,k=1

(uj − xij)(uk − xik)
[
∂2F (u1, . . . , uD)

∂uj ∂uk

]
{uℓ=xiℓ

}
+ . . . , (1.95)

where {uℓ = xiℓ} denotes the set of coordinates of the centre of the cell. If we retain
only the constant zero-order terms in this expansion, we obtain the following first-order
estimate of the integral:

Inum = hD
n∑

i1=1

. . .
n∑

iD=1

F (xi1 , . . . , xiD). (1.96)

This formula involves only the N values of the function F (u1, . . . , uD) at the centres of
the N cells; it is essentially equivalent to the trapezoidal rule (see, e.g., Abramowitz and
Stegun, 1974). The error, (∆I)num = I − Inum, can be estimated from the higher-order
terms in the Taylor expansion (1.95). All the linear terms with (uj − xij), and all the
quadratic terms with (uj−xij)(uk−xik) and j ̸= k give vanishing contributions [because
the factors (uj − xij) are antisymmetric with respect to the centre of the cell], and we
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have

(∆I)num =
n∑

i1=1

∫ xi1
+h/2

xi1
−h/2

du1 . . .
n∑

iD=1

∫ xiD
+h/2

xiD
−h/2

duD
1

2

D∑
j=1

(uj − xij)2
[
∂2F/∂u2j

]
{uℓ=xiℓ

}

= hD+2 1

24

n∑
i1=1

. . .

n∑
iD=1

D∑
j=1

[
∂2F/∂u2j

]
{uℓ=xiℓ

} . (1.97)

Recalling that h = 1/n = N−1/D, the relative error of the numerical integral can be
expressed as

(∆I)num/Inum = N−2/D enum, (1.98)

with

enum =

∑n
i1=1 . . .

∑n
iD=1

∑D
j=1

[
∂2F/∂u2j

]
{uℓ=xiℓ

}

24
∑n

i1=1 . . .
∑n

iD=1 F (xi1 , . . . , xiD)
. (1.99)

Let us now consider the crude Monte Carlo calculation of the integral (1.93) with
random points sampled uniformly in the unit cube, i.e., with p(u1, . . . , uD) = 1. The
relative (1σ) uncertainty of a Monte Carlo estimate, with the same number N of samples
as cells in the numerical calculation, is [see Eq. (1.87)]

(∆I)MC/IMC = N−1/2 eMC, with eMC =

√
var{F (u1, . . . , uD)}

IMC

. (1.100)

The important fact here is that the error of numerical quadrature is proportional to
N−2/D while the statistical uncertainty of the Monte Carlo estimate is proportional to
N−1/2. Evidently, the calculation of the N values of the integrand takes the same time
for both Monte Carlo and numerical quadrature. Moreover, the amount of numerical
work needed for performing the rest of the calculation (sums and averages) is similar
for both techniques. Therefore, assuming that the proportionality factors enum and eMC

in Eqs. (1.99) and (1.100) are both finite, and that the number N of cells and samples
is sufficiently large, we conclude that the Monte Carlo method will yield more accurate
results than first-order numerical quadrature for dimensions D > 4.

It can be argued that with a more elaborate algorithm, numerical quadrature could
beat Monte Carlo for dimensions higher than 4, and this may well be the case for specific
problems with smooth functions. For instance, if we adopt the Simpson rule (see, e.g.,
Abramowitz and Stegun, 1974) [which is analogous to retaining terms up to second order
in the expansion (1.95)] the relative error of the numerical result would be proportional
to N−4/D,

(∆I)num/Inum = N−4/D e′num, (1.101)

with e′num given by an expression similar to (1.99), but with fourth-order derivatives
(cubic terms in (1.95) yield vanishing contributions, by symmetry). In this case, Monte
Carlo is only expected to be more efficient than numerical quadrature for dimensions
D > 8.
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In turn, it may be claimed that with the aid of suitable variance-reduction techniques,
the efficiency of Monte Carlo methods can be increased and make Monte Carlo more
advantageous than numerical quadrature. In addition, the foregoing analysis is based
on the assumption that the integrand in Eq. (1.93) can be evaluated exactly. In high-
dimensionality problems, straight calculation of the function F (u1, . . . , uD) may be very
difficult and we may need to have recourse to interpolations or approximations. If
the calculation of the integrand introduces errors with strong short-range correlations,
the accuracy of numerical quadrature may be seriously impaired. The sensitivity of
numerical quadrature to local errors of the integrand is determined by the order of
the derivatives in the error factor enum; higher-order formulas are more sensitive to
local errors. In this respect, low-order quadrature formulas (such as the trapezoidal
rule studied above) are favoured, and this gives a distinct advantage to Monte Carlo
methods.

In practice, the efficiencies of Monte Carlo integration and numerical quadrature
depend to a great extent on the details of a given problem. The utility of Monte
Carlo stems not only from the convenient properties of statistical uncertainties for high-
dimensionality problems, but also from the ease with which Monte Carlo methods can
handle complicated geometries.

1.4 Simulation of radiation transport

In this Section, we describe the essentials of Monte Carlo simulation of radiation trans-
port. For the sake of simplicity, we limit our considerations to the detailed simulation
method, where all the interaction events experienced by a particle are simulated in
chronological succession, and we disregard the production of secondary particles, so
that only one kind of particle is transported.

The trajectory picture underlying conventional Monte Carlo simulations of radiation
transport applies to homogeneous “random scattering” media, such as gases, liquids
and amorphous solids, where the “molecules” are distributed at random with uniform
density. The composition of the medium is specified by its stoichiometric formula, i.e.,
atomic number Zi and number of atoms per molecule ni of all the elements present.
The stoichiometric indices ni need not have integer values. In the case of alloys, for
instance, they may be set equal to the percentage in number of each element and then
a “molecule” is a group of 100 atoms with the appropriate proportion of each element.
The molar mass (mass of a mol of substance) is AM = ΣniAi, where Ai is the atomic
weight (mean relative atomic mass) of the i-th element. The number of molecules per
unit volume is given by

N = NA
ρ

AM

, (1.102)

where NA is Avogadro’s number and ρ is the mass density of the material.
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1.4.1 Interaction cross sections

Particles interact with the atoms or molecules of the medium through various competing
mechanisms. Each interaction mechanism is characterised by the associated differential
cross section (DCS), which is a function of the particle state variables that are modified
in the course of the interaction. For simplicity, let us consider an interaction mechanism
in which the projectile particle is deflected and loses energy. Compton scattering of
photons and inelastic collisions of electrons are examples of this type of mechanism.

To define the DCS for our interaction mechanism, we consider the scattering exper-
iment described in Fig. 1.7. A parallel monoenergetic beam of particles, with energy
E and direction of movement d̂ parallel to the z axis, impinges on a target atom or
molecule, T, which is located at the origin of the reference frame. We assume that
the beam is laterally homogeneous and that its lateral extension is much larger than
the dimensions of the target. The beam is then characterised by its current density
Jinc

3. We assume that particles interact only through the considered mechanism; in an
interaction, a particle loses a certain energy W and is deflected. A detector, placed at
a macroscopic distance from the origin in the direction (θ, ϕ) and covering a small solid
angle dΩ, detects and counts all particles that enter its sensitive volume with energy in
the interval (E −W − dW,E −W ) (i.e., particles that have lost an energy between W
and W + dW ). We consider that the detector is effectively screened from the incident
beam so that only particles that have undergone an interaction are counted. Let Ṅcount

denote the number of counts per unit time. The double-differential DCS (per unit solid
angle and unit energy loss) is defined as

d2σ

dΩ dW
≡ Ṅcount

|Jinc| dΩdW
. (1.103)

The DCS has the dimensions of area/(solid angle × energy); the product [d2σ/(dΩdW )]
×dΩdW represents the area of a plane surface that, placed perpendicularly to the
incident beam, is hit by as many projectiles as are scattered into directions d̂′ within
dΩ with energy loss between W and W + dW .

The energy-loss DCS, differential in only the energy loss, is obtained by integrating
the double-differential DCS over directions,

dσ

dW
≡
∫

d2σ

dΩ dW
dΩ. (1.104)

The total cross section σ is defined as the integral of the energy-loss DCS over the energy
loss,

σ ≡
∫ E

0

dσ

dW
dW =

∫ E

0

(∫
d2σ

dΩ dW
dΩ

)
dW. (1.105)

3The current density vector Jinc is parallel to the direction of incidence d̂ and its magnitude is equal
to the number of incident particles that cross a small probe surface, perpendicular to the beam and at
rest with respect to the target, per unit time and unit probe surface.
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Figure 1.7: Schematic diagram of an experiment to measure the DCS. Incident particles

move in the direction of the z axis; θ and ϕ are the polar and azimuthal scattering angles,

respectively (cf. Fig. 1.6).

Geometrically, the total cross section gives the area of a plane surface that, when placed
perpendicularly to the incident beam, is crossed by the same number of projectiles that
undergo interactions with any angular deflection and energy loss.

1.4.2 Mean free path

Let us consider that our particles move within a random-scattering medium with N
molecules per unit volume. We wish to determine the PDF p(s) of the path length s
of a particle from its current position to the site of the next interaction. To get a more
visual picture of the interaction process, we can replace each molecule by a sphere of
radius rs such that the cross-sectional area πr2s equals the total cross section σT. An
interaction takes place when the particle strikes one of these spheres.

We can start by studying a simpler situation, in which a homogeneous beam of
particles impinges normally on a very thin material foil of thickness ds (see Fig. 1.8).
What the incident particles see directly ahead of their path is a uniform distribution of
N ds spheres per unit surface. Let J be the current density of the incident beam. The
current density of particles transmitted through the foil without interacting is J − dJ ,
where dJ = J Nσ ds is the number of particles that undergo interactions per unit
time and unit surface of the foil (note that Nσ ds is the fractional area covered by the
spheres). Therefore, the interaction probability per unit path length is

dJ

J

1

ds
= Nσ. (1.106)

Let us now return to our original problem, where particles move within an unbounded
medium. The probability that a particle travels a path length s without interacting is

F(s) =
∫ ∞

s

p(s′) ds′. (1.107)
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dJ  = J Nσ  ds

ds

N

Figure 1.8: Attenuation of a beam through a thin material foil.

The probability p(s) ds of having the next interaction when the travelled length is in the
interval (s, s + ds) equals the product of F(s) (the probability of arrival at s without
interacting) and Nσ ds (the probability of interacting within ds). It then follows that

p(s) = Nσ
∫ ∞

s

p(s′) ds′. (1.108)

The solution of this integral equation, with the boundary condition p(∞) = 0, is the
familiar exponential distribution

p(s) = Nσ exp [−s (Nσ)] . (1.109)

The mean free path λ is defined as the average path length between collisions:

λ ≡ ⟨s⟩ =
∫ ∞

0

s p(s) ds =
1

Nσ
. (1.110)

Its inverse,
λ−1 = Nσ, (1.111)

is the interaction probability per unit path length.

1.4.3 Scattering model and probability distributions

Consider a particle with energy E (kinetic energy, in the case of electrons and positrons)
moving in a given medium. In each interaction, the particle may lose a certain energy
W and change its direction of movement. The angular deflection is determined by the
polar scattering angle θ, i.e., the angle between the directions of the particle before and
after the interaction, and the azimuthal angle ϕ (see Fig. 1.7). These quantities are
random variables, whose PDFs are determined by the molecular DCSs.

Let us assume that particles can interact with the medium through two independent
mechanisms, denoted as “A” and “B” (for instance, elastic and inelastic scattering, in
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the case of low-energy electrons). The scattering model is completely specified by the
molecular DCSs

d2σA(E; θ,W )

dΩdW
and

d2σB(E; θ,W )

dΩdW
, (1.112)

where dΩ is a solid angle element in the direction (θ, ϕ). We have made the paramet-
ric dependence of the DCSs on the particle energy E explicit. Considering that the
molecules in the medium are oriented at random, the DCS is independent of the az-
imuthal scattering angle, i.e., the angular distribution of scattered particles is axially
symmetrical around the direction of incidence. The total cross sections (per molecule)
for mechanisms A and B are

σA,B(E) =

∫ E

0

dW

∫ π

0

2π sin θ dθ
d2σA,B(E; θ,W )

dΩdW
. (1.113)

The total interaction cross section is

σT(E) = σA(E) + σB(E). (1.114)

The interaction probability per unit path length is

λ−1
T = NσT. (1.115)

Notice that the total inverse mean free path is the sum of the inverse mean free paths
of the different active interaction mechanisms,

λ−1
T = λ−1

A + λ−1
B . (1.116)

The PDF of the path length s of a particle from its current position to the site of
the next collision is

p(s) = λ−1
T exp (−s/λT) . (1.117)

The average path length between interactions equals the (total) mean free path,

⟨s⟩ = λT = (NσT)−1 . (1.118)

When the particle interacts with the medium, the kind of interaction that occurs is a
discrete random variable, that takes the values “A” and “B” with probabilities

pA = σA/σT and pB = σB/σT. (1.119)

The PDFs of the polar scattering angle and the energy loss in individual scattering
events are

pA,B(E; θ,W ) =
2π sin θ

σA,B(E)

d2σA,B(E; θ,W )

dΩdW
. (1.120)

Notice that pA(E; θ,W ) dθ dW gives the (normalised) probability that, in a scattering
event of type A, the particle loses energy in the interval (W,W + dW ) and is deflected
into directions with polar angle (relative to the initial direction) in the interval (θ,
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θ+dθ). The azimuthal scattering angle in each collision is uniformly distributed in the
interval (0, 2π), i.e.,

p(ϕ) =
1

2π
. (1.121)

Our analysis of the interactions in a random-scattering medium involves the DCSs,
which describe the interactions with individual molecules, and the density of molecules
N , which characterises the macroscopic state of the medium. In cases where the DCSs
are affected by the aggregation state of the medium, it could be more appropriate to
describe each interaction mechanism by means of the so-called differential inverse mean
free path. The differential inverse mean free path for the interaction process A is defined
as

d2λ−1
A (E; θ,W )

dΩdW
= N d2σA(E; θ,W )

dΩdW
. (1.122)

The differential inverse mean free path has the dimensions of (length × solid angle
× energy)−1; the product [d2λ−1

A /(dΩdW )] dΩdW is the probability per unit path
length that a particle undergoes a collision of type A with angular deflection within
dΩ and energy loss between W and W + dW . Evidently, the integral of the differential
inverse mean free path gives the inverse mean free path for the process,

λ−1
A =

∫
dW

∫
2π sin θ dθ

d2λ−1
A (E; θ,W )

dΩdW
= NσA. (1.123)

In the literature, the product NσA is frequently called the macroscopic cross section,
although this name is not appropriate for a quantity that has the dimensions of inverse
length.

1.4.4 Generation of random tracks

Each particle track starts off at a given position, with initial direction and energy in
accordance with the characteristics of the source. The “state” of a particle immediately
after an interaction (or after entering the sample or starting its trajectory) is defined
by its position coordinates r = (x, y, z), energy E and direction cosines of the direction
of flight, i.e., the components of the unit vector d̂ = (u, v, w), as seen from the labo-
ratory reference frame. Each simulated track is thus characterised by a series of states
rn, En, d̂n, where rn is the position of the n-th scattering event and En and d̂n are the
energy and direction cosines of the direction of movement just after that event.

The generation of random tracks proceeds as follows. Let us assume that a track has
already been simulated up to a state rn, En, d̂n. The length s of the free path to the next
collision, the involved scattering mechanism, the change of direction and the energy loss
in this collision are random variables that are sampled from the corresponding PDFs,
using the methods described in Section 1.2. Hereafter, ξ stands for a random number
uniformly distributed in the interval (0,1).
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The length of the free flight is distributed according to the PDF given by Eq. (1.117).
Random values of s are generated by using the sampling formula [see Eq. (1.36)]

s = −λT ln ξ. (1.124)

The following interaction occurs at the position

rn+1 = rn + sd̂n. (1.125)

The interaction type (“A” or “B”) is selected from the point probabilities given by Eq.
(1.119) using the inverse-transform method (Section 1.2.3). The polar scattering angle
θ and the energy loss W are sampled from the distribution pA,B(E; θ,W ), Eq. (1.120),
by using a suitable sampling technique. The azimuthal scattering angle is generated,
according to the uniform distribution in (0, 2π), as ϕ = 2πξ.

z

x
y

θ

φ

dn = (u,v,w)

dn+1 = (u′,v′,w′)

rn+1ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

Figure 1.9: Angular deflections in single-scattering events.

After sampling the values of W , θ and ϕ, the energy of the particle is reduced,
En+1 = En−W , and the direction of movement after the interaction, d̂n+1 = (u′, v′, w′),
is obtained by performing a rotation of d̂n = (u, v, w) (see Fig. 1.9). The rotation matrix
R(θ, ϕ) is determined by the polar and azimuthal scattering angles. To explicitly obtain
the direction vector d̂n+1 = R(θ, ϕ)d̂n after the interaction, we first note that, if the
initial direction is along the z-axis, d̂n = ẑ = (0, 0, 1), the direction after the collision
is4  sin θ cosϕ

sin θ sinϕ

cos θ

 = R(ϕẑ)R(θŷ)

 0

0

1

 , (1.126)

where

R(θŷ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 and R(ϕẑ) =

 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 (1.127)

4Vectors are defined by specifying their Cartesian components. When a vector is defined within a
paragraph, or in a displayed equation, it is customary to represent it as a one-row matrix. However, in
the product of a matrix by a vector, the vector must be represented as a one-column matrix.
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are rotation matrices corresponding to active rotations of angles θ and ϕ about the y-
and z-axes, respectively. On the other hand, if ϑ and φ are the polar and azimuthal
angles of the initial direction

d̂n = (sinϑ cosφ, sinϑ sinφ, cosϑ), (1.128)

the rotation R(−ϑŷ)R(−φẑ) transforms the vector d̂n into ẑ. It is then clear that
the final direction vector d̂n+1 can be obtained by performing the following sequence
of rotations of the initial direction vector: 1) R(−ϑŷ)R(−φẑ), which transforms d̂n

into ẑ; 2) R(ϕẑ)R(θŷ), which rotates ẑ according to the sampled polar and azimuthal
scattering angles; and 3)R(φẑ)R(ϑŷ), which inverts the rotation of the first step. Hence

R(θ, ϕ) = R(φẑ)R(ϑŷ)R(ϕẑ)R(θŷ)R(−ϑŷ)R(−φẑ). (1.129)

The final direction vector is

d̂n+1 = R(θ, ϕ)d̂n = R(φẑ)R(ϑŷ)

 sin θ cosϕ

sin θ sinϕ

cos θ

 (1.130)

and its direction cosines are

u′ = u cos θ +
sin θ√
1− w2

[uw cosϕ− v sinϕ] ,

v′ = v cos θ +
sin θ√
1− w2

[vw cosϕ+ u sinϕ] , (1.131)

w′ = w cos θ −
√
1− w2 sin θ cosϕ.

These equations are indeterminate when w ≃ ±1, i.e., when the initial direction is
nearly parallel or antiparallel to the z-axis; in this case we can simply set

u = ± sin θ cosϕ, v = ± sin θ sinϕ, w = ± cos θ. (1.132)

Moreover, Eqs. (1.131) are not very stable numerically and the normalisation of d̂n+1

tends to drift from 1 after repeated usage. This must be remedied by periodically
renormalizing d̂n+1. The change of direction expressed by Eqs. (1.131) and (1.132) is
performed by the subroutine DIRECT (see the penelope source file).

The simulation of the track then proceeds by repeating these steps (see Fig. 1.10). A
track is finished either when it leaves the material system or when the energy becomes
smaller than a given energy Eabs, which is the energy where particles are assumed to be
effectively stopped and absorbed in the medium.

It is worth recalling that the kind of analogue trajectory model that we have described
is only valid when diffraction effects resulting from coherent scattering from several
centres (e.g., Bragg diffraction, channelling of charged particles) are negligible. This
means that the simulation is applicable only to amorphous media and, with some care,
to polycrystalline solids.
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Figure 1.10: Generation of random trajectories using detailed simulation. A particle enters

material 1 from the vacuum and, after multiple interactions crosses the interface between

materials 1 and 2.

1.4.5 Particle transport as a Markov process

The foregoing concepts, definitions and simulation scheme rest on the assumption that
particle transport can be modelled as a Markov process5, i.e., “future values of a random
variable (interaction event) are statistically determined by present events and depend
only on the event immediately preceding”. Owing to the Markovian character of the
transport, we can stop the generation of a particle history at an arbitrary state (any
point of the track) and resume the simulation from this state without introducing any
bias in the results.

Up to this point we have considered transport in a single homogeneous medium.
In practical cases, however, the material structure where radiation is transported may
consist of various regions with different compositions. We assume that the interfaces
between contiguous media are sharp (i.e., there is no diffusion of chemical species across
them) and passive (which amounts to neglecting, e.g., surface plasmon excitation and
transition radiation). In the simulation code, when a particle arrives at an interface, it
is stopped there and the simulation is resumed with the interaction properties of the
new medium. Obviously, this procedure is consistent with the Markovian property of
the transport process. Thus, interface crossings are consistently described by means
of simple geometrical considerations. The main advantage of Monte Carlo simulation
lies in the ease of handling complicated geometries; this is at variance with conventional
numerical methods, which find great difficulties in accommodating non-trivial boundary
conditions.

Consider two homogeneous media, 1 and 2 (with corresponding mean free paths λT,1

and λT,2), separated by an interface, which is crossed by particles that move from the

5The quoted definition is from the Webster’s Encyclopedic Unabridged Dictionary of the English
Language (Portland House, New York, 1989).
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first medium to the second (as in Fig. 1.10). The average path length between the last
real interaction in medium 1 and the first real interaction in medium 2 is λT,1 + λT,2,
as can be easily verified by simulation. This result seemed paradoxical to some authors
and induced confusion in the past. In fact, there is nothing odd here as it can be easily
verified (again by simulation) as follows. Assume particles being transported within a
single homogeneous medium with an imaginary plane that acts as a “virtual” interface,
splitting the medium into two halves. In the simulation, the particles do not see this
interface, i.e., they do not stop when crossing it. Every time a particle crosses the
plane, we score the length splane of the track segment between the two real interactions
immediately before and after the crossing. It is found that the average value of splane
is 2λT, in spite of the fact that the free path length between consecutive collisions was
sampled from an exponential PDF with the mean free path λT [yes, the scored values
splane were generated from this PDF!]. The explanation of this result is that, as a
consequence of the Markovian character, the average path length from the plane (an
arbitrary fixed point in the track) back to the last collision (or up to the next collision)
is λT.

In mixed simulations of electron/positron transport, it is necessary to limit the length
s of each “free jump” so that it does not exceed a given value smax. To accomplish this,
we still sample the free path length s to the next interaction from the exponential PDF
(1.117), but when s > smax we only let the particle advance a distance smax along the
direction of motion. At the end of the truncated free jump we do nothing (i.e., the
particle keeps its energy and direction of motion unaltered); however, for programming
convenience, we shall say that the particle suffers a delta interaction (actually, a “non-
interaction”). When the sampled value of s is less than smax, a real interaction is
simulated. After the interaction (either real or delta), we sample a new free path s,
move the particle a distance s′ = min(s, smax), etc. From the Markovian character of
the transport, it is clear that the insertion of delta interactions keeps the simulation
unbiased. If this is not immediately clear, here is a direct proof. First we note that the
probability that a free jump ends with a delta interaction is

pδ =

∫ ∞

smax

p(s) ds = exp(−smax/λT). (1.133)

To obtain the probability p(s) ds of having the first real interaction at a distance in the
interval (s, s + ds), we write s = nsmax + s′ with n = [s/smax] and, hence, s

′ < smax.
The sought probability is then equal to the probability of having n successive delta
interactions followed by a real interaction at a distance in (s′, s′ + ds) from the last,
n-th, delta interaction,

p(s) ds = pnδ λ
−1
T exp(−s′/λT) ds = λ−1

T exp(−s/λT) ds, (1.134)

which is the correct value [cf. Eq. (1.117)].
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1.5 Statistical averages and uncertainties

For the sake of being more specific, let us consider the simulation of a high-energy
electron beam impinging on the surface of a semi-infinite water phantom. Each primary
electron originates a shower of electrons and photons, which are individually tracked
down to the corresponding absorption energy. Any quantity of interest Q is evaluated
as the average score of a large number N of simulated random showers. Formally, Q
can be expressed as an integral of the form (1.79),

Q =

∫
q p(q) dq, (1.135)

where the PDF p(q) is usually unknown. The simulation of individual showers provides
a practical method to sample q from the “natural” PDF p(q): from each generated
shower we get a random value qi distributed according to p(q). The only difference to
the case of Monte Carlo integration considered above is that now the PDF p(q) describes
a cascade of random interaction events, each with its characteristic PDF. The Monte
Carlo estimate of Q is

Q =
1

N

N∑
i=1

qi. (1.136)

Thus, for instance, the average energy Edep deposited within the water phantom per
incident electron is obtained as

Edep =
1

N

N∑
i=1

ei, (1.137)

where ei is the energy deposited by all the particles of the i-th shower. The statistical
uncertainty (standard deviation) of the Monte Carlo estimate [Eq. (1.87)] is

σQ =

√
var(q)

N
=

√√√√ 1

N

[
1

N

N∑
i=1

q2i −Q
2

]
. (1.138)

As mentioned above, we shall usually express the simulation result in the form Q ±
3σQ, so that the interval (Q − 3σQ, Q + 3σQ) contains the true value Q with 99.7%
probability. Notice that to evaluate the standard deviation (1.138) we must score the
squared contributions q2i . In certain cases, the contributions qi can only take the values
0 and 1, and the standard error can be determined without scoring the squares,

σQ =

√
1

N
Q(1−Q). (1.139)

Simulation/scoring can also be used to compute continuous distributions. The sim-
plest method is to “discretise” the distributions, by treating them as histograms, and
to determine the “heights” of the different bars. To make the arguments clear, let us
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consider the depth-dose distribution D(z), defined as the average energy deposited per
unit depth and per incident electron within the water phantom. D(z) dz is the av-
erage energy deposited at depths between z and z+dz per incident electron, and the
integral of D(z) from 0 to ∞ is the average deposited energy Edep (again, per incident
electron). Since part of the energy is reflected back from the water phantom (through
backscattered radiation), Edep is less than the kinetic energy Einc of the incident elec-
trons. We are interested in determining D(z) in a limited depth interval, say from
z = zmin to z = zmax. The calculation proceeds as follows. First of all, we have to
select a partition of the interval (zmin, zmax) into M different depth bins (zk−1, zk), with
zmin = z0 < z1 < · · · < zM = zmax. Let eij,k denote the amount of energy deposited
into the k-th bin by the j-th particle of the i-th shower (each incident electron may
produce multiple secondary particles). The average energy deposited into the k-th bin
(per incident electron) is obtained as

Ek =
1

N

N∑
i=1

ei,k with ei,k ≡
∑
j

eij,k, (1.140)

and is affected by a statistical uncertainty

σEk =

√√√√ 1

N

[
1

N

N∑
i=1

e2i,k − E2
k

]
. (1.141)

The Monte Carlo depth-dose distribution DMC(z) is a stepwise constant function (see
Fig. 1.11),

DMC(z) = Dk ± 3σDk for zk−1 < z < zk (1.142)

with

Dk ≡
1

zk − zk−1

Ek, σDk ≡
1

zk − zk−1

σEk. (1.143)

Notice that the bin average and standard deviation have to be divided by the bin width
to obtain the final Monte Carlo distribution. Defined in this way, DMC(z) is an unbiased
estimator of the average energy deposited per unit depth in each bin. The limitation here
is that we are approximating the continuous distribution D(z) as a histogram with finite
bar widths. In principle, we could obtain a closer approximation by using narrower bins.
However, care has to be taken in selecting the bin widths because statistical uncertainties
may completely hide the information in narrow bins.

A few words regarding programming details are in order. To evaluate the average
deposited energy and its standard deviation for each bin, Eqs. (1.140) and (1.141), we
must score the shower contributions ei,k and their squares e2i,k. There are cases in which
the literal application of this recipe may take a large fraction of the simulation time.
Consider, for instance, the simulation of the 3D dose distribution in the phantom, which
may involve several thousand volume bins. For each bin, the energies eij,k deposited by
the individual particles of a shower must be accumulated in a partial counter to obtain
the shower contribution ei,k and, after completion of the whole shower, the value ei,k
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Figure 1.11: Typical continuous distribution generated by a Monte Carlo simulation, rep-

resented as a histogram. With the definition given by Eq. (1.143), the area of the histogram

is independent of the bin size, except for statistical uncertainties.

and its square must be added to the accumulated counters. As only a small fraction of
the bins receive energy from a single shower, it is not practical to treat all bin counters
on an equal footing. The fastest method is to transfer partial scores to the accumulated
counters only when the partial counter will receive a contribution from a new shower.
This can be easily implemented in a computer program as follows. For each quantity of
interest, say Q, we define three real counters, Q, Q2 and QP, and an integer label LQ; all
these quantities are initially set to zero. The partial scores qij of the particles of a shower
are accumulated in the partial counter QP, whereas the global shower contribution qi and
its square are accumulated in Q and Q2, respectively. Each shower is assigned a label,
for instance its order number i, which is stored in LQ the first time that the shower
contributes to QP. In the course of the simulation, the value of QP is transferred to the
global counters Q and Q2 only when it is necessary to store a contribution qij from a new
shower. Explicitly, the Fortran code for scoring Q is

IF(i.NE.LQ) THEN

Q=Q+QP

Q2=Q2+QP**2

QP=qij
LQ=i

ELSE

QP=QP+qij
ENDIF

At the end of the simulation, the residual contents of QP must be transferred to the
global counters.

For some quantities (e.g., the mean number of scattering events per track, the depth-
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dose distribution, . . . ) almost all the simulated tracks contribute to the score and the
inherent statistical uncertainties of the simulation results are comparatively small. Other
quantities (e.g., angle and energy distributions of the particles transmitted through a
thick foil) have considerable statistical uncertainties (i.e., large variances) because only
a small fraction of the simulated tracks contribute to the partial scores.

1.6 Variance reduction

In principle, the statistical uncertainty of a quantity may be somewhat reduced (without
increasing the computer simulation time) by using variance-reduction techniques. Unfor-
tunately, these optimisation techniques are extremely problem-dependent, and general
recipes to minimise the variance cannot be given. On the other hand, the importance
of variance reduction should not be overvalued. In many cases, analogue6 simulation
does the work in a reasonable time. Spending man-hours by complicating the program
to get a modest reduction in computing time may not be a good investment. It is also
important to realise that an efficient variance-reduction method usually lowers the sta-
tistical uncertainty of a given quantity Q at the expense of increasing the uncertainties
of other quantities. Thus, variance-reduction techniques are not recommended when a
global description of the transport process is sought. Here we give a brief description
of techniques which, with a modest programming effort, can be useful in improving the
solution of some ill-conditioned problems. For the sake of generality, we consider that
secondary particles can be generated in the interactions with the medium. A nice, and
practically oriented, review of variance-reduction methods in radiation transport has
been given by Bielajew and Rogers (1988).

1.6.1 Interaction forcing

Sometimes, a high variance results from an extremely low interaction probability. Con-
sider, for instance, the simulation of the energy spectrum of bremsstrahlung photons
emitted by medium energy (∼ 100 keV) electrons in a thin foil of a certain material.
As radiative events are much less probable than elastic and inelastic scattering, the un-
certainty of the simulated photon spectrum will be relatively large. In such cases, an
efficient variance-reduction method is to artificially increase the interaction probability
of the process A of interest, i.e., to force interactions of type A to occur more frequently
than for the real process. Our practical implementation of interaction forcing consists of
replacing the mean free path λA of the real process by a shorter one, λA,f . We consider
that the PDFs for the energy loss and the angular deflections (and the directions of
emitted secondary particles, if any) in the forced interactions are the same as for the
real interactions. To sample the length of the free jump to the next interaction, we use
the exponential distribution with the reduced mean free path λA,f . This is equivalent to

6We use the term “analogue” to refer to detailed, condensed or mixed simulations that do not
incorporate variance-reduction procedures.
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increasing the interaction probability per unit path length of the process A by a factor

F =
λA
λA,f

> 1. (1.144)

To keep the simulation unbiased, we must correct for the introduced distortion as follows:

(i) A weight w = 1 is associated with each primary particle. Secondary particles
produced in forced interactions of a particle with weight w are given a weight
ws = w/F . Secondary particles generated in non-forced interactions (i.e., of types
other than A) are given a weight equal to that of their parent particle.

(ii) Forced interactions are simulated to determine the energy loss and possible emis-
sion of secondary radiation, but the state variables of the interacting particle are
altered only with probability 1/F . That is, the energy E and direction of move-
ment d̂ of the projectile are varied only when the value ξ of a random number falls
below 1/F , otherwise E and d̂ are kept unchanged.

(iii) A weight wE = w/F is given to the deposited energy (and to any other alteration
of the medium such as, e.g., charge deposition) that results from forced interactions
of a particle with weight w. For non-forced interactions wE = w.

Of course, interaction forcing should be applied only to interactions that are dynamically
allowed, i.e., for particles with energy above the corresponding “reaction” threshold.

Let wi1 and fi1 denote the weight and the contribution to the score of the i-th
primary, and let wij and fij (j > 1) represent the weights and contributions of the
j-th secondary particles generated by the i-th primary. The Monte Carlo estimate of F
obtained from the N simulated histories is

F =
1

N

∑
i,j

wijfij. (1.145)

Evidently, the estimates F obtained with interaction forcing and from an analogue
simulation are equal (in the statistical sense, i.e., in the limit N →∞, their difference
tends to zero). The standard deviation is given by

σF =

√√√√√ 1

N

 1

N

∑
i

(∑
j

wijfij

)2

− F 2

. (1.146)

Quantities directly related to forced interactions will have a reduced statistical error,
due to the increase in number of these interactions. However, for a given simulation
time, other quantities may exhibit standard deviations larger than those of the analogue
simulation, because of the time spent in simulating the forced interactions.
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Interaction forcing can effectively reduce the statistical uncertainties of some simula-
tion results, particularly the emission of secondary radiations and the energy deposition
in very thin volumes. However, this technique violates energy conservation (because the
sum of energies deposited along a track differs from the energy lost by the projectile)
and, therefore, yields energy deposition spectra that are biased.

1.6.2 Splitting and Russian roulette

These two techniques, which are normally used in conjunction, are effective in problems
where interest is focused on a localised spatial region. Typical examples are the calcula-
tion of dose functions in deep regions of irradiated objects and, in the case of collimated
radiation beams, the evaluation of radial doses far from the beam axis. The basic idea
of splitting and Russian roulette methods is to favour the flux of radiation towards the
region of interest and inhibit the radiation that leaves that region. These techniques are
also useful in other problems where only a partial description of the transport process
is required. The “region of interest” may then be a limited volume in the space of state
variables (r, E, d̂). Thus, in studies of radiation backscattering, the region of interest
may be selected as the spatial region of the sample close to the irradiated surface and
the set of particle directions that point towards this surface.

As in the case of interaction forcing, variance reduction is accomplished by modifying
the weights of the particles. It is assumed that primary particles start moving with unit
weight and each secondary particle produced by a primary one is assigned an initial
weight equal to that of the primary. Splitting consists of transforming a particle, with
weight w0 and in a certain state, into a number S > 1 of identical particles with weights
w = w0/S in the same state. Splitting should be applied when the particle “approaches”
the region of interest. The Russian roulette technique is, in a way, the reverse process:
when a particle tends to move away from the region of interest it is “killed” with a certain
probability, K < 1, and, if it survives, its weight is increased by a factor 1/(1−K). Here,
killing means that the particle is just discarded (and does not contribute to the scores
anymore). Evidently, splitting and killing leave the simulation unbiased. The mean and
standard deviation of the calculated quantities are given by Eqs. (1.145) and (1.146).
The effectiveness of these methods relies on the adopted values of the parameters S
and K, and on the strategy used to decide when splitting and killing are to be applied.
These details can only be dictated by the user’s experience.

1.6.3 Other methods

Very frequently, an effective “reduction of variance” may be obtained by simply avoid-
ing unnecessary calculations. This is usually true for simulation codes that incorporate
general-purpose geometry packages. In the case of simple (e.g., planar, spherical, cylin-
drical) geometries the program may be substantially simplified and this may speed up
the simulation appreciably. In general, the clever use of possible symmetries of the
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problem under consideration may lead to spectacular variance reductions. For instance,
when the system is symmetric under rotations about an axis, splitting can be made
more effective if the position and direction of each of the S split particles are rotated
around the symmetry axis by a random angle φ = 2πξ. Thus, the S split particles are
assigned different positions and directions, and this gives a net information gain and an
increase in efficiency (see, e.g., Bush et al., 2007).

As a last example, we can quote the so-called “range rejection” method, which
simply consists of absorbing a particle when it (and its possible secondaries) cannot
leave (or reach) regions of interest. Range rejection is useful, e.g., when computing the
total energy deposition of electrons or positrons in a given spatial region. When the
residual range of a particle (and its possible secondaries) is less than the distance to the
nearest limiting surface of the region of interest, the particle will deposit all its energy
either inside or outside the considered region (depending on its current position) and
the simulation of the track can be stopped. Range rejection is not adequate for photon
transport simulation, since the concept of photon range is not well defined (or, to be
more precise, photon path length fluctuations are very large).
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Chapter 2

Photon interactions

In this Chapter, we consider the interactions of photons of energy E with atoms of
atomic number Z. We limit our considerations to the energy range from 50 eV up to
1 GeV, where the dominant interaction processes are the photoelectric effect, coherent
(Rayleigh) scattering, incoherent (Compton) scattering and electron-positron pair pro-
duction. Other interactions, such as photonuclear absorption, occur with much smaller
probability and can be disregarded for most practical purposes (see, e.g., Hubbell et al.,
1980). We start by assuming that photons are unpolarised; the simulation of interac-
tions of polarised photons is treated in Section 2.7, where arbitrary photon-polarisation
states are described in terms of the Stokes parameters.

As long as the response of an atom is not appreciably distorted by molecular binding,
the single-atom theory can be extended to molecules by using the additivity approxi-
mation, i.e., the molecular cross section for a process is approximated by the sum of the
atomic cross sections of all the atoms in the molecule. The additivity approximation can
also be applied to dense media whenever interference effects between waves scattered
by different centres (which, for instance, give rise to Bragg diffraction in crystals) are
small. We assume that these conditions are always satisfied.

The ability of Monte Carlo simulation methods to describe photon transport in com-
plex geometries has been established from research during the last five decades (Hayward
and Hubbell, 1954; Zerby, 1963; Berger and Seltzer, 1972; Chan and Doi, 1983; Ljung-
berg and Strand, 1989). The most accurate DCSs available are given in numerical form
and, therefore, advanced Monte Carlo codes make use of extensive databases. To reduce
the amount of required numerical information, in penelope we use a combination of
analytical DCSs and numerical tables of total cross sections. The adopted DCSs are
defined by simple, but physically sound analytical forms. The corresponding total cross
sections are obtained by a single numerical quadrature that is performed very quickly
using the SUMGA external function described in Appendix B. Moreover, the random
sampling from these DCSs can be done analytically and, hence, exactly. Only coherent
scattering requires a simple preparatory numerical step.

It may be argued that using analytical approximate DCSs, instead of more accurate
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Figure 2.1: Basic interactions of photons with matter.

tabulated DCSs implies a certain loss of accuracy. To minimise this loss, penelope
renormalises the analytical DCSs so as to reproduce total cross sections that are read
from the input material data file. As a consequence, the free path between events and
the kind of interaction are sampled using total cross sections that are nominally exact;
approximations are introduced only in the description of individual interaction events.

In the following, κ stands for the photon energy in units of the electron rest energy,
i.e.,

κ ≡ E

mec2
. (2.1)

2.1 Photoelectric effect

In the photoelectric effect, a photon of energy E is absorbed by the target atom, which
makes a transition to an excited state. The photon beams found in radiation transport
studies have relatively low photon densities and, as a consequence, only single-photon
absorption is observed1. To represent the atomic states, we can adopt an independent-
electron model, such as the Dirac-Hartree-Fock-Slater self-consistent model (see, e.g.,

1In intense low-energy photon beams, such as those from high-power lasers, simultaneous absorption
of several photons is possible.
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Pratt et al., 1973), in which each electron occupies a single-particle orbital, with well-
defined ionisation energy. The set of orbitals with the same principal and total angular
momentum quantum numbers and the same parity constitute a shell. Each shell i
can accommodate a finite number of electrons, with characteristic ionisation energy Ui.
Notice that the shell ionisation energies are positive; the quantity −Ui represents the
“binding” energy of each individual electron. Figure 2.2 (left diagram) shows the various
notations used to designate the innermost atomic electron shells (i.e., those with the
largest ionisation energies) as well as their ordering in energy and allowed occupancies.
In our simulations, we use the ionisation energies recommended by Carlson (1975), which
were obtained from a combination of experimental data and theoretical calculations.
Figure 2.3 displays the shell ionisation energies of neutral atoms, Z = 1 to 99, that are
larger than 100 eV.
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Figure 2.2: Various notations for inner atomic electron shells (left) and allowed radiative

transitions (right) to these shells. Transitions that are different from the ones indicated in the

diagram (e.g., K-M4) are also possible, but their transition probabilities are extremely small.

Considering the interaction with the photon field as a first-order perturbation (which
is appropriate for fields with low photon densities) it follows that only one-electron
transitions are allowed. That is, in the photoelectric effect, the photon is absorbed by
an individual electron in the “active” shell i, which leaves the parent atom with kinetic
energy Ee = E − Ui. Evidently, photoionisation of a given shell is only possible when
the photon energy exceeds the corresponding ionisation energy; this gives rise to the
characteristic absorption edges in the photoelectric cross section (see Fig. 2.4).

The photoelectric cross sections used in penelope are obtained by interpolation in
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a numerical table that was extracted from the LLNL Evaluated Photon Data Library
(EPDL; Cullen et al., 1997). This library contains photoelectric cross sections for all
shells of the elements Z = 1− 100 and photon energies from 1 eV to 1000 GeV, derived
from Scofield’s theoretical calculations of shell cross sections (Saloman et al., 1988) and
Hubbell’s total cross sections (Hubbell et al., 1980; Berger and Hubbell, 1987). The
penelope database for photoelectric absorption (a subset of the EPDL) consists of
tables of the total atomic cross section σph(E) and the cross sections for the K, L, M
and N shells, σph,i(E) (i = K, L1 to L3, M1 to M5 and N1 to N7) for the elements
Z = 1 − 99, which span the energy range from 50 eV to 1000 GeV. These tables are
estimated to be accurate to within a few percent for photon energies above 1 keV (Cullen
et al., 1997). At lower energies, uncertainties in the data are much larger, of the order
of 10–20% for 0.5 keV < E < 1 keV, 100–200% for 0.1 keV < E < 0.5 keV, and
1000% for E < 100 eV. Notice that the cross sections in the EPDL are based on free-
atom theoretical calculations and, therefore, near-edge absorption structures produced
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by molecular or crystalline ordering (e.g., extended x-ray absorption fine-structure) are
ignored.
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Figure 2.4: Atomic photoelectric cross sections for carbon, iron and uranium as functions

of the photon energy E.

For compound materials (and also for mixtures) the molecular cross section σph(E)
is evaluated by means of the additivity approximation, that is, as the sum of the atomic
cross sections of the elements involved. In the energy range between successive ab-
sorption edges, the photoelectric cross section is a continuous function of the photon
energy (see Fig. 2.4). In penelope, the molecular cross section is defined by means of
a table of numerical values σph(Ei) for a grid of photon energies Ei, suitably spaced to
account for the fast variation of the cross section near absorption edges, which is stored
in memory. Photon mean free paths are determined by linear log-log interpolation in
this table. Knowledge of the atomic cross sections is needed only when a photoabsorp-
tion event has effectively occurred in order to select the element that has been ionised
(whose probability is proportional to the atomic cross section).

2.1.1 Simulation of photoelectron emission

Let us consider that a photon with energy E is absorbed by an atom of the element
Z. The “active” shell i that is ionised is considered as a discrete random variable with
PDF

pi = σph,i(Z,E)/σph(Z,E), (2.2)

where σph,i(Z,E) is the cross section for ionisation of shell i and σph(Z,E) is the total
photoelectric cross section of the atom. penelope incorporates a detailed description of
photoabsorption in K-, L-, M- and N-shells (including the subsequent atomic relaxation).



52 Chapter 2. Photon interactions

The ionisation probabilities of these inner shells are determined from the corresponding
partial cross sections. The probability of ionisation in outer shells is obtained as

pouter = 1− pK − pL1 − . . .− pN7. (2.3)

When the ionisation occurs in an inner K-, L-, M- or N-shell, the initial energy of the
photoelectron is set equal to Ee = E − Ui; the residual atom, with a vacancy in the
shell, subsequently relaxes to its ground state by emitting x rays and Auger electrons.
If the ionisation occurs in an outer shell, we assume that the photoelectron leaves the
target atom with kinetic energy equal to the energy deposited by the photon, Ee = E,
and we disregard the emission of subsidiary fluorescent radiation (see Section 2.6).

2.1.1.1 Initial direction of photoelectrons

The direction of emission of the photoelectron, relative to that of the absorbed photon,
is defined by the polar and azimuthal angles θe (Fig. 2.1) and ϕe. We consider that the
incident photon is not polarised and, hence, the angular distribution of photoelectrons
is independent of ϕe, which is uniformly distributed in the interval (0, 2π). The polar
angle θe is sampled from the K-shell cross section derived by Sauter (1931) using K-shell
hydrogenic electron wave functions. The Sauter DCS (per electron) can be written as

dσph
dΩe

= α4r2e

(
Z

κ

)5
β3

γ

sin2 θe
(1− β cos θe)4

[
1 +

1

2
γ(γ − 1)(γ − 2)(1− β cos θe)

]
, (2.4)

where α is the fine-structure constant, re is the classical electron radius, κ = E/(mec
2)

and

γ = 1 + Ee/(mec
2), β =

√
Ee(Ee + 2mec2)

Ee +mec2
. (2.5)

Strictly speaking, the DCS (2.4) is adequate only for ionisation of the K-shell by high-
energy photons. Nevertheless, in many practical simulations no appreciable errors are
introduced when Sauter’s distribution is used to describe any photoionisation event,
irrespective of the atomic shell and the photon energy. The main reason is that the
emitted photoelectron immediately starts to interact with the medium, and its direction
of movement is strongly altered after travelling a path length much shorter than the
photon mean free path. On the other hand, when the photon energy exceeds the K-
edge, most of the ionisations occur in the K-shell and then the Sauter distribution
represents a good approximation.

Introducing the variable ν = 1 − cos θe, the angular distribution of photoelectrons
can be expressed in the form

p(ν) = (2− ν)
[

1

A+ ν
+

1

2
βγ(γ − 1)(γ − 2)

]
ν

(A+ ν)3
, A =

1

β
− 1, (2.6)

apart from a normalisation constant. Random sampling of ν from this distribution can
be performed analytically. To this end, p(ν) can be factorised in the form

p(ν) = g(ν)π(ν) (2.7)
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with

g(ν) = (2− ν)
[

1

A+ ν
+

1

2
βγ(γ − 1)(γ − 2)

]
(2.8)

and

π(ν) =
A(A+ 2)2

2

ν

(A+ ν)3
. (2.9)

The variable ν takes values in the interval (0,2), where the function g(ν) is definite
positive and attains its maximum value at ν = 0, while the function π(ν) is positive and
normalised to unity. Random values from the probability distribution π(ν) are generated
by means of the sampling formula (inverse-transform method, see Section 1.2.2)∫ ν

0

π(ν ′) dν ′ = ξ, (2.10)

which can be solved analytically to give

ν =
2A

(A+ 2)2 − 4ξ

[
2ξ + (A+ 2)ξ1/2

]
. (2.11)

Therefore, random sampling from Sauter’s distribution can be performed by the rejection
method (see Section 1.2.5) as follows:

(i) Generate ν from π(ν) by using Eq. (2.11).

(ii) Generate a random number ξ.

(iii) If ξg(0) > g(ν), go to step (i).

(iv) Deliver cos θe = 1− ν.

The efficiency of this algorithm is ∼ 0.33 at low energies and increases slowly with Ee;
for Ee = 1 MeV, the efficiency is 0.4. As photoelectric absorption occurs at most once
in each photon history, this small sampling efficiency does not slow down the simulation
significantly.

2.2 Coherent (Rayleigh) scattering

Coherent or Rayleigh scattering is the process by which photons are scattered by bound
atomic electrons without excitation of the target atom, i.e., the energies of the incident
and scattered photons are the same. The scattering is qualified as “coherent” because
it arises from the interference between secondary electromagnetic waves coming from
different parts of the atomic charge distribution.

The atomic DCS per unit solid angle for coherent scattering can be calculated using
non-relativistic perturbation theory (see, e.g., Sakurai, 1967; Baym, 1974). For photons
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with energy E much higher than the ionisation energy of the K shell (high-frequency
limit), the DCS is given approximately by (see, e.g., Born, 1969)

dσRa

dΩ
=

dσT
dΩ

[F (q, Z)]2 , (2.12)

where
dσT(θ)

dΩ
= r2e

1 + cos2 θ

2
(2.13)

is the classical Thomson DCS for scattering by a free electron at rest, θ is the polar
scattering angle (see Fig. 2.1) and F (q, Z) is the atomic form factor. The quantity re
is the classical electron radius and q is the magnitude of the momentum transfer. Since
the incident and scattered photons have linear momentum p = E/c, we have

q = |p− p′| = 2(E/c) sin(θ/2) = (E/c) [2(1− cos θ)]1/2 . (2.14)

In the literature on x-ray crystallography, the dimensionless variable

x ≡ q 10−8cm

4π~
= 20.6074

q

mec
(2.15)

is normally used instead of q.

The atomic form factor is the Fourier transform of the atomic electron density ρ(r)
which, for a spherically symmetrical atom, is given by

F (q, Z) = 4π

∫ ∞

0

ρ(r)
sin(qr/~)
qr/~

r2 dr. (2.16)

F (q, Z) is a monotonically decreasing function of q that varies from F (0, Z) = Z to
F (∞, Z) = 0 (see Fig. 2.5). The most accurate form factors are those obtained from
Hartree-Fock or configuration-interaction atomic-structure calculations; here we adopt
the non-relativistic atomic form factors from the EPDL (Cullen et al., 1997), which
were calculated by Hubbell et al. (1975). Although relativistic form factors are available
(Doyle and Turner, 1968), Hubbell has pointed out that the non-relativistic form factors
yield results in closer agreement with experiment (Cullen et al., 1997).

The total atomic cross section for coherent scattering is

σRa =

∫
dσRa

dΩ
dΩ = πr2e

∫ 1

−1

(
1 + cos2 θ

)
[F (q, Z)]2 d(cos θ). (2.17)

Introducing q, Eq. (2.14), as a new integration variable, the asymptotic behaviour of
the total cross section for small and large photon energies is made clear. For low photon
energies, the form factor in the integrand does not depart appreciably from the value
F (0, Z) = Z, i.e., coherent scattering reduces to pure Thomson scattering. Conse-
quently, we have

σRa ≃
8

3
πr2e Z

2. (2.18)
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Figure 2.5: Atomic form factors of neutral atoms of the indicated elements, taken from the

EPDL (Cullen et al., 1997).

In the high-energy limit, we get
σRa ∝ E−2. (2.19)

In practice, this limiting behaviour is attained for energies of the order of Z/2 MeV.

Strictly speaking, expression (2.12) is approximately valid only for photons with
energy well above the K absorption edge. More elaborate calculations (see, e.g., Cromer
and Liberman, 1970) show that the atomic DCS for coherent scattering of unpolarised
photons can be expressed as

dσRa

dΩ
= r2e

1 + cos2 θ

2

∣∣∣F (q, Z) + f ′ + if ′′
∣∣∣2 , (2.20)

where the complex quantity f ′ + if ′′ is known as the anomalous scattering factor or as
the dispersion correction to the form factor. The adjective “anomalous” refers to the
fast variation of this quantity for photon energies around the absorption edge. Elaborate
calculations show that the anomalous scattering factor is practically independent of the
scattering angle θ (see, e.g., Kissel et al., 1995, and references therein). The total atomic
cross sections σRa used in penelope are from the EPDL (Cullen et al., 1997), and were
calculated from the DCS given by Eq. (2.20), i.e., including the anomalous scattering
factor. Figure 2.6 displays these cross sections for aluminium, silver and gold atoms.

Anomalous scattering factors are available for all elements (Cullen et al., 1997) but
not for arbitrary compounds. On the other hand, the molecular cross section obtained
from the additivity approximation has a complicated structure that is not suited for
analytical sampling methods. For the sake of simplicity, the polar angle θ is sampled
from the DCS given by Eq. (2.12), i.e., disregarding anomalous scattering effects. This
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approximate method is sufficient for most applications because, at the energies where
anomalous scattering effects become significant, coherent scattering is much less proba-
ble than photoelectric absorption (see Fig. 2.12 below).

2.2.1 Simulation of coherent scattering events

The PDF of the angular deflection, cos θ, can be written as [see Eqs. (2.12) and (2.13);
normalisation is irrelevant here]

pRa(cos θ) =
1 + cos2 θ

2
[F (q, Z)]2 , (2.21)

where the momentum transfer q can take values in the interval from 0 to

qmax = 2(E/c) = 2mec κ. (2.22)

This PDF can be factorised in the form

pRa(cos θ) = g(cos θ)π(q2) (2.23)

with

g(cos θ) ≡ 1 + cos2 θ

2
and π(q2) ≡ [F (q, Z)]2 . (2.24)

Notice that, for a compound, [F (q, Z)]2 has to be replaced by the sum of squared form
factors of the atoms in the molecule.
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The function π(q2) can be considered as the (unnormalised) PDF of the variable
q2, which takes values in the interval (0, q2max). In penelope, random values of q2

distributed according to this PDF are generated by using the RITA algorithm (see
Section 1.2.4) with 150 grid points.

The angular deflection cos θ can then be sampled by the rejection method (Section
1.2.5), because the function g(cos θ) is a valid rejection function (i.e., it is positive and
less than or equal to unity). The algorithm for sampling cos θ proceeds as follows:

(i) Using the RITA algorithm, sample a random value of q2 from the distribution
π(q2), restricted to the interval (0, q2max).

(ii) Set

cos θ = 1− 1

2

q2

κ2
. (2.25)

(iii) Generate a new random number ξ.

(iv) If ξ > g(cos θ), go to step (ii).

(v) Deliver cos θ.

It is worth noting that this sampling method is essentially independent of the adopted
form factor, and is directly applicable to molecules. The efficiency of the algorithm (i.e.,
the fraction of generated values of cos θ that is accepted) increases with photon energy.
At low energies, it equals 2/3 (exactly) for all elements. For E = 100 keV, the efficiencies
for hydrogen and uranium are 100% and 86%, respectively.

2.3 Incoherent (Compton) scattering

In Compton scattering, a photon of energy E interacts with an atomic electron, which
absorbs it and re-emits a secondary (Compton) photon of energy E ′ in the direction Ω =
(θ, ϕ) relative to the direction of the original photon. In penelope, Compton scattering
events are described by means of the cross section obtained from the relativistic impulse
approximation (Ribberfors, 1983). Contributions from different atomic electron shells
are considered separately. After a Compton interaction with the i-th shell, the active
target electron is ejected to a free state with kinetic energy Ee = E−E ′−Ui > 0, where
Ui is the ionisation energy of the considered shell, and the residual atom is left in an
excited state with a vacancy in the i-th shell.

In the case of scattering by free electrons at rest, the conservation of energy and mo-
mentum implies the following relation between the energy E ′ of the scattered (Compton)
photon and the scattering angle θ [cf. Eq. (A.19)]

E ′ ≡ E

1 + κ(1− cos θ)
≡ EC, (2.26)
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where κ = E/mec
2, as before. The DCS for Compton scattering by a free electron at

rest is given by the familiar Klein-Nishina formula (see, e.g., Heitler, 1954),

dσKN
Co

dΩ
=
r2e
2

(
EC

E

)2 (
EC

E
+

E

EC

− sin2 θ

)
. (2.27)

Although this simple DCS was generally used in old Monte Carlo transport codes, it
represents only a rough approximation for the Compton interactions of photons with
atoms. In reality, atomic electrons are not at rest, but move with a certain momentum
distribution, which gives rise to the so-called Doppler broadening of the Compton line.
Moreover, transitions of bound electrons are allowed only if the energy transfer E − E ′

is larger than the ionisation energy Ui of the active shell (binding effect).

The impulse approximation accounts for Doppler broadening and binding effects
in a natural, and relatively simple, way. The DCS is obtained by considering that
electrons in the i-th shell move with a momentum distribution ρi(p). For an electron in
an orbital ψi(r), ρi(p) ≡ |ψi(p)|2, where ψi(p) is the wave function in the momentum
representation. The DCS for Compton scattering by an electron with momentum p
is derived from the Klein-Nishina formula by applying a Lorentz transformation with
velocity v equal to that of the moving target electron. The impulse approximation to
the Compton DCS (per electron) of the considered shell is obtained by averaging over
the momentum distribution ρi(p).

After some manipulations, the Compton DCS of an electron in the i-th shell can be
expressed as [Eq. (21) in Brusa et al., 1996]

d2σCo,i

dE ′dΩ
=
r2e
2

(
EC

E

)2 (
EC

E
+

E

EC

− sin2 θ

)
F (pz) Ji(pz)

dpz
dE ′ , (2.28)

where re is the classical electron radius. EC is the energy of the Compton line, defined
by Eq. (2.26), i.e., the energy of photons scattered in the direction θ by free electrons
at rest . The momentum transfer vector is given by q ≡ ~k− ~k′, where ~k and ~k′ are
the momenta of the incident and scattered photons; its magnitude is

q =
1

c

√
E2 + E ′2 − 2EE ′ cos θ. (2.29)

The quantity pz is the projection of the initial momentum p of the target electron on
the direction of the scattering vector ~k′ − ~k = −q; it is given by2

pz ≡ −
p · q
q

=
EE ′(1− cos θ)−mec

2(E − E ′)

c2q
(2.30)

or, equivalently,
pz
mec

=
E(E ′ − EC)

EC cq
. (2.31)

2The expression (2.30) contains an approximation; the exact relation is obtained by replacing the
electron rest energy mec

2 in the numerator by the electron initial total energy,
√

(mec2)2 + (cp)2.
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Notice that pz = 0 for E ′ = EC. Moreover,

dpz
dE ′ =

mec

cq

(
E

EC

+
E cos θ − E ′

cq

pz
mec

)
. (2.32)

The function Ji(pz) in Eq. (2.28) is the one-electron Compton profile of the active
shell, which is defined as

Ji(pz) ≡
∫ ∫

ρi(p) dpx dpy, (2.33)

where ρi(p) is the electron momentum distribution. That is, Ji(pz) dpz gives the proba-
bility that the component of the electron momentum in the z-direction is in the interval
(pz, pz + dpz). Notice that the normalisation∫ ∞

−∞
Ji(pz) dpz = 1 (2.34)

is assumed. In the Hartree-Fock approximation for closed-shell configurations, the mo-
mentum distribution of the electrons in an atomic shell, obtained by adding the contri-
butions of the orbitals in that shell, is isotropic. For an isotropic distribution, expression
(2.33) simplifies to

Ji(pz) = 2π

∫ ∞

|pz |
p ρi(p) dp. (2.35)

The atomic Compton profile is given by

J(pz) =
∑
i

fi Ji(pz), (2.36)

where fi is the number of electrons in the i-th shell and Ji(pz) is the one-electron profile
of this shell. The functions J(pz) and Ji(pz) are both bell-shaped and symmetrical about
pz = 0 (see Fig. 2.7). Extensive tables of Hartree-Fock Compton profiles for the elements
have been published by Biggs et al. (1975). These numerical profiles are adequate for
bound electron shells. In the case of conductors, the one-electron Compton profile for
conduction electrons may be estimated by assuming that these form a free-electron gas
with ρe electrons per unit volume. The one-electron profile for this system is (see, e.g.,
Cooper, 1971)

J feg
i (pz) =

3

4pF

(
1− p2z

p2F

)
Θ(pF − |pz|), J feg

i (0) =
3

4pF
, (2.37)

where pF ≡ ~(3π2ρe)
1/3 is the Fermi momentum. For scattering in a compound material,

the molecular Compton profile is obtained as the sum of atomic profiles of the atoms in
a molecule (additivity rule).

The factor F (pz) in Eq. (2.28) is approximately given by

F (pz) ≃ 1 +
cqC
E

(
1 +

EC(EC − E cos θ)

(cqC)2

)
pz
mec

, (2.38)
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Figure 2.7: Atomic Compton profiles (pz > 0) for aluminium, copper and gold. The

continuous curves are numerical Hartree-Fock profiles tabulated by Biggs et al. (1975). The

dashed curves represent the analytical profiles defined by Eq. (2.54). (Adapted from Brusa et

al., 1996.)

where qC is the momentum transfer associated with the energy E ′ = EC of the Compton
line,

qC ≡
1

c

√
E2 + E2

C − 2EEC cos θ. (2.39)

Expression (2.38) is accurate only for small |pz|-values. For large |pz|, Ji(pz) tends to zero
and the factor F (pz) has no effect on the DCS. We use the values given by expression
(2.38) only for |pz| < 0.2mec and take F (±|pz|) = F (±0.2mec) for |pz| > 0.2mec.
Owing to the approximations introduced, negative values of F may be obtained for
large |pz|; in this case, we must set F = 0.

We can now introduce the effect of electron binding: Compton excitations are allowed
only if the target electron is promoted to a free state, i.e., if the energy transfer E −E ′

is larger than the ionisation energy Ui of the active shell. Therefore the atomic DCS,
including Doppler broadening and binding effects, is given by

d2σCo

dE ′dΩ
=

r2e
2

(
EC

E

)2 (
EC

E
+

E

EC

− sin2 θ

)

× F (pz)

(∑
i

fi Ji(pz)Θ(E − E ′ − Ui)

)
dpz
dE ′ , (2.40)

where Θ(x) (= 1 if x > 0, = 0 otherwise) is the Heaviside step function. In the
calculations we use the ionisation energies Ui given by Carlson (1975), Fig. 2.3. The
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DCS for scattering of 10 keV photons by aluminium atoms is displayed in Fig. 2.8, for
θ = 60 and 180 deg, as a function of the fractional energy of the emerging photon. The
DCS for a given scattering angle has a maximum at E ′ = EC; its shape resembles that
of the atomic Compton profile, except for the occurrence of edges at E ′ = E − Ui.
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Figure 2.8: DCS for Compton scattering of 10 keV photons by aluminium atoms at the

indicated scattering angles. The continuous curves represent the DCS (2.40) calculated using

the Hartree-Fock Compton profile (Biggs et al., 1975). The dashed curves are results from Eq.

(2.40) with the analytical profiles given by Eq. (2.54). (Adapted from Brusa et al., 1996.)

In the case of scattering by free electrons at rest we have Ui = 0 (no binding) and
Ji(pz) = δ(pz) (no Doppler broadening). Moreover, from Eq. (2.31) E ′ = EC, so that
photons scattered through an angle θ have energy EC. Integration of the DCS, Eq.
(2.40), over E ′ then yields the Klein-Nishina cross section,

dσKN
Co

dΩ
= Z

r2e
2

(
EC

E

)2 (
EC

E
+

E

EC

− sin2 θ

)
, (2.41)

for the Z atomic electrons [cf. Eq. (2.27)]. For energies of the order of a few MeV and
larger, Doppler broadening and binding effects are relatively small and the free-electron
theory yields results practically equivalent to those of the impulse approximation.
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The angular distribution of scattered photons is given by the directional DCS,

dσCo

dΩ
=

∫
d2σCo

dE ′dΩ
dE ′ =

r2e
2

(
EC

E

)2 (
EC

E
+

E

EC

− sin2 θ

)
×
∑
i

fiΘ(E − Ui)

∫ pi,max

−∞
F (pz)Ji(pz) dpz, (2.42)

where pi,max is the highest pz-value for which an electron in the i-th shell can be excited.
It is obtained from Eq. (2.30) by setting E ′ = E − Ui,

pi,max(E, θ) =
E(E − Ui)(1− cos θ)−mec

2Ui

c
√

2E(E − Ui)(1− cos θ) + U2
i

. (2.43)

Except for energies just above the shell ionisation threshold, the function F (pz) in the
integral can be replaced by unity, since pzJi(pz) is an odd function and its integral is
close to zero, i.e., ∫ pi,max

−∞
F (pz)Ji(pz) dpz ≃ ni(pi,max), (2.44)

where

ni(pz) ≡
∫ pz

−∞
Ji(p

′
z) dp

′
z. (2.45)

Notice that ni(pz) is a monotonously increasing function of pz, which varies from 0 at
pz = −∞ to unity at pz =∞; the quantity ni(pi,max) represents the fraction of electrons
in the i-th shell that can be effectively excited in a Compton interaction. We can then
write

dσCo

dΩ
≃ r2e

2

(
EC

E

)2 (
EC

E
+

E

EC

− sin2 θ

)
S(E, θ). (2.46)

The function

S(E, θ) =
∑
i

fi Θ(E − Ui)ni(pi,max) (2.47)

can be identified as the incoherent scattering function in the impulse approximation
(see, e.g., Ribberfors and Berggren, 1982). The total cross section can then be obtained
as

σCo ≃ 2π

∫ 1

−1

dσCo

dΩ
d(cos θ). (2.48)

For comparison purposes, and also to calculate the energy deposition, it is useful to
consider the cross section differential in only the energy of the scattered photon,

dσCo

dE ′ ≡
∫

d2σCo

dE ′dΩ
dΩ. (2.49)
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In the case of scattering by free electrons at rest, E ′ = EC and the Klein-Nishina
formula (2.41) gives the following expression for the energy DCS,

dσKN
Co

dE ′ = 2π
dσKN

Co

dΩ

d(cos θ)

dEC

=
πr2e
E

κ−3

(
E2

E ′2 +
(κ2 − 2κ− 2)E

E ′ + (2κ+ 1) +
κ2E ′

E

)
. (2.50)

The EPDL (Cullen et al., 1997), the xcom program (Berger and Hubbell, 1987) and
several Monte Carlo codes describe Compton scattering by means of the theory of Waller
and Hartree (1929), which accounts for binding effects but disregards Doppler broad-
ening, i.e., photons scattered through an angle θ are assumed to have energy E ′ = EC.
This theory leads to the DCS

dσWH
Co

dE ′ =
dσKN

Co

dE ′ SWH(qC), (2.51)

where qC is the momentum transfer for the Compton line, given by Eq. (2.39), and
SWH(qC) is the Waller-Hartree incoherent scattering function, which can be calculated
in terms of the atomic ground-state wave function. It is a monotonically increasing
function of qC that takes values from SWH(0) = 0 to SWH(∞) = Z. Tables of the
Waller-Hartree incoherent scattering function for all elements from Z = 1 to 100 have
been compiled by Hubbell et al. (1975); accurate analytical approximations for SWH(qC)
are given by Baró et al. (1994a).

Figure 2.9 displays energy DCSs for Compton scattering by aluminium and gold
atoms obtained from the impulse approximation, the Klein-Nishina formula and the
Waller-Hartree theory [Eqs. (2.49), (2.50) and (2.51), respectively]. These results clearly
show the differences between the physics of the impulse approximation and the cruder
Waller-Hartree and free-electron approximations. The Klein-Nishina andWaller-Hartree
DCSs have a threshold at

E ′
th = E/(1 + 2κ). (2.52)

The most conspicuous feature of the impulse approximation DCS is the absence of
a threshold energy, which is a direct manifestation of the Doppler broadening. For
relatively small energy transfers (E ′ ∼ E) the Klein-Nishina DCS increases with the
energy of the scattered photon, whereas the energy DCS obtained from the impulse
approximation vanishes at E ′ = E due to the effect of binding, which also causes the
characteristic edge structure, similar to that of the photoelectric cross section (see Fig.
2.4). The Waller-Hartree DCS decreases smoothly when the energy of the scattered
photon approaches E, in qualitative agreement with the behaviour of the DCS from the
impulse approximation.

The left panel of Fig. 2.10 shows total cross sections for Compton scattering by
aluminium and gold atoms as functions of the energy E of the incident photon. While
total cross sections obtained from the impulse approximation and from the Waller-
Hartree theory tend to zero for small E, the Klein-Nishina total cross section goes to a
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Figure 2.9: Energy DCSs for Compton scattering of 50 and 500 keV photons by aluminium

and gold atoms. The continuous curves represent the DCS (2.49), computed using the analyt-

ical Compton profiles (2.54). The dashed curves are obtained from the Klein-Nishina formula

(2.50), i.e., assuming that the atomic electrons are free and at rest. Dot-dashed curves rep-

resent results from the Waller-Hartree theory, Eq. (2.51). (Adapted from Brusa et al., 1996.)

finite value for E → 0. For energies larger than a few tens of keV, the total cross section
obtained from the Waller-Hartree theory does not differ significantly from the result of
the impulse approximation, reflecting that the total cross section is quite insensitive to
Doppler broadening, i.e. the areas under the impulse approximation and Waller-Hartree
curves in Figs. 2.9 are practically the same.

A quantity of interest in dosimetry is the energy-deposition cross section,

σCo,E ≡
∫
0

dσCo

dE
(E − E ′) dE. (2.53)

Energy-deposition cross sections for gold, computed using the impulse approximation,
the Waller-Hartree and the Klein-Nishina DCSs, are displayed in the right panel of
Fig. 2.10. As pointed out by Ribberfors (1983), values of σCo,E obtained from the
Waller-Hartree theory are systematically smaller than those derived from the impulse
approximation. Clearly, this is a consequence of Doppler broadening, which makes
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possible energy transfers larger than the maximum value E−EC allowed in the Waller-
Hartree theory (see Figs. 2.9). Interestingly, in the low-energy domain, the simpler
Klein-Nishina DCS yields values of the energy-deposition cross section σCo,E that are
closer to the result of the impulse approximation.
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Figure 2.10: Total cross sections for Compton scattering of photons by aluminium and

gold atoms as functions of the photon energy E (left panel). Continuous curves are results

obtained from the impulse approximation with the analytical profiles (2.54). The dashed

and dot-dashed curves represent results from the Waller-Hartree theory, Eq. (2.51), and from

the Klein-Nishina formula, Eq. (2.50), respectively. Crosses are total cross sections given by

Ribberfors (1983) for aluminium, calculated from the impulse approximation using numerical

non-relativistic Hartree-Fock Compton profiles. The right plot shows energy-deposition cross

sections, Eq. (2.53), for Compton scattering by gold atoms, calculated from the theoretical

models indicated in the legend. (Adapted from Brusa et al., 1996.)

2.3.1 Analytical Compton profiles

In order to simplify the random sampling and to minimise the required numerical infor-
mation, we use approximate one-electron profiles of the form

JA
i (pz) = Ji,0

nd2
2

(
d1 + d2Ji,0 |pz|

)n−1

exp
[
dn
1 −

(
d1 + d2Ji,0 |pz|

)n]
(2.54)
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with

n = 2, d1 =

(
n− 1

n

)1/n

=

√
1

2
, d2 =

2

n
d 1−n
1 =

√
2.

The quantity Ji,0 ≡ Ji(0) is the value of the profile at pz = 0 obtained from the Hartree-
Fock orbital (Biggs et al., 1975). Ji(0) is tabulated in the file pdatconf.p08 for all shells
of the elements Z = 1 to 99. Notice that JA

i (pz) is normalised according to Eq. (2.34).
With the profiles (2.54),

nA
i (pz) ≡

∫ pz

−∞
JA
i (p

′
z) dp

′
z =


1
2
exp

[
d 2
1 −

(
d1 − d2Ji,0 pz

)2]
if pz < 0,

1− 1
2
exp

[
d 2
1 −

(
d1 + d2Ji,0 pz

)2]
if pz > 0.

(2.55)

Thus, the incoherent scattering function (2.47) can be expressed analytically and the
integral (2.48) evaluated very quickly with the aid of function SUMGA (Appendix B). On
the other hand, the sampling equation nA

i (pz) ≡ ξnA
i (pi,max) (see Section 1.2.2) can be

solved analytically,

pz =


1

d2Ji,0

[
d1 −

(
d 2
1 − ln 2A

)1/2]
if A < 1

2
,

1

d2Ji,0

[(
d 2
1 − ln 2(1− A)

)1/2 − d1] if A > 1
2
,

(2.56)

where A ≡ ξnA
i (pi,max). Atomic Compton profiles obtained from the approximation

given by Eq. (2.54) are accurate for small pz and oscillate about the Hartree-Fock values
for intermediate momenta (see Fig. 2.7). The relative differences are normally less than
5%, except for large momenta for which J(pz) is very small. Similar differences are found
between the DCS computed from Hartree-Fock and analytical Compton profiles (see Fig.
2.8). For most applications (e.g., studies of detector response, dosimetry, radiotherapy,
etc.), the effect of these differences on the simulation results is not important. The
impulse approximation with the analytical one-electron profiles (2.54) then provides a
conveniently simple method to introduce Doppler broadening and binding effects in the
simulation of Compton scattering.

For photons with energies E lower than, and of the order of the ionisation energy
of the K shell, the total cross section obtained from Eq. (2.48) (with F (pz) = 1) may
differ by a few percent from the result of integrating the DCS (2.40) numerically. In the
simulation code, we use a more accurate calculation scheme in which the contribution
of the second term in the expression (2.38) of F (pz) is estimated by using the Compton
profile of a free electron gas, Eq. (2.37), with a Fermi momentum such that J feg

i = Ji,0.
This reduces the error of the calculated total atomic cross sections to less than about 1
%.

In penelope, the maximum number of electron shells for each material is limited.
For heavy elements, and also for compounds, the number of shells may be fairly large.
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In this case, outer shells with similar ionisation energies are grouped together and re-
placed by a single shell with a Ji,0 value and an effective ionisation energy equal to the
corresponding averages of the grouped shells. This grouping does not alter the average
effects of Doppler broadening and binding.

2.3.2 Simulation of incoherent scattering events

Compton events are simulated on the basis of the DCS given by Eq. (2.40) with the
analytical Compton profiles (2.54). The sampling algorithm adopted here is due to
Brusa et al. (1996). It is similar to the one described by Namito et al. (1994), but has
a higher efficiency.

The PDF of the polar deflection cos θ and the energy E ′ of the scattered photon is
given by (apart from normalisation constants, which are irrelevant here)

PCo(cos θ, E
′) =

(
EC

E

)2(
EC

E
+

E

EC

− sin2 θ

)

× F (pz)

(∑
i

fi Ji(pz)Θ(E − E ′ − Ui)

)
dpz
dE ′ . (2.57)

Integration of expression (2.57) over E ′, using the approximation (2.44), yields the PDF
of the polar deflection

Pθ(cos θ) =

(
EC

E

)2(
EC

E
+

E

EC

− sin2 θ

)
S(E, θ), (2.58)

where S(E, θ) is the incoherent scattering function, Eq. (2.47).

Random values of cos θ from the PDF (2.58) can be generated by using the following
algorithm (Baró et al.., 1994a). Let us introduce the quantity

τ ≡ EC

E
=

1

1 + κ(1− cos θ)
. (2.59)

The minimum and maximum values of τ are

τmin =
1

1 + 2κ
and τmax = 1, (2.60)

which correspond to backward (θ = π) and forward (θ = 0) scattering, respectively.
The PDF of this variable is (again ignoring normalisation constants)

Pτ (τ) = Pθ(cos θ)
d(cos θ)

dτ
=

(
1

τ 2
+
κ2 − 2κ− 2

τ
+ (2κ+ 1) + κ2τ

)
S(E, θ). (2.61)

This distribution can be rewritten in the form (Nelson et al., 1985)

Pτ (τ) = [a1 P1(τ) + a2 P2(τ)]T (cos θ), (2.62)
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where

a1 = ln(1 + 2κ), a2 =
2κ(1 + κ)

(1 + 2κ)2
, (2.63)

P1(τ) =
1

ln(1 + 2κ)

1

τ
, P2(τ) =

(1 + 2κ)2

2κ(1 + κ)
τ (2.64)

and

T (cos θ) =
1 + (κ2 − 2κ− 2)τ + (2κ+ 1)τ 2 + κ2τ 3

κ2τ(1 + τ 2)

S(E, θ)

S(E, θ = π)

=

{
1− (1− τ) [(2κ+ 1)τ − 1]

κ2τ(1 + τ 2)

}
S(E, θ)

S(E, θ = π)
. (2.65)

The function in braces is positive, it equals 1 at the end points of the interval (τmin,1),
and is less than unity inside this interval. Moreover, the ratio of incoherent scattering
functions is also less than unity for any value of θ < π. Hence, the function T (cos θ) is
a valid rejection function. The functions Pi(τ) (i = 1, 2) are normalised PDFs in the
interval (τmin, 1), which can be easily sampled by using the inverse-transform method.
The generation of random values of τ according to the PDF given by Eq. (2.61) can
then be performed by combining the composition and rejection methods (Section 1.2).
The algorithm to sample cos θ proceeds as follows:

(i) Sample a value of the integer i (=1, 2) according to the point probabilities

π(1) =
a1

a1 + a2
and π(2) =

a2
a1 + a2

. (2.66)

(ii) Sample τ from Pi(τ) using the sampling formulae

τ =

 τ ξmin if i = 1,

[τ 2min + ξ (1− τ 2min)]
1/2

if i = 2,
(2.67)

which can be easily derived by the inverse-transform method (Section 1.2.2).

(iii) Determine cos θ using Eq. (2.59),

cos θ = 1− 1− τ
κτ

, (2.68)

and compute the quantities pi,max(E, θ), Eq. (2.43), and

S(E, θ) =
∑
i

fiΘ(E − Ui)n
A
i (pi,max). (2.69)

(iv) Generate a new random number ξ.
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(v) If ξ > T (cos θ), go to step (i).

(vi) Deliver cos θ.

The efficiency of this algorithm, i.e., the probability of accepting a generated cos θ-value,
increases monotonically with photon energy and is nearly independent of Z; typical
values are 35%, 80% and 95% for E = 1 keV, 1 MeV and 10 MeV, respectively.

Once the direction of the emerging photon has been set, the active electron shell i
is selected with relative probability equal to ZiΘ(E − Ui)n

A
i (pi,max(E, θ)). A random

value of pz is generated from the analytical Compton profile (2.54) using the sampling
formula (2.56). If pz is less than −mec, it is rejected and a new shell and a pz-value
are sampled3. Finally, the factor F (pz) in the PDF (2.40) is accounted for by means of
a rejection procedure. It should be noted that the approximation F ≃ 1 is valid only
when the DCS is integrated over E ′; otherwise the complete expression (2.38) must be
used. Let Fmax denote the maximum value of F (pz), which occurs at pz = 0.2mec or
−0.2mec; a random number ξ is generated and the value pz is accepted if ξFmax < F (pz),
otherwise the process of selecting a shell and a pz-value is reinitiated. The energy E

′ of
the emerging photon is then calculated from Eq. (2.30), which gives

E ′ = E
τ

1− tτ 2

[
(1− tτ cos θ) + sign(pz)

√
(1− tτ cos θ)2 − (1− tτ 2)(1− t)

]
, (2.70)

where

t ≡ (pz/mec)
2 and sign(pz) ≡ pz/|pz|. (2.71)

For photons with energy larger than 5 MeV, for which Doppler broadening is negli-
gible, we set E ′ = EC (which amounts to assuming that pz = 0). In this case, the active
electron shell i is sampled with relative probability fi and binding effects are accounted
for by simply rejecting E ′-values such that E − E ′ < Ui.

The azimuthal scattering angle ϕ of the photon is sampled uniformly in the interval
(0, 2π). We assume that the Compton electron is emitted with energy Ee = E−E ′−Ui

in the direction of the momentum transfer vector q = ~k− ~k′, with polar angle θe and
azimuthal angle ϕe = ϕ + π, relative to the direction of the incident photon. cos θe is
given by

cos θe =
E − E ′ cos θ√

E2 + E ′2 − 2EE ′ cos θ
. (2.72)

When E ′ = EC, this expression simplifies to

cos θe =
E +mec

2

E

(
E − EC

2mec2 + E − EC

)1/2

, (2.73)

which coincides with the result (A.20). Since the active electron shell is known, char-
acteristic x rays and Auger electrons emitted in the de-excitation of the ionised atom
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Table 2.1: Average number nr of random numbers ξ needed to simulate a single incoherent

scattering event for photons with energy E in aluminium, silver and gold.

E (eV) Al Ag Au

103 16.6 11.9 13.4

104 11.0 11.4 11.5

105 9.5 9.8 10.0

106 8.2 8.2 8.3

107 7.5 7.5 7.5

can also be followed. This is important, for instance, to account for escape peaks in
scintillation or solid state detectors

As a measure of the efficiency of the sampling algorithm, we may consider the average
number nr of random numbers ξ required to simulate an incoherent scattering event. nr

is practically independent of the atomic number and decreases with photon energy (see
Table 2.1). The increase of nr at low energies stems from the loss of efficiency of the
algorithm used to sample cos θ. Although the simulation of incoherent events becomes
more laborious as the photon energy decreases, this has only a small influence on the
speed of practical photon transport simulations because low-energy photons interact
predominantly via photoelectric absorption (see Fig. 2.12 below).

2.4 Electron-positron pair production

Electron-positron pairs can be created by absorption of a photon in the vicinity of a
massive particle, a nucleus or an electron, which absorbs energy and momentum so that
these two quantities are conserved. The threshold energy for pair production in the field
of a nucleus (assumed of infinite mass) is 2mec

2. When pair production occurs in the
field of an electron, the target electron recoils after the event with appreciable kinetic
energy; the process is known as “triplet production” because it causes three visible
tracks when observed, e.g., in a cloud chamber. If the target electron is at rest, triplet
production is only possible for photons with energy larger than 4mec

2.

For the simulation of pair-production events in the field of an atom of atomic number
Z, we shall use the following semiempirical model (Baró et al., 1994a). Our starting
point is the high-energy DCS for arbitrary screening, which was derived by Bethe and
Heitler from the Born approximation (Motz et al., 1969; Tsai, 1974). The Bethe-Heitler
DCS for a photon of energy E to create an electron-positron pair, in which the electron

3Notice that, due to the approximation introduced in Eq. (2.38), a value pz < −mec would yield a
negative energy for the scattered photon.
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has a kinetic energy E− = ϵE −mec
2, can be expressed as (Tsai, 1974)

dσ
(BH)
pp

dϵ
= r2eαZ[Z + η]

{[
ϵ2 + (1− ϵ)2

]
(Φ1 − 4fC) +

2

3
ϵ(1− ϵ)(Φ2 − 4fC)

}
. (2.74)

Notice that the “reduced energy” ϵ = (E− +mec
2)/E is the fraction of the photon en-

ergy that is taken away by the electron. The screening functions Φ1 and Φ2 are given by
integrals that involve the atomic form factor and, therefore, must be computed numeri-
cally when a realistic form factor is adopted (e.g., the analytical form factor described in
Section 2.1). To obtain approximate analytical expressions for these functions, we shall
assume that the Coulomb field of the nucleus is exponentially screened by the atomic
electrons (Schiff, 1951, 1968; Tsai, 1974), i.e., the electrostatic potential of the atom is
assumed to be (Wentzel model)

φW(r) =
Ze

r
exp(−r/R), (2.75)

with the screening radius R considered as an adjustable parameter (see below). The
corresponding atomic electron density is obtained from Poisson’s equation,

ρW(r) =
1

4πe
∇2φ(r) =

1

4πe

1

r

d2

dr2
[rφ(r)] =

Z

4πR2r
exp(−r/R), (2.76)

and the atomic form factor is

FW(q, Z) = 4π

∫ ∞

0

ρW(r)
sin(qr/~)
qr/~

r2 dr =
Z

1 + (Rq/~)2
. (2.77)

The screening functions for this particular form factor take the following analytical
expressions (Tsai, 1974)

Φ1 = 2− 2 ln(1 + b2)− 4b arctan(b−1) + 4 ln(Rmec/~)

Φ2 =
4

3
− 2 ln(1 + b2) + 2b2

[
4− 4b arctan(b−1)− 3 ln(1 + b−2)

]
+ 4 ln(Rmec/~), (2.78)

where

b =
Rmec

~
1

2κ

1

ϵ(1− ϵ)
. (2.79)

The quantity η in Eq. (2.74) accounts for pair production in the field of the atomic
electrons (triplet production), which is considered in detail by Hubbell et al. (1980) and
Tsai (1974). In order to simplify the calculations, the dependence of the triplet cross
section on the electron reduced energy, ϵ, is assumed to be the same as that of the pair
cross section. The function fC in (2.74) is the high-energy Coulomb correction of Davies,
Bethe and Maximon (1954) given by

fC(Z) = a2
[
(1 + a2)−1 + 0.202059− 0.03693a2 + 0.00835a4

− 0.00201a6 + 0.00049a8 − 0.00012a10 + 0.00003a12
]
, (2.80)
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with a = αZ. The total atomic cross section for pair (and triplet) production is obtained
as

σ(BH)
pp =

∫ ϵmax

ϵmin

dσ
(BH)
pp

dϵ
dϵ, (2.81)

where

ϵmin = mec
2/E = κ−1 and ϵmax = 1−mec

2/E = 1− κ−1. (2.82)

Extensive tables of pair-production total cross sections, evaluated by combining dif-
ferent theoretical approximations, have been published by Hubbell et al. (1980). These
tables give the separate contributions of pair production in the field of the nucleus and
in that of the atomic electrons for Z = 1 to 100 and for photon energies from threshold
up to 105 MeV. Following Salvat and Fernández-Varea (1992), the screening radius R
has been determined by requiring that Eq. (2.74) with η = 0 exactly reproduces the
total cross sections given by Hubbell et al. (1980) for pair production in the nuclear field
by 105 MeV photons (after exclusion of radiative corrections, which only amount to ∼
1% of the total cross section). The screening radii for Z = 1–99 obtained in this way
are given in Table 2.2.

Actually, the triplet contribution, η, varies with the photon energy. It increases
monotonically from zero at E ≃ 4mec

2 and reaches a saturation value, η∞, at high
energies. It can be obtained, for all elements and energies up to 105 MeV, as

η(E) = Z σHGO
triplet(E)/σ

HGO
pair (E), (2.83)

where σHGO
pair and σHGO

triplet are the total cross sections for pair and triplet production given
by Hubbell et al. (1980). At 105 MeV, the high-energy limit is reached, i.e.,

η∞ ≃ Z σHGO
triplet(10

5MeV)/σHGO
pair (105MeV). (2.84)

The values of η∞ for the elements Z = 1–99 are given in Table 2.2.

The approximation given by Eq. (2.74) with the fitted value of the screening radius,
fails at low energies where it systematically underestimates the total cross section (it
can even become negative). To compensate for this fact we introduce an empirical
correcting term F0(κ, Z), which acts in a way similar to the Coulomb correction. To
facilitate the random sampling, the Bethe-Heitler DCS, Eq. (2.74), including this low-
energy correction and a high-energy radiative correction, is written in the form

dσpp
dϵ

= r2eαZ[Z + η]Cr
2

3

[
2

(
1

2
− ϵ
)2

ϕ1(ϵ) + ϕ2(ϵ)

]
, (2.85)

where

ϕ1(ϵ) = g1(b) + g0(κ),

ϕ2(ϵ) = g2(b) + g0(κ), (2.86)
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Table 2.2: Reduced screening radius, Rmec/~, and high-energy triplet contribution, η∞, for

electron-positron pair production obtained from the tables of Hubbell et al. (1980) as described

in the text. Notice that ~/mec = 3.8616×10−13 m is the Compton wavelength of the electron.

Z Rmec/~ η∞ Z Rmec/~ η∞ Z Rmec/~ η∞

1 122.81 1.157 34 32.740 1.158 67 26.108 1.197

2 73.167 1.169 35 32.438 1.158 68 25.929 1.197

3 69.228 1.219 36 32.143 1.158 69 25.730 1.198

4 67.301 1.201 37 31.884 1.166 70 25.577 1.198

5 64.696 1.189 38 31.622 1.173 71 25.403 1.200

6 61.228 1.174 39 31.438 1.174 72 25.245 1.201

7 57.524 1.176 40 31.142 1.175 73 25.100 1.202

8 54.033 1.169 41 30.950 1.170 74 24.941 1.204

9 50.787 1.163 42 30.758 1.169 75 24.790 1.205

10 47.851 1.157 43 30.561 1.172 76 24.655 1.206

11 46.373 1.174 44 30.285 1.169 77 24.506 1.208

12 45.401 1.183 45 30.097 1.168 78 24.391 1.207

13 44.503 1.186 46 29.832 1.164 79 24.262 1.208

14 43.815 1.184 47 29.581 1.167 80 24.145 1.212

15 43.074 1.180 48 29.411 1.170 81 24.039 1.215

16 42.321 1.178 49 29.247 1.172 82 23.922 1.218

17 41.586 1.175 50 29.085 1.174 83 23.813 1.221

18 40.953 1.170 51 28.930 1.175 84 23.712 1.224

19 40.524 1.180 52 28.721 1.178 85 23.621 1.227

20 40.256 1.187 53 28.580 1.179 86 23.523 1.230

21 39.756 1.184 54 28.442 1.180 87 23.430 1.237

22 39.144 1.180 55 28.312 1.187 88 23.331 1.243

23 38.462 1.177 56 28.139 1.194 89 23.238 1.247

24 37.778 1.166 57 27.973 1.197 90 23.139 1.250

25 37.174 1.169 58 27.819 1.196 91 23.048 1.251

26 36.663 1.166 59 27.675 1.194 92 22.967 1.252

27 35.986 1.164 60 27.496 1.194 93 22.833 1.255

28 35.317 1.162 61 27.285 1.194 94 22.694 1.256

29 34.688 1.154 62 27.093 1.194 95 22.624 1.257

30 34.197 1.156 63 26.911 1.194 96 22.545 1.259

31 33.786 1.157 64 26.705 1.196 97 22.446 1.262

32 33.422 1.158 65 26.516 1.197 98 22.358 1.262

33 33.068 1.157 66 26.304 1.196 99 22.264 1.265
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with

g1(b) =
1

2
(3Φ1 − Φ2)− 4 ln(Rmec/~) =

7

3
− 2 ln(1 + b2)− 6b arctan(b−1)

− b2
[
4− 4b arctan(b−1)− 3 ln(1 + b−2)

]
,

g2(b) =
1

4
(3Φ1 + Φ2)− 4 ln(Rmec/~) =

11

6
− 2 ln(1 + b2)− 3b arctan(b−1)

+
1

2
b2
[
4− 4b arctan(b−1)− 3 ln(1 + b−2)

]
,

g0(κ) = 4 ln(Rmec/~)− 4fC(Z) + F0(κ, Z). (2.87)

Cr = 1.0093 is the high-energy limit of Mork and Olsen’s radiative correction (Hubbell
et al., 1980).

The correcting factor F0(κ, Z) has been determined by requiring that the total cross
section for pair production obtained from the expression given in Eq. (2.85) (with η = 0)
coincides with the total cross sections for pair production in the field of the nucleus tab-
ulated by Hubbell et al. (1980). By inspection and numerical fitting, we have obtained
the following analytical approximation

F0(κ, Z) = (−0.1774− 12.10a+ 11.18a2)(2/κ)1/2

+ (8.523 + 73.26a− 44.41a2)(2/κ)

− (13.52 + 121.1a− 96.41a2)(2/κ)3/2

+ (8.946 + 62.05a− 63.41a2)(2/κ)2. (2.88)

The functions ϕ1 and ϕ2 are now positive except for ϵ-values very near the endpoints
of the allowed interval, given by Eq. (2.82), for high-atomic-number elements. To avoid
inconsistencies, these functions are set equal to zero when they take negative values.

The relative differences between the total atomic cross sections obtained from the
DCS given by Eq. (2.85) and the total cross sections tabulated by Hubbell et al. (1980)
are appreciable near the threshold [actually, (2.85) shifts the threshold for pair produc-
tion to values slightly larger than 2mec

2], but decrease rapidly with increasing photon
energy. At E = 3 MeV, the differences reduce to 4% and do not exceed 2% for en-
ergies larger than 6 MeV, for almost all the elements. Although these differences are
not important, they may be larger than the uncertainties in the cross sections given by
Hubbell et al. (1980). To avoid systematic errors, in penelope we use a database of
atomic cross sections for pair and triplet production, σpair(E) and σtriplet(E), generated
with the xcom program (Berger and Hubbell, 1987) for a dense grid of photon energies.
The total cross section,

σpp(E) = σpair(E) + σtriplet(E) , (2.89)

and the probability of triplet production, ptriplet = σtriplet/σpp, are obtained by interpola-
tion. The Bethe-Heitler DCS is only used to sample the kinetic energies of the produced
pair.
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It is also worth noting that the Bethe-Heitler theory predicts that the pair-production
DCS, considered as a function of the electron reduced energy ϵ, is symmetrical about ϵ =
1/2 (see Fig. 2.11). This dependence on ϵ is reasonably accurate only for photon energies
larger than ∼5 MeV. For lower photon energies, the effect of the electrostatic field of the
atom (which slows down the electron and accelerates the positron) becomes increasingly
important, with the result that the actual DCS becomes asymmetrical and the mean
value of ϵ becomes less than 1/2 (see, e.g., Motz et al., 1969). At these relatively
low energies, however, pair production is not dominant and, moreover, the produced
particles have ranges that are much less than the mean free path of the absorbed photon.
Therefore, no appreciable simulation errors are incurred by using the Bethe-Heitler DCS,
Eq. (2.85), for energies down to the threshold.

2.4.1 Simulation of pair-production events

The Bethe-Heitler DCS, Eq. (2.85), only depends on the kinetic energy E− = ϵE−mec
2

of the produced electron, so that E− can be directly sampled from Eq. (2.85); the kinetic
energy of the positron is obtained as E+ = E − E− − 2mec

2. Notice that, although the
Bethe-Heitler total atomic cross section accounts for pair and triplet production, all the
events are simulated as if they were pairs. This approximation is justified by the fact
that, in triplet production, the recoiling electron has a range that is much smaller than
the mean free path of the incident photon.

The electron reduced energy ϵ is distributed in the interval (κ−1,1 − κ−1), see Eq.
(2.82), according to the PDF given by Eq. (2.85) (normalisation is again irrelevant)

ppp(ϵ) = 2

(
1

2
− ϵ
)2

ϕ1(ϵ) + ϕ2(ϵ), (2.90)

which is symmetrical about the point ϵ = 1/2. Figure 2.11 shows this PDF for lead and
various photon energies. The following algorithm for sampling ϵ is based on the fact
that the functions ϕ1(ϵ) and ϕ2(ϵ) are non-negative and attain their maximum values at
ϵ = 1/2.

Except for a normalisation constant, the PDF (2.90) can be written in the form

ppp(ϵ) = u1U1(ϵ)π1(ϵ) + u2U2(ϵ)π2(ϵ) (2.91)

with

u1 =
2

3

(
1

2
− 1

κ

)2

ϕ1(1/2), u2 = ϕ2(1/2), (2.92)

π1(ϵ) =
3

2

(
1

2
− 1

κ

)−3(
1

2
− ϵ
)2

, π2(ϵ) =
1

2

(
1

2
− 1

κ

)−1

(2.93)

and

U1(ϵ) = ϕ1(ϵ)/ϕ1(1/2), U2(ϵ) = ϕ2(ϵ)/ϕ2(1/2). (2.94)
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Figure 2.11: DCS for pair-production in lead as a function of the electron reduced energy,

ϵ = (E− +mec
2)/E. (Adapted from Baró et al., 1994a.)

The functions πi(ϵ) are normalised PDFs in the interval (κ−1,1 − κ−1), from which
random values of ϵ can be easily sampled by using the inverse-transform method. In
this interval, the functions Ui(ϵ) are positive and less than unity, i.e., they are valid
rejection functions. The generation of random values of ϵ from the distribution (2.91)
can now be performed by combining the composition and rejection methods (see Section
1.2) according to the following algorithm:

(i) Sample a value of the integer i (=1, 2) according to the point probabilities

p(1) =
u1

u1 + u2
and p(2) =

u2
u1 + u2

. (2.95)

(ii) Sample ϵ from πi(ϵ) using the sampling formulas (inverse-transform method, see
Section 1.2.2)

ϵ =


1

2
+

(
1

2
− 1

κ

)
(2ξ − 1)1/3 if i = 1,

1

κ
+

(
1

2
− 1

κ

)
2ξ if i = 2.

(2.96)

(iii) Generate a new random number ξ.

(iv) If ξ > Ui(ϵ), go to step (i).

(v) Deliver ϵ.
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Notice that the quantity 2ξ− 1 may be negative and, therefore, taking its cube root
will lead to a computer error; provision of this fact must be made when programming
the algorithm. The efficiency of the algorithm is greater than 70% for energies near the
threshold, and increases with increasing photon energies. For E = 1 GeV it is of the
order of 95% for all the elements in the periodic table.

Triplet production occurs with probability, ptriplet = σtriplet/σpp. Although we do
not follow the recoiling target electron, we consider that triplet production may leave
the target atom with a vacancy in an inner shell. The active-electron shell is selected
randomly, by assuming that the Z atomic electrons have equal probabilities of being
ejected.

2.4.1.1 Angular distribution of the produced particles

Actually, the complete DCS for pair production is a function of the directions of the
pair of particles. As the final state involves three bodies (the nucleus and the produced
pair), the directions of the produced particles cannot be obtained from only their kinetic
energies. The polar angles of the directions of movement of the electron and positron (θ−
and θ+, Fig. 2.1) relative to the direction of the incident photon are sampled from the
leading term of the expression obtained from high-energy theory (Heitler, 1954; Motz
et al., 1969)

p(cos θ±) = a (1− β± cos θ±)
−2 , (2.97)

where a is a normalisation constant and

β± =

√
E±(E± + 2mec2)

E± +mec2
(2.98)

is the particle velocity in units of the speed of light. Random values of cos θ± are
obtained by using the inverse-transform method (see Section 1.2.2), which leads to the
sampling formula

cos θ± =
2ξ − 1 + β±

(2ξ − 1)β± + 1
. (2.99)

As the directions of the produced particles and the incident photon are not necessarily
coplanar, the azimuthal angles ϕ− and ϕ+ of the electron and the positron are sampled
independently and uniformly in the interval (0, 2π).

It is worth stressing the fact that the produced charged particles have ranges that
are much smaller than the mean free path of the photons. Moreover, the charged
particles immediately enter a multiple elastic scattering process which randomises their
directions of movement. As a consequence, there should be little difference between
simulation results obtained with the present method and with exact random sampling
from a more accurate DCS, differential in the energies and directions of the generated
particles.
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2.4.1.2 Compound materials

Let us consider a compound XxYy, in which the molecules consist of x atoms of the
element X and y atoms of the element Y. The number of electrons per molecule is
ZM = xZ(X)+ yZ(Y) and the molar mass is AM = xAw(X)+ yAw(Y), where Z(X) and
Aw(X) stand for the atomic number and atomic weight of element X.

In the simulation of pair-production events, we could use the molecular DCSs ob-
tained from the additivity rule. The simulation of each event would then consist of 1)
sampling the atom which participates in the interaction and 2) generating a random
value of the electron reduced energy ϵ from the corresponding atomic DCS. To save
computer time, penelope generates ϵ by considering an “equivalent” single element
material of the same mass density ρ as the actual medium, atomic number Zeq and
molar mass Aeq given by

ZeqAM = ZMAeq = xZ(X)Aw(X) + yZ(Y)Aw(Y), (2.100)

i.e., its atomic number (molar mass) is the mass-average (Z-average) of the atomic num-
bers (atomic weights) of the constituent atoms. The reduced energy is sampled from
the DCS of the element with the atomic number closest to Zeq. Usually, this approx-
imation does not alter the simulation results appreciably and permits a considerable
simplification of the program and a reduction of the simulation time.

2.5 Attenuation coefficients

The photon inverse mean free path for a given mechanism is known as the partial
attenuation coefficient of that mechanism. Thus, the partial attenuation coefficient for
photoelectric absorption is

µph = Nσph, (2.101)

where N = NAρ/AM is the number of atoms or molecules per unit volume and σph is
the atomic or molecular photoelectric cross section. The photoelectric mass attenuation
coefficient is defined as µph/ρ and, therefore, is independent of the density of the ma-
terial. Analogous definitions apply for the other interaction processes. The total mass
attenuation coefficient is obtained as

µ

ρ
=
NA

AM

(σRa + σCo + σph + σpp) . (2.102)

As mentioned above, penelope uses tables of total cross sections for photoelectric
absorption and Rayleigh scattering extracted from the EPDL (Cullen et al., 1997).
Cross sections of these two processes for energies different from those in the tables are
calculated by linear log-log interpolation. Total cross sections for pair production are
obtained from tables generated with the program xcom (Berger and Hubbell, 1987).
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Figure 2.12: Partial and total mass attenuation coefficients of water, aluminium, iodine and

lead as functions of the photon energy. Notice the different low-E behaviour of µCo/ρ for

insulators (water and iodine) and conductors (aluminium and lead).
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Values of σpair(E) and σtriplet(E) for arbitrary energies are evaluated by cubic spline log-
log interpolation of the functions (1−2mec

2/E)−3σpair(E) and (1−4mec
2/E)−3σtriplet(E),

which vary slowly with the photon energy.

Mean free paths for incoherent scattering are calculated from the DCSs given by
the impulse approximation, as described in Section 2.3. For E greater than ∼ 50 keV,
the resulting values are very close to those given by the xcom program, which were
calculated from the Waller-Hartree theory, Eq. (2.51), with the incoherent scattering
functions of Hubbell et al. (1975). At lower energies, our mean free paths for Compton
scattering deviate from those given by xcom, because the Waller-Hartree theory neglects
Doppler broadening. The evaluation of the total atomic cross section for Compton
scattering [see Eq. (2.48)] involves a numerical quadrature, which is performed by using
the function SUMGA (Appendix B). Partial and total mass attenuation coefficients for
water, aluminium, iodine and lead are displayed in Fig. 2.12.

As already mentioned, penelope simulates photon transport by using the conven-
tional detailed (interaction by interaction) method. To sample the path length to the
next interaction site and the type of event that occurs there, the values of total and
partial attenuation coefficients at the current energy E are required. During simulation,
these attenuation coefficients are obtained by interpolation from pre-calculated tables
stored in memory. In penelope, energy-dependent quantities are usually tabulated
for a logarithmic grid of 200 energies, Ei (i = 1, . . . , 200), which spans the complete
energy range considered in the simulation, and values of these quantities at intermedi-
ate energies E are obtained by linear log-log interpolation. This scheme works well for
pair production and for Compton scattering, whose partial attenuation coefficients vary
smoothly with energy. However, it is not applicable to photoelectric absorption and
Rayleigh scattering, because µph(E) is not continuous and µRa(E) varies very rapidly in
the vicinity of absorption edges (see Fig. 2.12). To ensure accuracy, the grid of energies
where µph(E) is tabulated must include the absorption edges and, therefore, cannot
be the same for all materials. On the other hand, µRa(E) must be tabulated densely
in the regions where anomalous scattering occurs. Consequently, interpolation of the
attenuation coefficients for photoelectric absorption and Rayleigh scattering is lengthier
than for other interactions.

Many interpolations of µph(E) and µRa(E) can be avoided by using the following
simple method, which involves delta interactions (see Section 1.4.5). Let µph,max be
the maximum value of µph(E) in the grid interval (Ei, Ei+1). Transported photons
are allowed to undergo delta interactions, and we consider photoelectric absorption and
delta interactions as a combined process (“ph+δ”) with partial attenuation coefficient
equal to µph,max, which is constant within each grid interval. That is, the attenuation
coefficient for delta interactions is defined by

µph,δ(E) = µph,max − µph(E). (2.103)

Similarly, Rayleigh scattering is combined with delta interactions, and the attenuation
coefficient of the latter is set equal to

µRa,δ(E) = µRa,max − µRa(E), (2.104)
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where µRa,max is the maximum value of µRa(E) in the grid interval (Ei, Ei+1). To
sample the length of the free flight to the next interaction, we use the augmented total
attenuation coefficient

µ′ = µph,max + µRa,max + µCo + µpp. (2.105)

Note that interpolation of µRa and µph is not required at this point. The kind of inter-
action that occurs at the end of the free flight is sampled from the relative probabilities
of the various interaction mechanisms (“Ra+δ”, “ph+δ”, “Co” and “pp”), which are
proportional to the corresponding partial attenuation coefficients,

pRa+δ =
µRa,max

µ′ =
µRa,δ + µRa

µ′ , pph+δ =
µph,max

µ′ =
µph,δ + µph

µ′

pCo =
µCo

µ′ , ppp =
µpp

µ′ . (2.106)

If the result of the sampling is, e.g., “ph+δ”, the interaction may be either true pho-
toelectric absorption or a delta interaction. The kind of interaction that takes place
is determined by random sampling from the corresponding point probabilities πph =
µph(E)/µph,max and πδ = 1−πph. Thus, only when the outcome is “ph+δ” (“Ra+δ”), we
need to evaluate the partial attenuation coefficient for photoelectric absorption (Rayleigh
scattering) to determine whether the interaction is photoelectric absorption (scattering)
or a delta interaction. The costly interpolation of µph(E) [or µRa(E)] is performed only
when the probability of photoabsorption [or Rayleigh scattering] is appreciable.

2.6 Atomic relaxation

Atoms are primarily ionised by photon interactions and by electron or positron impact.
There is a fundamental difference between the ionising effects of photons and of charged
particles. A photon is only able to directly ionise a few atoms. In the case of pho-
toabsorption, when the photon energy is larger than the K-shell binding energy, about
80% of photoabsorptions occur in the K shell, i.e., the resulting ion with a vacancy in
the K shell is highly excited. Incoherent scattering is not as highly preferential, but
still the probability that an inner shell is ionised is nearly proportional to the number
of electrons in the shell. Conversely, fast electrons and positrons (and other charged
particles) ionise many atoms along their paths; the ionisations occur preferentially in
the less tightly bound atomic shells, or the conduction band in the case of metals (see
Section 3.2), so that most of the produced ions are only weakly excited.

Excited ions with a vacancy in an inner shell relax to their ground state through a
sequence of radiative and non-radiative transitions. In a radiative transition, the vacancy
is filled by an electron from an outer shell and an x ray with characteristic energy is
emitted. In a non-radiative transition, the vacancy is filled by an outer electron and
the excess energy is released through emission of an electron from a shell that is farther
out (Auger effect). Each non-radiative transition generates an additional vacancy that,
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in turn, migrates “outwards”. The production of vacancies in inner shells and their
subsequent relaxation must be simulated in detail, since the energetic x rays and/or
electrons emitted during the process may transport energy quite a distance from the
excited ion.

penelope can simulate the emission of characteristic x rays and Auger electrons
that result from vacancies produced in K, L, M and N shells by photoelectric absorption,
Compton scattering, triplet production, and electron/positron impact (see Chapter 3).
In practical simulations, we introduce a suitable cutoff energy, Ec [see Eq. (2.111) below],
and consider the shells with ionization energies Ui larger than Ec as inner shells. Shells
with ionization energies less than Ec, or beyond the N7 subshell, are regarded as outer
shells. Although the partial cross sections and relaxation data of subshells N6 and N7
are included in the database and considered in the calculations, the results for these
two subshells may not be reliable when their ionization energies alternate with those
of the O1-5 subshells (see Fig. 2.3). The relaxation of vacancies in ionized atoms is
followed until all inner shells are filled up, i.e., until the vacancies have migrated to
outer shells. Vacancies in these outer shells originate secondary radiations with energies
lower than Ec, whose main effect is to spread out the excitation energy of the ion in
the surrounding material. To obtain a reliable description of the spatial distribution of
absorbed dose and other macroscopic transport characteristics, we only have to follow
energetic secondary radiation that is able to propagate to distances of the order of, say,
1% of the penetration distance (or range) of the primary radiation. Radiation with
lower energy does not need to be followed, since its only effect is to blur the “primary”
dose distribution on a small length scale.

To simplify the description of ionisation processes of outer shells (i.e., photoelectric
absorption, Compton scattering, and electron/positron impact), we simply assume that,
when ionisation occurs in an outer shell, a secondary (delta) electron is emitted from
the parent ion with a kinetic energy Es equal to the energy deposited by the primary
particle,

Edep =


E − E ′ in Compton scattering,

E in photoelectric absorption,

W in electron/positron impact (see Chapter 3).

(2.107)

That is, the whole excitation energy of the ion is taken up by the ejected electron and
no fluorescent radiation is simulated. In reality, the emitted electrons have energies that
are less than the values given by Eq. (2.107) and can be followed by characteristic x
rays, which have mean free paths that are usually much larger than the Bethe range
of photoelectrons. By giving an artificially increased initial energy to the electron we
allow it to transport energy further from the ion so as to partially compensate for the
neglect of other radiation emitted during the de-excitation cascade.

In the case of ionisation of an inner shell i (i.e., a shell with Ui > Ec), we consider
that the electron is ejected with kinetic energy

Es = Edep − Ui, (2.108)
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and that the target atom is left with a vacancy in shell i. As mentioned above, we
consider only characteristic x rays and Auger electrons emitted in the first stages of
the relaxation process, until all inner shells are filled up. These secondary radiations
are assumed to be emitted isotropically from the excited atom. We use the following
notation to designate the possible transitions
• Radiative: S0-S1 (an electron from the S1 shell fills the vacancy in the S0 shell, leaving
a hole in the S1 shell). The considered radiative transitions (for elements with Z > 18
with the M-shell filled) are shown in Fig. 2.2.
• Non-radiative: S0-S1-S2 (an electron from the S1 shell fills the vacancy in the S0 shell,
and the released energy is taken away by an electron in the S2 shell; this process leaves
two vacancies in the S1 and S2 shells).
Non-radiative transitions of the type LI-LJ-Xq, which involve an electron transition
between two L-subshells and the ejection of an electron from an outer shell Xq are
known as L-shell Coster-Kronig transitions.

The information furnished to penelope for each element consists of a table of pos-
sible transitions, transition probabilities and energies of the emitted x rays or electrons
for ionised atoms with a single vacancy in the K shell or in an L, M or N subshell.
These data are entered through the material definition file. The transition probabilities
are extracted from the LLNL Evaluated Atomic Data Library (Perkins et al., 1991).
Figure 2.13 displays transition probabilities for the transitions that fill a vacancy in the
K shell as functions of the atomic number Z; the curve labelled “Auger” corresponds to
the totality of non-radiative transitions. We see that for low-Z elements, the relaxation
proceeds mostly through non-radiative transitions. It is worth noting that the ratio of
probabilities of the radiative transitions K-S2 and K-S3 (where S stands for L, M or N)
is approximately 1/2, as obtained from the dipole approximation (see, e.g., Bransden
and Joachain, 1983); radiative transitions K-S1 are strictly forbidden (to first order)
within the dipole approximation.

The energies of x rays emitted in radiative transitions resulting from single vacan-
cies in the K and L shells were taken from the recent compilation by Deslattes et al.
(2003). X-ray energies for transitions of vacancies in M shells were taken from Bear-
den’s (1967) review and reevaluation of experimental x-ray wavelengths. In the case of
radiative transitions S0-S1 not included in Bearden’s tabulation, the energy of the x ray
is approximated as

Ex = U ′
S0 − U ′

S1, (2.109)

where U ′
Si is the ionisation energy of an electron in the shell Si of the neutral atom,

which was taken from the LLNL Evaluated Atomic Data Library (Perkins et al., 1991).
The ionisation energies in this library are the negatives of the eigenvalues of the Dirac-
Hartree-Fock-Slater self-consistent equations for neutral atoms in their ground states.
For tightly bound shells, with U ′

Si
& 200 eV, the theoretical values U ′

Si agree closely with
Carlson’s (1975) recommended shell ionisation energies (Salvat and Fernández-Varea,
2009). The energy of the electron emitted in the non-radiative transition S0-S1-S2 is
set equal to

Ee = U ′
S0 − U ′

S1 − U ′
S2. (2.110)
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Figure 2.13: Relative probabilities for radiative and non-radiative (Auger) transitions that

fill a vacancy in the K-shell of atoms.

Note that these recipes correspond to assuming that the presence of the vacancy (or
vacancies) does not alter the ionisation energies of the active electron shells, which is an
approximation. It should be mentioned that these transition energies are also used to
determine the energies of the emitted radiation at any stage of the de-excitation cascade,
which means that we neglect the possible relaxation of the ion (see, e.g., Sevier, 1972).
Therefore, our approach will not produce Lα and Lβ x-ray satellite lines; these arise from
the filling of a vacancy in a doubly-ionised L shell (generated, e.g., by a Coster-Kronig
transition), which releases energy that is slightly different from the energy liberated
when the shell contains only a single vacancy. It is also worth recalling that the adopted
transition probabilities are approximate. For K shells they are expected to be accurate
to within about 1%, but for other shells they are subject to much larger uncertainties.
Even the L-shell fluorescence yield (the sum of radiative transition probabilities for an
L-shell vacancy) is uncertain by about 20% (see, e.g., Hubbell, 1989; Perkins et al.,
1991).

The simulation of the relaxation cascade is performed by subroutine RELAX. The
transition that fills the initial vacancy is randomly selected according to the adopted
transition probabilities, by using Walker’s aliasing method (Section 1.2.3.1). This tran-
sition leaves the ion with one or two vacancies. If the energy of the emitted characteristic
x ray or Auger electron is larger than the corresponding absorption energy, the state
variables of the particle are stored in the secondary stack (which contains the initial
states of all particles produced during the current shower that have not yet been sim-
ulated). The generation of the cascade continues by repeating the process for each
remaining vacancy. It ends either when the K, L, M and N subshells have been filled up
or when there is not enough energy to produce “effective” fluorescence radiation (with
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energy larger than the cutoff energy, Ec). The excitation energy of the residual ion is
assumed to be deposited locally.

It is important to bear in mind that we are disregarding the emission and transport
of soft x rays and slow electrons. This sets a lower limit to the photon energies for which
penelope is applicable. As indicated above, the database of interaction cross sections
covers the energy range above ∼ 50 eV and, consequently, only radiations with energies
higher than this value can be followed. Moreover, we do not consider the relaxation
of shells with principal quantum number larger than 4 (O and P subshells). Hence,
simulation results are expected to be reliable only for photons with energies higher than

Ec = max{50 eV, UN7(Zm), UO1(Zm)} , (2.111)

where US0(Zm) is the ionization energy of the shell S0 of the heaviest element present,
whose atomic number is Zm. The value of Ec is 92 eV for barium, 114 eV for gold, and
329 eV for uranium.

2.7 Scattering of polarised photons

The theory of scattering of polarised photons is treated in almost all textbooks on
Quantum Mechanics and Quantum Electrodynamics. Nevertheless, elementary treat-
ments found in textbooks do not suffice to formulate a consistent algorithm for Monte
Carlo simulation of photons with arbitrary polarisations. In our simulation code we
adopt the formal method described by Fano (1954b) and Fano et al. (1959), with po-
larisation states represented by means of the Stokes parameters (see Appendix C). It
should be noted that these parameters are defined with respect to a given basis of linear-
polarisation states which, in turn, depends on the direction of the photon wave vector
k. With the conventions adopted in Appendix C, the simulation algorithm takes a very
simple form.

We start by considering the general case of scattering of photons in the mode kζ
(i.e., photons that propagate in the direction k̂, with energy E = ~ω = c~k and in the
pure polarisation state ζ) by an atom in the energy level Ea; we assume that the target
atom is “unpolarised” (i.e., that all degenerate states Ψa of the level Ea are equally
populated) and that final degenerate atomic states are not observed. That is, the DCS
is obtained by summing over degenerate final states and averaging over initial states.
The cross section for the transition to a final state with the atom in the energy level
Eb and with the scattered photon in the mode k′ζ ′ is given by the Kramers-Heisenberg
formula (see, e.g., Sakurai, 1967), which can be expressed as

d2σ(bζ ′, aζ)

dE ′ dΩ
= r2e

E

E ′ |J (b,k
′ζ ′; a,kζ)|2 , (2.112)

where E ′ = ~ω′ = c~k′ is the energy of the scattered photon, dΩ is a solid angle element
in the direction k̂′, and J (b,k′ζ ′; a,kζ) is a sum of products of dimensionless matrix
elements. The interesting feature here is that the quantity J (b,k′ζ ′; a,kζ) is linear in ζ
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and anti-linear in ζ ′. It is convenient to express all polarisation states in the “natural”
basis {ϵ̂1(k), ϵ̂2(k)} of linear polarisation (see Section C.1 in Appendix C). In this basis,
the states of the incident and the scattered photons are represented as

ζ =
∑
i

diϵ̂i(k̂), ζ ′ =
∑
j

fj ϵ̂j(k̂
′) (2.113)

and J (b,k′ζ ′; a,kζ) is given by

J (b,k′ζ ′; a,kζ) ≡
∑
i,s

dif
∗
s Tis (2.114)

with
Tis ≡ J (b,k′ϵ̂′s; a,kϵ̂i). (2.115)

Then, the DCS (2.112) takes the form

d2σ(bζ ′, aζ)

dE ′ dΩ
= r2e

E

E ′

∑
rs,ij

frf
∗
s

(
TisT

∗
jr

)
did

∗
j

=
∑
rs,ij

frf
∗
s Ssr,ij did∗j , (2.116)

where we have set (note the ordering of the indices)

Ssr,ij ≡ r2e
E

E ′ TisT
∗
jr. (2.117)

In matrix form,

S =


11 22 12 21

11 T11T
∗
11 T21T

∗
21 T11T

∗
21 T21T

∗
11

22 T12T
∗
12 T22T

∗
22 T12T

∗
22 T22T

∗
12

12 T11T
∗
12 T21T

∗
22 T11T

∗
22 T21T

∗
12

21 T12T
∗
11 T22T

∗
21 T12T

∗
21 T22T

∗
11

r2e EE ′ . (2.118)

The products did
∗
j and frf

∗
s are the elements of the polarisation density matrices of

incident and scattered photons (see Section C.2 of Appendix C),

ρ = |ζ⟩⟨ζ|, ρ′ = |ζ ′⟩⟨ζ ′|. (2.119)

On the other hand, the quantities

ρ(sc)sr ≡
∑
ij

Ssr,ij did∗j (2.120)

can be regarded as the elements of the density matrix ρ(sc) of the scattered photons. We
can then write

d2σ(bζ ′, aζ)

dE ′ dΩ
=
∑
rs

frf
∗
s ρ

(sc)
sr = Tr(ρ′ρ(sc)), (2.121)
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where “Tr” indicates the trace (sum of diagonal elements) of the matrix. Moreover, by
virtue of the identity (C.49), the matrix ρ′ can be interpreted as the operator F of an
ideal polariser that transmits photons with the polarisation ϵ̂′α of the scattered beam.

In the case of completely polarised photons, Eq. (2.121) does not contain any new
physics. However, now we can interpret the expression on the right-hand side as follows.
The interaction with the atom modifies the density matrix of the incident photon beam
through the transformation ρ → ρ(sc) and the DCS is simply the expectation value of
a measurement with the polarising filter F = ρ′ on the beam that results from the
interaction. When the polarisation of scattered photons is not observed, the operator
F is that of the transparent filter, F = I2. Then, from Eq. (2.121) we obtain

d2σ(b, aζ)

dE ′ dΩ
= Tr(ρ(sc)). (2.122)

The great advantage of expressions (2.121) and (2.122) is that they are also valid
for photon beams with partial polarisation. We can readily verify this assertion for the
familiar case in which the incident beam is unpolarised (ρ = 1

2
I2), and the polarisation

of the scattered beam is not observed (F = I2). Then, formula (2.122) gives

d2σ(b, a)

dE ′ dΩ
=

1

2

∑
s

[Sss,11 + Sss,22] =
1

2
[S11,11 + S11,22 + S22,11 + S22,22]

= r2e
E

E ′
1

2
[T11T

∗
11 + T21T

∗
21 + T12T

∗
12 + T22T

∗
22] . (2.123)

which is the result obtained with the habitual method of summing over final polarisation
states and averaging over initial states.

It is convenient to use the four-vector representation of polarisation states, Eq.
(C.61), to describe the polarisation of photon beams. Let P and Q denote the polarisa-
tion four-vectors of the incident and scattered photons, corresponding to the polarisation
vectors ζ and ζ ′, respectively. The DCS can then be expressed in the form,

d2σ(bQ, aP)

dE ′ dΩ
= DT

QZ34SDP =
1

2
QT(AP), (2.124)

with
A ≡ 2XTZ34SX . (2.125)

The factor 1
2
QT represents the action of an ideal filter that selects the final polarisation

state [see Eq. (C.65)]. The matrixA transforms the Stokes vector of the incident photons
into that of the scattered radiation,

Psc = AP, (2.126)

which corresponds to the density matrix ρ(sc), Eq. (2.120).

In the following we shall determine the matrix A for the elementary processes of
Rayleigh and Compton scattering in an isotropic medium. For the sake of simplicity, we
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assume that the incident photons propagate in the direction ẑ, and take the polarisation
vectors ϵ̂1 and ϵ̂2 in the directions of the x and y axes, respectively. That is,

k̂ =

 0

0

1

 , ϵ̂1 =

 1

0

0

 , ϵ̂2 =

 0

1

0

 . (2.127)

Photons are scattered into directions k̂′ defined by the polar and azimuthal scattering
angles, θ and ϕ, respectively. To describe the polarisation of scattered photons, we
use Stokes vectors with respect to the basis of linear polarisation states {ϵ̂1(k̂′), ϵ̂2(k̂

′)}
defined by Eqs. (C.6) in Appendix C (see also Fig. C.1). Then,

k̂′ =


cosϕ sin θ

sinϕ sin θ

cos θ

 , ϵ̂′1 =


cosϕ cos θ

sinϕ cos θ

− sin θ

 , ϵ̂′2 =


− sinϕ

cosϕ

0

 . (2.128)

For simulation purposes, this convention has the advantage that the inverse of the
rotation R(θ, ϕ), Eq. (C.5), transforms the vectors k̂′, ϵ̂′1 and ϵ̂′2 into the triad (2.127).
Note that ϵ̂′1 lies in the scattering plane, defined by the directions k̂ and k̂′, and ϵ̂′2 is in
the plane z = 0, see Fig. 2.14.
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ǫ̂2 
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ǫ̂2
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ǫ̂1
′

ǫ̂2 
′

k  ′

Figure 2.14: Linear polarisation vectors used in the description of scattering events. The

left diagram corresponds to the general case of scattering with ϕ ̸= 0. The right diagram

represents the case ϕ = 0, i.e., the scattering plane (hatched) coincides with the zero-azimuth

plane; the polarisation vectors ϵ̂1 and ϵ̂′1 are both on this plane. This is the situation assumed

in calculations of the matrix A(0).

Most formulas take simpler forms when the polarisation vectors ϵ̂1 and ϵ̂′1 are both in
the plane of scattering. Hence, to calculate the matrix A it is advantageous to proceed
in two stages. We first perform a rotation of angle ϕ of the polarisation vectors ϵ̂1 and ϵ̂2
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about the k̂ axis, i.e., a rotation of the zero-azimuth plane (see Fig. 2.14). The rotated
zero-azimuth plane then coincides with the scattering plane and, therefore, the rotated
vector ϵ̂1 also lies in that plane. The rotated polarisation vectors are (for simplicity we
use the same symbols as for the original vectors)

ϵ̂1 =

 cosϕ

sinϕ

0

 , ϵ̂2 =

− sinϕ

cosϕ

0

 . (2.129)

We have
ϵ̂1 ·ϵ̂′1 = cos θ, ϵ̂2 ·ϵ̂′2 = 1, ϵ̂1 ·ϵ̂′2 = ϵ̂2 ·ϵ̂′1 = 0. (2.130)

The effect of the rotation on the Stokes vector of the incident beam is described by the
transformation (C.68), P′ = R(ϕ)P. Hence the matrix A can be expressed as

A = A(0)R(ϕ), (2.131)

where the matrix A(0) corresponds to the case of scattering in the zero-azimuth plane
(with ϕ = 0), where the polarisation vectors take the forms (2.128) and (2.129) and
satisfy the orthogonality relations (2.130).

2.7.1 Rayleigh scattering

In the case of Rayleigh scattering (Eb = Ea, E
′ = E), the transition matrix elements

Tis are
Tis = F(q) (ϵ̂i ·ϵ̂′s), (2.132)

with
F(q) = F (q, Z) + f ′ + if ′′, (2.133)

where F (q, Z) is the atomic form factor, Eq. (2.16), which depends on the momentum
transfer

q = 2k sin(θ/2), (2.134)

and f ′ + if ′′ is the anomalous-scattering factor. As indicated in Section 2.2, the factor
f ′ + if ′′ varies slowly with the scattering angle and here it is approximated by its value
at θ = 0.

The essential fact is that the matrix element (2.132) is proportional to the scalar
product of the polarisation vectors of the incident and scattered beams. Therefore, in
the case of scattering in the zero-azimuth plane [see Eqs. (2.128) and (2.129)] we have

T11 = F(q) cos θ, T22 = F(q), T12 = 0, T21 = 0. (2.135)

The corresponding S matrix, Eq. (2.118), takes the form

S(0) =


cos2 θ 0 0 0

0 1 0 0

0 0 cos θ 0

0 0 0 cos θ

 r2e |F(q)|2. (2.136)
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Then

A(0)
Ra = 2XTZ34S(0)X

=
r2e
2
|F(q)|2


1 1 0 0

0 0 1 1

0 0 −i i

1 −1 0 0




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




cos2 θ 0 0 0

0 1 0 0

0 0 cos θ 0

0 0 0 cos θ




1 0 0 1

1 0 0 −1
0 1 −i 0

0 1 i 0

 .

That is,

A(0)
Ra =

r2e
2
|F(q)|2


cos2 θ + 1 0 0 cos2 θ − 1

0 2 cos θ 0 0

0 0 2 cos θ 0

cos2 θ − 1 0 0 cos2 θ + 1

 . (2.137)

Finally, from Eq. (2.124), the DCS for Rayleigh scattering of polarised photons is

dσRa(Q,P)

dΩ
=

1

2
QT{A(0)

RaR(ϕ)P}. (2.138)

When the polarisation of the scattered photons is not observed, the DCS is given by
this expression with the Stokes vector QI = (2, 0, 0, 0) of the transparent filter,

dσRa(P)

dΩ
= (1, 0, 0, 0){A(0)

RaR(ϕ)P}

=
r2e
2
|F(q)|2

(
cos2 θ + 1, 0, 0, cos2 θ − 1

)


1

cos(2ϕ)P1 − sin(2ϕ)P3

P2

sin(2ϕ)P1 + cos(2ϕ)P3


=

r2e
2
|F(q)|2

{
cos2 θ + 1 + (cos2 θ − 1) [sin(2ϕ)P1 + cos(2ϕ)P3]

}
. (2.139)

Note that terms which depend on ϕ yield null contributions when integrated over this
angle. We can then consider the cross section differential in only the polar deflection,

dσRa(P)

d(cos θ)
=

∫ 2π

0

dσRa(P)

dΩ
dϕ = 2πr2e |F(q)|2

cos2 θ + 1

2
, (2.140)

which is independent on the polarisation of the incident photons. This feature, which is
a consequence of the assumed isotropy of the target atoms, implies that the distribution
of the polar angle θ for polarised photons is the same as for unpolarised radiation.
Finally, the total cross section for Rayleigh scattering of incident photons with arbitrary
polarisation P is

σRa(P) = 2π

∫ 1

−1

r2e
2
|F(q)|2(cos2 θ + 1) d(cos θ), (2.141)

irrespective of the polarisation of the incident photons.
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2.7.2 Compton scattering

Let us now study the effects of polarisation in Compton scattering (Eb > Ea, E
′ < E).

For simplicity, we assume that these effects are not affected by the binding of the target
electrons. We also assume that target electrons are unpolarised, and that the spin of
the recoiling Compton electron is not observed. That is, we will limit our considerations
to the theory of photon scattering by free electrons at rest, which leads to the Klein-
Nishina formula, Eq. (2.27). The matrix elements Ssr,ij, Eq. (2.117), for Compton
scattering have been evaluated by Wightman (1948) using the methods described in
Heitler’s (1954) book. These matrix elements are given by the general expression

Ssr,ij =
r2e
4

E ′2

E2

{(
ϵ̂i ·ϵ̂′∗s

) (
ϵ̂∗j ·ϵ̂

′
r

) [
4 +

E − E ′

mec2
(1− cos θ)

]
+
[(
ϵ̂i ·ϵ̂∗j

) (
ϵ̂′r ·ϵ̂

′∗
s

)
−
(
ϵ̂i ·ϵ̂′r

) (
ϵ̂∗j ·ϵ̂

′∗
s

)] E − E ′

mec2
(1− cos θ)

}
, (2.142)

which is valid even when the bases of polarisation vectors are complex. The expression
in curly braces depends on the quantity

C =
E − E ′

mec2
(1− cos θ), (2.143)

which is always positive. Note that, with the target electron initially at rest, the energy
of the scattered photon is that of the Compton line, Eq. (2.26),

E ′ = EC =
E

1 + (E/mec2)(1− cos θ)
.

Hence,

C =
(E/mec

2)2(1− cos θ)2

1 + (E/mec2)(1− cos θ)
. (2.144)

In the case of scattering in the zero-azimuth plane, using the polarisation vectors
(2.128) and (2.129), and their orthogonality relations (2.130), we find that the matrix
S for Compton scattering takes the form

S(0)
Co =

r2e
4

E ′2

E2


4 cos2 θ + C C 0 0

C 4 + C 0 0

0 0 (4 + C) cos θ −C cos θ

0 0 −C cos θ (4 + C) cos θ

 . (2.145)

Then, from Eq. (2.125),

A(0)
Co = 2XTZ34S(0)

CoX

=
r2e
2

E ′2

E2


(cos2 θ + 1) + C 0 0 cos2 θ − 1

0 2 cos θ 0 0

0 0 (2 + C) cos θ 0

cos2 θ − 1 0 0 cos2 θ + 1

 . (2.146)
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Now, the DCS for Compton scattering is given by Eq. (2.124),

dσCo(Q,P)

dΩ
=

1

2
QT{A(0)

Co R(ϕ)P}, (2.147)

where the quantity in braces is the Stokes vector of the photons scattered in the direction
θ, ϕ.

When the polarisation of the scattered photons is not observed, the DCS for scat-
tering of incident photons with arbitrary polarisation P is given by Eq. (2.147) with the
Stokes vector QI = (2, 0, 0, 0) of the transparent filter,

dσCo(P)

dΩ
= (1, 0, 0, 0){A(0)

CoR(ϕ)P}

=
r2e
2

E ′2

E2

(
cos2 θ + 1 + C, 0, 0, cos2 θ − 1

)


1

cos(2ϕ)P1 − sin(2ϕ)P3

P2

sin(2ϕ)P1 + cos(2ϕ)P3


=

r2e
2

E ′2

E2

{
cos2 θ + 1 + C + (cos2 θ − 1) [sin(2ϕ)P1 + cos(2ϕ)P3]

}
. (2.148)

Again, terms that depend on ϕ yield null contributions when integrated over this angle.
The cross section differential in only the polar deflection is

dσCo(P)

d(cos θ)
=

∫ 2π

0

dσCo(P)

dΩ
dϕ = πr2e

E ′2

E2
(cos2 θ + 1 + C). (2.149)

Because of the symmetry of the interaction, this DCS is independent on the polarisation
of the incident photons. Hence, the distribution of the polar angle θ for scattering of
polarised radiation is the same as for unpolarised photons. Inserting the expression
(2.144), we obtain

dσCo(P)

d(cos θ)
= πr2e

E ′2

E2

(
E ′

E
+
E

E ′ − sin2 θ

)
, (2.150)

which is the Klein-Nishina DCS, Eq. (2.27), multiplied by the factor 2π that results
from integration over ϕ.

From the foregoing discussion it is clear that photons scattered into the direction
(θ, ϕ) have the polarisation defined by the Stokes vector

P′ = BCoP, (2.151)

where the matrix BCo is equal to the product A(0)
Co R(ϕ). However, in our Monte Carlo

simulations, individual photons are followed. Since the Stokes vector of a photon state
has its zeroth component equal to unity [see Eq. (C.61)], the Stokes vector of a scattered
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photon will always be renormalised in this way. Hence, we can disregard constant factors
in the matrix BCo and write

BCo =


(cos2 θ + 1) + C 0 0 cos2 θ − 1

0 2 cos θ 0 0

0 0 (2 + C) cos θ 0

cos2 θ − 1 0 0 cos2 θ + 1



×


1 0 0 0

0 cos(2ϕ) 0 − sin(2ϕ)

0 0 1 0

0 sin(2ϕ) 0 cos(2ϕ)

 . (2.152)

From the similarity between the matrices A(0)
Ra and A

(0)
Co, Eqs. (2.137) and (2.146), we see

that polarisation changes in Rayleigh scattering are described by a matrix BRa which is
given by this expression with C = 0.

It is interesting to note that the transformation matrix (2.152) does not mix the
component of circular polarisation P2 with other components (the only non-zero element
in the third column and in the third row is the one at the diagonal). This implies that,
if the polarisation of the incident photons has no circular component, P2 = 0, the
scattered photons also have P ′

2 = 0. That is, the scattering is not able to produce
circular polarisation when it is not present in the incident beam. If we were interested
in describing only the transport of photons with P2 = 0, we could simply remove the
component P2 of the Stokes vector and of the transformation matrices. In fact, this is
equivalent to the linear-polarisation approximation adopted in the EGS5 code (Namito
et al., 1993; Hirayama et al., 2005).

2.7.3 Simulation of interactions of polarised photons

The simulation of polarised photons is largely simplified by the fact that, because of
the assumed isotropy of the medium, the total cross sections (and also the attenuation
coefficients) of the various interaction mechanisms are independent of the polarisation
of the transported photons. This means that the sampling of the free path and of the
active mechanism in each interaction event can be performed by using the same methods
as in conventional (scalar) Monte Carlo simulation of unpolarised photons. As shown
above, the polarisation of the transported photons has an appreciable effect for Rayleigh
and Compton scattering. In the cases of photoelectric absorption and electron-positron
pair production, the incident photon is absorbed and, although its polarisation may
affect the angular distributions of the generated electrons and positrons, the effect is
shadowed by the multiple scattering of these charged particles as soon as they travel a
small fraction of their range. Therefore, we need to account for polarisation effects only
in Rayleigh and Compton scattering. The algorithm described here is similar to the one
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adopted by Fernández et al. (1998) in their vector Monte Carlo code mcshape for the
simulation of polarised photons in simple planar geometries.

As shown in previous Sections, the probability distribution function (PDF) of the
polar deflection cos θ is independent of the polarisation of the incident photons. There-
fore, cos θ can be sampled using the same algorithms as in the scalar mode. The PDF
of the azimuthal scattering angle ϕ (with cos θ fixed) is given by the DCSs (2.139) or
(2.148). We have

p(ϕ) = N
{
cos2 θ + 1 + C − sin2 θ [sin(2ϕ)P1 + cos(2ϕ)P3]

}
, (2.153)

where N is a normalisation constant. Note that the PDF for Rayleigh scattering, cf.
Eq. (2.139), is obtained by setting C = 0. It is clear that the polarisation of the
incident photon only affects the distribution of azimuthal angles. In the case of circularly
polarised photons, with P2 ̸= 0 and P1 = P3 = 0, this distribution is still uniform.

Random values of ϕ from the PDF (2.153) can be sampled by a rejection method
(see Section 1.2.5). This PDF has extrema, maxima and minima, at angles ϕextr such
that

tan(2ϕextr) = P1/P3. (2.154)

It can be readily verified that the maximum value of p(ϕ) occurs at an angle ϕmax such
that

sin(2ϕmax) =
−P1√
P 2
1 + P 2

3

and cos(2ϕmax) =
−P3√
P 2
1 + P 2

3

. (2.155)

Let us consider the function

g(ϕ) = cos2 θ + 1 + C − sin2 θ [sin(2ϕ)P1 + cos(2ϕ)P3] , (2.156)

which attains its maximum value at ϕmax,

g(ϕmax) = cos2 θ + 1 + C + sin2 θ
√
P 2
1 + P 2

3 . (2.157)

To sample ϕ we adopt the following rejection algorithm:

(i) Sample a value ϕ from the uniform distribution U0,2π(ϕ), i.e., generate a random
number ξ and set ϕ = 2πξ.

(ii) Generate another random number ξ.

(iii) If ξg(ϕmax) > g(ϕ), go to step (i).

(iv) Deliver ϕ.

Note that this sampling algorithm is exact. Moreover, its efficiency improves when the
value of C increases. The least favourable case is found when C = 0 (which occurs for
Rayleigh scattering and for forward Compton scattering, with θ = 0). The efficiency
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is higher than (or equal to) 50%, i.e., on average we have to generate less than four
random numbers to get an accepted value of ϕ.

The simulation of random histories is similar to that of unpolarised radiation (see
Section 1.3.4). After the n-th interaction, a photon propagates in a direction k̂n, with
energy E and polarisation described by the Stokes vector Pn. The direction vector
k̂n can be represented by means of its direction cosines, (u, v, w), or by its polar and
azimuthal angles, (ϑ, φ),

k̂ =


u

v

w

 =


cosφ sinϑ

sinφ sinϑ

cosϑ

 . (2.158)

Note that4

ϑ = arccosw, φ = ATAN2(y, x). (2.159)

In the Monte Carlo code, direction cosines are convenient for fast calculation of space
displacements, while the angles (ϑ, φ) are suited for defining rotations (see below). The
Stokes vector Pn is referred to the “natural” basis of polarisation vectors, ϵ̂1(k̂n) and
ϵ̂2(k̂n), defined by Eqs. (C.6), and normalised with its zeroth component equal to unity.
The rotation

R(ϑ, φ) ≡ R(φẑ)R(ϑŷ) =


cosφ cosϑ − sinφ cosφ sinϑ

sinφ cosϑ cosφ sinφ sinϑ

− sinϑ 0 cosϑ

 (2.160)

transforms the unit vectors {ẑ, x̂, ŷ} of the laboratory frame into the corresponding
triad {k̂n, ϵ̂1(k̂n), ϵ̂2(k̂n)}.

The polar and azimuthal scattering angles in the next, (n + 1)-th interaction of
the photon are sampled from the relevant PDFs as described above. To determine the
direction k̂n+1 and polarisation Pn+1 of the scattered photon we perform the following
sequence of rotations:
1) A rotation R−1(ϑ, φ) = R(−ϑŷ)R(−φẑ), which transforms the vectors {k̂n, ϵ̂1(k̂n),
ϵ̂2(k̂n)} into {ẑ, x̂, ŷ}. This rotation keeps the relative orientations of the unit base
vectors unaltered and, therefore, it does not modify the Stokes vector Pn.
2) A rotation R(ϕẑ)R(θŷ) that describes the effect of an interaction with the sampled
scattering angles for photons incident in the direction of the z axis. This rotation
transforms the vectors {ẑ, x̂, ŷ} into

k̂′ =


cosϕ sin θ

sinϕ sin θ

cos θ

 , ϵ̂′1 =


cosϕ cos θ

sinϕ cos θ

− sin θ

 , ϵ̂′2 =


− sinϕ

cosϕ

0

 . (2.161)

4The Fortran intrinsic function ATAN2(y, x) gives the arc-tangent of y/x resolved into the correct
quadrant, the result is in the range (−π, π).
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The polarisation of the scattered photon, relative to the “natural” basis of polarisation
vectors for the direction k̂′, ϵ̂1(k̂

′) and ϵ̂2(k̂
′), is obtained from Eq. (2.151),

P′ = BRa or CoPn, (2.162)

and is renormalised so that P ′
0 = 1. That is, the transformed Stokes parameters are

given by

P ′
0 = (cos2 θ + 1 + C) + (cos2 θ − 1)[sin(2ϕ)P1 + cos(2ϕ)P3],

P ′
1 = {2 cos θ[cos(2ϕ)P1 − sin(2ϕ)P3]} /P ′

0,

P ′
2 = {(2 + C) cos θP2} /P ′

0,

P ′
3 =

{
(cos2 θ − 1) + (cos2 θ + 1)[sin(2ϕ)P1 + cos(2ϕ)P3]

}
/P ′

0. (2.163)

After computing the parameters P ′
1 to P

′
3, the Stokes four-vector P

′ is obtained by setting
P ′
0 = 1. In the case of Compton scattering, the constant C is given by Eq. (2.144). For

Rayleigh scattering, C = 0.
3) A rotationR(ϑ, φ) = R(φẑ)R(ϑŷ), which inverts the rotation of the first step. Again,
this rotation leaves the Stokes vector unaltered, so that Pn+1 = P′. The final direction
vector is

k̂n+1 = R(ϑ, φ)k̂′ =


cosφ cosϑ − sinφ cosφ sinϑ

sinφ cosϑ cosφ sinφ sinϑ

− sinϑ 0 cosϑ




cosϕ sin θ

sinϕ sin θ

cos θ

 , (2.164)

and its direction cosines are given by the same formulas as for unpolarised particles [see
Eqs. (1.131)],

u′ = u cos θ +
sin θ√
1− w2

[uw cosϕ− v sinϕ] ,

v′ = v cos θ +
sin θ√
1− w2

[vw cosϕ+ u sinϕ] , (2.165)

w′ = w cos θ −
√
1− w2 sin θ cosϕ.



Chapter 3

Electron and positron interactions

In this Chapter we consider the interactions of fast electrons and positrons of kinetic
energy E with matter. For the sake of simplicity, we start by assuming that the particles
move in a single-element medium of atomic number Z and density ρ, with N atoms per
unit volume. The extension to compounds, and mixtures, is normally done on the
basis of the additivity approximation, i.e., the molecular DCS is approximated as the
incoherent sum of the atomic DCSs of all the atoms in a molecule.

Elastic scattering
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Figure 3.1: Basic interactions of electrons and positrons with matter.

The possible interactions of electrons and positrons with the medium are elastic
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scattering, inelastic collisions and bremsstrahlung emission; positrons can also undergo
annihilation, either in flight or at rest (see Fig. 3.1). The atomic DCSs adopted in
penelope are defined either as analytical functions or by means of numerical tables,
or as a combination of both. These DCSs, which are sufficiently accurate for most
practical simulation purposes, allow fast and accurate random sampling of the individual
interactions. It is worth pointing out that multiple-scattering distributions are quite
insensitive to the fine details of the single-scattering DCSs. If the adopted DCSs have a
physically reasonable shape, only the values of a few integrals of the DCS have a direct
influence on the simulation results (Liljequist, 1987; Fernández-Varea et al., 1993b).
As a consequence, a general-purpose simulation procedure can be made fairly simple by
using approximate DCSs with the proviso that they exactly reproduce the correct values
of the relevant integrals. The DCSs described below represent a compromise between
reliability and simplicity; they are simple enough to allow the use of fast sampling
methods and, at the same time, they are flexible enough to account for the relevant
features of the interactions.

Owing to the large number of interactions suffered by a fast electron or positron
before coming to rest, detailed simulation is unfeasible at high energies. In penelope
we overcome this practical difficulty by using a mixed simulation procedure (see Chapter
4) instead of the habitual condensed simulation schemes adopted in other high-energy
simulation codes —e.g., etran (Berger and Seltzer, 1988), its3 (Halbleib et al., 1992),
egs4 (Nelson et al., 1985), geant3 (Brun et al., 1986), egsnrc (Kawrakow and Rogers,
2001), mcnp (X-5 Monte Carlo Team, 2003), geant4 (Agostinelli et al., 2003; Allison et
al., 2006), fluka (Ferrari et al., 2005), egs5 (Hirayama et al., 2005). The formulation
of mixed simulation is complicated by the fact that the sampling of hard interactions is
done from restricted DCSs, with cutoffs that vary with the particle energy during the
evolution of a track. This limits the complexity of the DCSs that can be efficiently used
in a simulation code.

3.1 Elastic collisions

In this Section we consider the theoretical description of elastic collisions of electrons and
positrons with isolated neutral atoms of atomic number Z at rest. By definition, elastic
interactions are those in which the initial and final quantum states of the target atom
are the same, normally the ground state. The angular deflections of electron trajectories
in matter are mainly (but not completely) due to elastic scattering. Notice that there
is a certain energy transfer from the projectile to the target, which causes the recoil of
the latter (see Section A.1.1). Because of the large mass of the target (∼ 3600Zme), the
average energy lost by the projectile is a very small fraction of its initial energy (a few
meV for scattering of 30 keV electron by aluminium atoms) and is usually neglected,
which is equivalent to assuming that the target has an infinite mass and does not recoil.

Elastic collisions of electrons and positrons with kinetic energies larger than a few
hundred eV can be described as scattering of the projectile by the electrostatic field
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of the target (Mott and Massey, 1965). The charge distribution of the target atom
consists of the nucleus and the electron cloud. The density of atomic electrons ρe(r)
can be calculated by using available Hartree-Fock codes (e.g., the one of Desclaux,
1975). For atoms with closed-shell configurations, the electron distribution is spherically
symmetrical; for atoms with open shells, we assume that an average over directions is
performed to give a spherical density ρe(r). To account for the effect of the finite size of
the nucleus on the elastic DCS (which is appreciable only for projectiles with energy E
larger than a few MeV), the density of protons within the nucleus may be approximated
by the Fermi distribution (Hahn et al., 1956)

ρn(r) =
ρ0

exp [(r −Rn)(4 ln 3/t)] + 1
, (3.1)

where Rn is the mean radius (or half-density radius) and t is the surface (or “skin”)
thickness (defined as the distance over which ρn drops from ∼ 0.9 to ∼ 0.1 of its central
value). These two parameters are given by

Rn = 1.07× 10−15A1/3
w m, t = 2.4× 10−15 m, (3.2)

where Aw is the atomic weight of the element. The constant ρ0, which equals twice the
proton density at r = Rn, is determined by normalisation,

Z = 4π

∫ ∞

0

ρn(r) r
2 dr. (3.3)

The electrostatic potential of the target atom is

φ(r) = e 4π

[
1

r

∫ r

0

ρn(r
′)r′2 dr′ +

∫ ∞

r

ρn(r
′)r′ dr′

]
− e 4π

[
1

r

∫ r

0

ρe(r
′)r′2 dr′ +

∫ ∞

r

ρe(r
′)r′ dr′

]
. (3.4)

Within the static-field approximation (Mott and Massey, 1965; Walker, 1971; Salvat
et al., 2005), the DCS for elastic scattering of electrons or positrons is obtained by
solving the partial-wave expanded Dirac equation for the motion of the projectile in the
field of the target atom. The interaction energy is given by

V (r) = z0e φ(r) + Vex(r), (3.5)

where z0 is the charge of the projectile in units of e (−1 for electrons, +1 for positrons).
The term Vex(r), which applies only for electrons, represents a local approximation to the
exchange interaction between the projectile and the atomic electrons (see, e.g., Salvat,
1998; Salvat, 2003). We shall limit our considerations to the case of spin-unpolarised
projectiles, i.e., their spin is randomly oriented. Then, the effect of elastic interactions
can be described as a deflection of the projectile trajectory, characterised by the polar
and azimuthal scattering angles θ and ϕ. For a central field, the angular distribution
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of singly-scattered electrons is axially symmetric about the direction of incidence, i.e.,
independent of ϕ. The DCS (per unit solid angle) for elastic scattering of a projectile
with kinetic energy E into the solid angle element dΩ about the direction (θ, ϕ) is given
by (Walker, 1971; Salvat et al., 2005)

dσel
dΩ

= |f(θ)|2 + |g(θ)|2, (3.6)

where

f(θ) =
1

2ik

∞∑
ℓ=0

{(ℓ+ 1) [exp(2iδℓ+)− 1] + ℓ [exp(2iδℓ−)− 1]}Pℓ(cos θ),

g(θ) =
1

2ik

∞∑
ℓ=0

{exp(2iδℓ−)− exp(2iδℓ+)}P 1
ℓ (cos θ) (3.7)

are the direct and spin-flip scattering amplitudes, respectively. The quantity

k ≡ p

~
=

1

~c
[
E(E + 2mec

2)
]1/2

(3.8)

is the wave number of the projectile, Pℓ(cos θ) are Legendre polynomials, P 1
ℓ (cos θ)

are associated Legendre functions and δℓ± are the phase shifts. These are determined
from the asymptotic behaviour of the Dirac radial functions for large r (Walker, 1971;
Salvat et al., 2005). Thus, to determine each phase shift we must solve the radial Dirac
equations for the potential V (r). The convergence of the partial-wave series (3.7) slows
down when the energy of the projectile increases. This makes the calculation difficult
for energies larger than a few MeV (in the case of scattering by gold atoms, about 10,000
phase shifts are required at E = 10 MeV). The partial-wave DCS, Eq. (3.6), rigorously
accounts for spin and other relativistic effects, as well as for finite nuclear size effects.

Single elastic collisions are determined by the values of the polar and azimuthal
scattering angles, θ and ϕ, respectively. Owing to the assumed spherical symmetry of
the scattering centres, single- and multiple-scattering angular distributions are axially
symmetrical about the direction of incidence, i.e., they are independent of the azimuthal
scattering angle ϕ. For simulation purposes, it is convenient to measure polar angular
deflections produced by single-scattering events in terms of the variable [see Eq. (1.76)]

µ = (1− cos θ)/2 (3.9)

instead of the scattering angle θ. Note that µ varies from 0 (forward scattering) to 1
(backward scattering). The DCS per unit angular deflection is

dσel
dµ

= 4π
dσel
dΩ

. (3.10)

The total elastic cross section is given by

σel =

∫
dσel
dΩ

dΩ =

∫
dσel
dµ

dµ. (3.11)
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We can also write
dσel
dµ

= σel pel(µ), (3.12)

where pel(µ) is the normalised PDF of µ in a single collision. The mean free path
between consecutive elastic events in a homogeneous single-element medium is

λel = 1/(Nσel), (3.13)

where N is the number of atoms per unit volume.

Other important quantities (see Section 4.1) are the transport cross sections

σel,ℓ ≡
∫

[1− Pℓ(cos θ)]
dσel
dΩ

dΩ, (3.14)

where Pℓ(x) are Legendre polynomials. Those of lowest degrees are

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1). (3.15)

The ℓ-th transport mean free path is defined by

λel,ℓ ≡ 1/(Nσel,ℓ). (3.16)

The first and second transport cross sections, σel,1 and σel,2, are given by

σel,1 =

∫
(1− cos θ)

dσel
dΩ

dΩ = 2σel

∫ 1

0

µpel(µ) dµ = 2σel ⟨µ⟩ (3.17)

and

σel,2 =

∫
3

2
(1− cos2 θ)

dσel
dΩ

dΩ

= 6σel

∫ 1

0

(µ− µ2)pel(µ) dµ = 6σel
(
⟨µ⟩ − ⟨µ2⟩

)
, (3.18)

where ⟨· · · ⟩ indicates the average value in a single collision. The quantities λel,1 and
λel,2, Eq. (3.16), determine the first and second moments of the multiple-scattering
distributions (see Section 4.1). The inverse of the first transport mean free path,

λ−1
el,1 = Nσel,1 =

2

λel
⟨µ⟩, (3.19)

gives a measure of the average angular deflection per unit path length. By analogy with
the “stopping power”, which is defined as the mean energy loss per unit path length
(see Section 3.2.3), the quantity 2λ−1

el,1 is sometimes called the “scattering power”1.

1At high energies, where the scattering is concentrated at very small angles, ⟨µ⟩ ≃ ⟨θ2⟩/4 and
λ−1
el,1 ≃ ⟨θ2⟩/(2λel).
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3.1.1 Partial-wave cross sections

In the present version of penelope, elastic collisions of electrons and positrons are
simulated by using numerical partial-wave cross sections for free neutral atoms. These
cross sections were calculated with the program elsepa (ELastic Scattering of Elec-
trons and Positrons by Atoms) written by Salvat et al. (2005). This program performs
accurate relativistic (Dirac) partial-wave calculations of elastic scattering of electrons
and positrons by free atoms, and allows consideration of different scattering-potential
models. For the calculation of the elastic-scattering database, we used the static-field
approximation. The electrostatic potential of the target atom was obtained by consider-
ing the Fermi nuclear charge distribution, Eq. (3.1), and the self-consistent Dirac-Fock
electron density for free atoms generated by the code of Desclaux (1975). For electron
projectiles, the exchange potential of Furness and McCarthy (1973) was adopted. The
program elsepa is able to perform partial-wave calculations for projectiles with ener-
gies up to about 100 MeV. At higher energies, the partial-wave calculation of DCSs
is impractical, because of the slow convergence of the series and the accumulation of
numerical round-off errors. At these high energies, elsepa computes elastic-scattering
cross sections using a combination of the Born approximation for scattering by the bare
finite nucleus and a numerical high-energy screening correction. The cross sections gen-
erated by elsepa provide the most reliable theoretical description available of elastic
scattering for projectiles with kinetic energies higher than about 10 keV.

When the energy of the projectile decreases, the accuracy of the static-field approxi-
mation worsens progressively, due to the combined effects of inelastic absorption (which
causes a depletion of the elastic-channel wave function) and atomic-charge polarisabil-
ity (the target atom is polarised by the electric field of the projectile, and the field of
the induced dipole acts back on the projectile). These effects can be accounted for by
introducing local corrections to the static potential (3.5) [see, e.g., Salvat (2003) and
references therein]. Calculations with elsepa, including these low-energy effects, yield
elastic-scattering DCSs that, at large angles, differ from the static-field DCSs by about
20% at E = 1 keV and by up to 50% at E = 100 eV. However, differences between
total cross sections are much smaller, due to a partial cancellation of the two effects.
Unfortunately, both inelastic absorption and dipole polarisation depend strongly on the
state of aggregation of the target atom. Owing to the lack of a general theory for the
evaluation of these low-energy effects for scattering in condensed materials, the DCSs
in the elastic-scattering database where calculated from the static-field approximation.
This simplification implies that penelope provides a faithful description of multiple
elastic scattering of electrons and positrons with energies higher than about 1 keV; for
lower energies, the simulation results should be considered as semi-quantitative.

An extensive database of elastic-scattering DCSs was generated by running the pro-
gram elsepa using the static-field approximation with the electrostatic and exchange
potentials described above2. This database, which hereafter will be referred to as the

2 A similar database (covering the energy range from 50 eV to 300 keV, and generated with a
preliminary version of elsepa) is distributed by the NIST (Jablonski et al., 2003).
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elsepa database, consists of 198 ASCII files that contain DCSs, dσel/dΩ, total cross
sections, σel, and first and second transport cross sections, σel,1 and σel,2, for elastic
scattering of electrons and positrons by neutral atoms of the elements Z = 1− 99. The
database files for electrons and positrons are named eeldxZZZ.p08 and peldxZZZ.p08,
where ZZZ (three digits) is the atomic number of the target atom. The DCSs are tabu-
lated at fixed grids of kinetic energies E and angles θ (the same for all elements). The
E-grid is nearly logarithmic, with 96 points (15 points per decade), and spans the inter-
val from 50 eV up to 100 MeV. The angular grid consists of 606 angles, distributed with
a higher density near θ = 0 to allow accurate interpolation of the DCS for the high-
est energies considered. These grids are appropriate for interpolation of the tabulated
functions using cubic spline log-log interpolation in E and linear log-log interpolation
in µ ≡ (1 − cos θ)/2. The elsepa database is distributed with the ICRU Report 77
(2007), which includes a graphical interface that displays plots of the DCS and the first
transport cross section.

Figure 3.2 displays DCSs from the elsepa database for elastic scattering of electrons
and positrons of various energies by atoms of carbon, silicon, silver and gold. The plots
illustrate the variation of the DCS with the atomic number Z, the charge of the projectile
and the energy E. Since the interaction V (r) is attractive for electrons and repulsive
for positrons, the scattering is more intense for electrons (which can fall deeply into the
potential well of the atom) than for positrons (which are repelled from the nucleus and
cannot “feel” the inner part of the atom). The DCS for low-energy electrons exhibits a
diffraction-like structure, while the DCS for positrons decreases monotonously with the
deflection θ, and µ. The Born approximation (see, e.g., Mott and Massey, 1965) predicts
a structureless DCS that decreases with µ and is proportional to the squared charge of
the projectile (i.e., the same DCS for electrons and positrons). This approximation
considers the scattering field as a perturbation (to first order) and, hence, it is valid
only for weak fields, i.e., for low-Z elements or, in the case of heavy elements, for
large impact parameters (which correspond to small scattering angles). The difference
between the (partial-wave) DCSs for electrons and positrons gives a clear indication of
the applicability of the Born approximation.

Figure 3.3 shows elastic mean free paths and transport mean free paths for elec-
trons in aluminium and gold. At low energies, the differences between the DCSs of the
two elements (see Fig. 3.2) produce very visible differences between the corresponding
transport mean free paths. When E increases, the DCS becomes strongly peaked in
the forward direction and ⟨µ2⟩ becomes much smaller than ⟨µ⟩. In the high-energy
limit, σel,2 ≃ 3σel,1 (λel,2 ≃ λel,1/3). The total cross section, ∝ 1/(ρλel), decreases
monotonously with E to reach a constant value at high energies. This saturation is a
relativistic effect: the total cross section measures the interaction probability, which is
proportional to the time spent by the projectile within the region where the scatter-
ing field is appreciable. This time is determined by the speed of the projectile, which
approaches c from below when the projectile energy increases. In the non-relativistic
theory, the speed vn.r. = (2E/me)

1/2 increases without limit with E and the calculated
non-relativistic total cross section tends to zero at high energies.
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Figure 3.2: DCS for elastic scattering of electrons and positrons by carbon, silicon, silver, and

gold atoms as a function of the polar deflection angle θ. Notice the change from logarithmic

to linear scale at θ = 10 deg.
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Figure 3.3: Elastic mean free path, λel, and first and second transport mean free paths, λel,1

and λel,2, for electrons scattered in aluminium and gold as functions of the kinetic energy of

the projectile.

In penelope, the DCSs for compounds (and mixtures) are calculated from atomic
total and transport cross sections by means of the additivity approximation (incoherent
sum of scattered intensities). This amounts to neglecting chemical binding effects. A
more accurate approach, which yields a good estimate of these effects, is provided by
the following independent-atom approximation (Walker, 1968; Yates, 1968). Assume
that the interaction of the projectile with each atom is still given by the free-atom static
potential (3.5). The molecular DCS may then be evaluated by adding the waves (not the
currents) scattered from the various atoms in the molecule and averaging over molecular
orientations. The resulting DCS is given by

dσel
dΩ

=
∑
i,j

sin(qaij/~)
qaij/~

[
fi(θ)f

∗
j (θ) + gi(θ)g

∗
j (θ)

]
, (3.20)

where q = 2~k sin(θ/2) is the momentum transfer, aij is the distance between the
atoms i and j and fi, gi are the scattering amplitudes, Eq. (3.7), for the atom i. It
has been claimed that DCSs obtained from this formulation agree with experiments to
within ∼ 2% (Walker, 1968; Yates, 1968). DCSs for scattering of 100 eV and 2.5 keV
electrons in water vapour, obtained from the simple additivity rule and computed from
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Eq. (3.20), are compared in Fig. 3.4. It is seen that, for energies above a few keV,
chemical binding causes a slight distortion of the DCS at small angles, and a slight
rippling for intermediate angles. Therefore, the use of the additivity approximation
(i.e., neglecting chemical binding effects) in Monte Carlo simulation at these energies is
justified.
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Figure 3.4: DCSs for elastic scattering of electrons by water molecules, calculated as the

coherent sum of scattered waves, Eq. (3.20), and from the additivity approximation (incoherent

sum).

3.1.1.1 Simulation of single-scattering events

As mentioned above, the angular distribution in single elastic events is axially sym-
metrical about the direction of incidence. Hence, the azimuthal scattering angle ϕ is
sampled uniformly in the interval (0, 2π) using the sampling formula ϕ = 2πξ. The
polar deflection µ in each individual collision is generated from the DCSs in the elsepa
database, by using an interpolation scheme similar to the one described by (Benedito et
al., 2001). Partial-wave DCSs will also be utilised for mixed simulations (see Chapter
4), in which only hard events, with deflection µ larger than a given cutoff value µc, are
sampled individually.

At initialisation time, penelope reads a table of partial-wave DCSs, total cross
sections and transport cross sections that, for elemental media, is a duplicate of the
corresponding elsepa database files. In the case of compounds the table has the same
format, but contains molecular cross sections (generated from the atomic cross sections
by using the additivity rule). These input cross sections are tabulated at the energies
of the elsepa grid (which is nearly logarithmic, with 15 points per decade). The first
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action of penelope is to produce a new table of cross sections for a denser grid of
energies, with 200 logarithmically-spaced points (Ei; i = 1, . . . , 200), which spans the
complete energy range used in the simulation. This table is obtained from the input
table by means of log-log cubic spline interpolation in E. For each grid energy Ei the
program determines the PDF for the angular deflection µ,

pel(Ei;µ) =
1

σel

dσel
dµ

=
4π

σel

dσel
dΩ

, (3.21)

which is tabulated at the 606 angular deflections µj in the elsepa database. With the
aid of log-log cubic spline interpolation in µ, these numerical PDFs are transformed
into continuous distributions, from which random values of the angular deflection µ are
generated by using the RITA method (see Section 1.2.4).

In detailed simulations (including energy loss events), the kinetic energy of the pro-
jectile varies along the track and we need to simulate elastic events for energies E differ-
ent from those in the simulation grid. In principle, when Ei < E < Ei+1, we should first
interpolate along the energy axis to obtain the PDF pint(E, µ) and then perform the
random sampling of µ from the interpolated PDF. Evidently, this procedure would be
too time consuming. A convenient alternative is to use linear interpolation of the PDF
in lnE, which largely simplifies the numerical operations (see below). The accuracy of
this interpolation is determined by the spacing of the adopted grid of energies Ei. With
the simulation grid used in penelope (200 logarithmically spaced points), interpolation
errors are typically smaller than 0.1% in the less favourable cases, i.e., when the energy
E lies close to the midpoint of the interval (Ei, Ei+1). In general, these interpolation
errors are much smaller than the intrinsic uncertainties of the partial-wave DCS (asso-
ciated with the simplifications in the underlying physics model) and have a negligible
impact on the simulation results.

The interpolated PDF at E can be regarded as a mixture of the PDFs at Ei and
Ei+1,

pel,int(E;µ) = πi pel(Ei;µ) + πi+1 pel(Ei+1;µ) (3.22)

with interpolation weights

πi =
lnEi+1 − lnE

lnEi+1 − lnEi

and πi+1 =
lnE − lnEi

lnEi+1 − lnEi

, (3.23)

respectively. Note that these weights are positive and add to unity. Therefore the
random sampling of µ from pint(E;µ) can be performed by using the composition method
(see Section 1.2.6). The sampling algorithm proceeds as follows:

(i) Sample the variable k, which can take the values i or i+1 with point probabilities
πi and πi+1, respectively, and

(ii) Sample µ from the distribution pel(Ek;µ) by using the RITA method (Section
1.2.4).
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Notice that with this “interpolation by weight” method we only need to sample µ from
the tabulated angular PDFs, i.e., for the energies of the grid. This requires storing in
memory only the set of parameters and flags used by the RITA sampling routine for
each Ei.

In mixed simulations (see Chapter 4), individual hard events cause angular deflec-
tions µ in a certain interval (µc, 1). With the help of a slight modification, the algorithm
described above can be used to generate µ-values restricted to that interval. We recall
that, with the inverse-transform method, for a given random number ξ we generate an
angular deflection µ(ξ) by solving the sampling equation∫ µ

0

pel(E;µ
′) dµ′ = ξ, (3.24)

where the PDF pel(E;µ) is assumed to be normalised to unity. Evidently, µ(ξ) increases
monotonically with ξ. A mixed-simulation algorithm is defined by specifying the mean
free path λ

(h)
el between hard elastic events as a function of energy (see Section 4.3). The

relation
1

λ
(h)
el

=
1

λel

∫ 1

µc

pel(E;µ) dµ, (3.25)

then determines the cutoff deflection µc(E). We note that∫ µc

0

pel(E;µ) dµ = 1− λel

λ
(h)
el

≡ ξc. (3.26)

Therefore, to generate random values of µ, distributed according to the PDF pel(E;µ)
restricted to the interval (µc, 1), we can still use the inverse transform (3.24) but with
random numbers ξ in the interval (ξc, 1). That is, the sampling equation (restricted
inverse transform) ∫ µ

0

pel(E;µ) dµ = ξc + ξ(1− ξc), (3.27)

yields values of µ distributed according to pel(E;µ) in the interval (µc, 1). In pene-
lope, this restricted inverse transform is performed by using the RITA method (without
Walker’s aliasing).

3.1.2 The modified Wentzel (MW) model

As mentioned above, the elsepa database extends only up to E = 100 MeV. Therefore,
we need an alternative model to describe elastic events at higher energies. In earlier
versions of penelope, elastic scattering was simulated by means of the modified Wentzel
(MW) model, which corresponds to an approximate DCS given by a simple analytical
expression. The MW model is determined by the values of the total cross section
σel(E) and the first and second transport cross sections σel,1 and σel,2. Using the code
elsepa (Salvat et al., 2005), we generated a database that contains these cross sections
for electrons and positrons, for atoms of the elements Z = 1–99 and for a grid of
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energies that ranges from 50 eV to 1 GeV and is dense enough to permit accurate
cubic spline log-log interpolation in E. In the energy range below 100 MeV, total cross
sections were calculated by the partial-wave method (they are the same as those in the
elsepa database); total cross sections for higher energies were generated by using the
Born approximation with a high-energy screening correction. In the present version of
penelope, the MW model is used to describe elastic events for energies larger than
about 100 MeV. It is worth mentioning that, while simulations with partial-wave DCSs
require preparatory calculations (which take several seconds for each material), the
initialisation of the MW model is very fast. Therefore, the MW model can be useful for
trial calculations, when a fast response is desirable and high accuracy is not required.
For instance, the code shower (see Section 6.4), which displays radiation showers on
the computer screen, uses the MW DCS to simulate elastic events for any energy.

The MW DCS is expressed as

dσ
(MW)
el

dµ
= σel pMW(µ), (3.28)

where the single-scattering distribution pMW(µ) is defined by a simple analytical expres-
sion, with a physically plausible form, depending on two adjustable parameters. These
parameters are determined in such a way that the values of ⟨µ⟩ and ⟨µ2⟩ obtained from
pMW(µ) are equal to those of the actual (partial-wave) DCS:

⟨µ⟩MW ≡
∫ 1

0

µpMW(µ) dµ = ⟨µ⟩ = 1

2

σel,1
σel

(3.29)

and

⟨µ2⟩MW ≡
∫ 1

0

µ2pMW(µ) dµ = ⟨µ2⟩ = 1

2

σel,1
σel
− 1

6

σel,2
σel

. (3.30)

Thus, the MW model will give the same mean free path and the same first and second
transport mean free paths as the partial-wave DCS. As a consequence (see Chapter 4),
detailed simulations using this model will yield multiple-scattering distributions that do
not differ significantly from those obtained from the partial-wave DCS, quite irrespec-
tively of other details of the “artificial” distribution pMW(µ).

To set the distribution pMW(µ), we start from the Wentzel (1927) angular distribu-
tion,

pW,A0(µ) ≡
A0(1 + A0)

(µ+ A0)2
, (A0 > 0) (3.31)

which describes the scattering by an exponentially-screened Coulomb field within the
Born approximation (see, e.g., Mott and Massey, 1965), that is, it provides a physically
plausible angular distribution, at least for light elements or high-energy projectiles. It
is also worth mentioning that the multiple-scattering theory of Molière (1947, 1948) can
be derived by assuming that electrons scatter according to the Wentzel distribution (see
Fernández-Varea et al., 1993b). The first moments of the Wentzel distribution are

⟨µ⟩W,A0 =

∫ 1

0

µ
A0(1 + A0)

(µ+ A0)2
dµ = A0

[
(1 + A0) ln

(
1 + A0

A0

)
− 1

]
(3.32)
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and

⟨µ2⟩W,A0 =

∫ 1

0

µ2 A0(1 + A0)

(µ+ A0)2
dµ = A0 [1− 2⟨µ⟩W,A0 ] . (3.33)

Let us define the value of the screening constant A0 so that ⟨µ⟩W,A0 = ⟨µ⟩. The value
of A0 can be easily calculated by solving Eq. (3.32) numerically, e.g., by the Newton-
Raphson method. Usually, we shall have ⟨µ2⟩W,A0 ̸= ⟨µ2⟩. At low energies, the Wentzel
distribution that gives the correct average deflection is too “narrow” [⟨µ2⟩W,A0 < ⟨µ2⟩
for both electrons and positrons and for all the elements]. At high energies, the angular
distribution is strongly peaked in the forward direction and the Wentzel distribution
becomes too “wide”. This suggests using a modified Wentzel (MW) model obtained by
combining a Wentzel distribution with a simple distribution, which takes different forms
in these two cases,
• Case I. If ⟨µ2⟩W,A0 > ⟨µ2⟩ (the Wentzel distribution is too wide), we take pMW(µ) as a
statistical admixture of the Wentzel distribution and a delta distribution (a zero-width,
fixed-scattering-angle process)

pMW−I(µ) = (1−B) pW,A(µ) +B δ(µ− ⟨µ⟩) (3.34)

with

A = A0 and B =
⟨µ2⟩W,A − ⟨µ2⟩
⟨µ2⟩W,A − ⟨µ⟩2

. (3.35)

Notice that in this case we usually have ⟨µ⟩ ≪ 1, so that the delta distribution is at
very small angles. Although we have introduced a discrete peak in the DCS, its effect
is smeared out by the successive collisions and not visible in the multiple-scattering
angular distributions.
• Case II. If ⟨µ2⟩W,A0 < ⟨µ2⟩ (the Wentzel distribution is too narrow), we express pMW(µ)
as a statistical admixture of a Wentzel distribution (with A not necessarily equal to A0)
and a triangle distribution in the interval (1/2,1),

pMW−II(µ) = (1−B) pW,A(µ) + B 8 (µ− 1/2)Θ (µ− 1/2) . (3.36)

The parameters A and B are obtained from the conditions (3.29) and (3.30), which give

(1−B) ⟨µ⟩W,A +B
5

6
= ⟨µ⟩

(1−B) ⟨µ2⟩W,A +B
17

24
= ⟨µ2⟩. (3.37)

From the first of these equations,

B =
⟨µ⟩ − ⟨µ⟩W,A

(5/6)− ⟨µ⟩W,A

. (3.38)

Inserting this value in the second of Eqs. (3.37), we obtain(
17

24
− ⟨µ2⟩

)
⟨µ⟩W,A −

(
5

6
− ⟨µ⟩

)
⟨µ2⟩W,A =

17

24
⟨µ⟩ − 5

6
⟨µ2⟩. (3.39)
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For all situations of interest, this equation has a single root A in the interval (0, A0) and
can be easily solved by means of the bisection method. The value of B given by Eq.
(3.38) is then positive and less than unity, as required.

In Fig. 3.5 we compare partial-wave DCSs and MWmodel DCSs for elastic scattering
of electrons of various energies by gold atoms. The considered energies correspond to
the case-II MW model [so that the distribution pMW(µ) is continuous]. We see that
the MW model does imitate the partial-wave DCSs, but the differences are significant.
Nevertheless, the important fact here is that both DCSs give exactly the same values of
σel, ⟨µ⟩ and ⟨µ2⟩.
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Figure 3.5: Partial-wave and MW model DCSs for elastic scattering of electrons by gold

atoms. Notice the change from logarithmic to linear scale at µ = 0.1.

As indicated above, the parameters of the MW model are determined by the char-
acteristic functions σel(E), σel,1(E) and σel,2(E). penelope reads these functions from
the MW database files [99 files named pdeelZZ.p08, where ZZ (two digits) is the atomic
number of the target atom]. Notice that, with the help of the additivity rule, the MW
model can readily be applied to compounds and mixtures. Before starting the simu-
lation, penelope evaluates a table of the parameters A and B, and stores it in the
computer memory. Instead of B, penelope tabulates the quantity B′ = +B (case I)
and B′ = −B (case II); this avoids the need to specify the case, which can be inferred
from the sign of B′. It is worth noting that A and B′ are continuous functions of energy
and, therefore, can be rapidly evaluated, for any energy, by interpolation in the stored
table. In case I, ⟨µ⟩ concides with ⟨µ⟩W,A, which is determined by A, Eq. (3.32). Figure
3.6 displays the MW model parameters for aluminium and gold, as representative of
low- and high-Z elements. Notice that at high energies, where the case I model applies,
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Figure 3.6: Parameters of the MW model for scattering of electrons and positrons by alu-

minium and gold atoms.

the strength of the delta contribution increases rapidly with energy, indicating that the
partial-wave DCS is much narrower than the Wentzel distribution.

3.1.2.1 Simulation of single elastic events with the MW model

The main advantage of using the MW model is that the random sampling of the polar
deflection µ can be performed analytically. In the case of mixed simulations (see Chapter
4), only hard events, with deflection µ larger than a given cutoff value µc, are sampled
individually. In this Section we describe analytical (i.e., exact) methods for random
sampling of µ in the restricted interval (µc, 1). The azimuthal scattering angle ϕ is
sampled uniformly in the interval (0, 2π).

• Case I. The cumulative distribution function of pMW−I(µ) is

PMW−I(µ) ≡
∫ µ

0

pMW−I(µ
′) dµ′ =


(1−B)

(1 + A)µ

A+ µ
if 0 ≤ µ < ⟨µ⟩,

B + (1−B)
(1 + A)µ

A+ µ
if ⟨µ⟩ ≤ µ ≤ 1.

(3.40)

Because of the analytical simplicity of this function, the random sampling of µ can
be performed by using the inverse-transform method (Section 1.2.2). The sampling
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equation for µ in (0,1) reads
µ = P−1

MW−I(ξ), (3.41)

where P−1
MW−I(ξ) is the inverse of the cumulative distribution function, which is given

by

P−1
MW−I(ξ) =



ξA

(1−B)(1 + A)− ξ
if 0 ≤ ξ < ξ0,

⟨µ⟩ if ξ0 ≤ ξ < ξ0 +B,

(ξ −B)A

(1−B)(1 + A)− (ξ −B)
if ξ0 +B ≤ ξ ≤ 1,

(3.42)

with

ξ0 = (1−B)
(1 + A)⟨µ⟩
A+ ⟨µ⟩

. (3.43)

To sample µ in the restricted interval (µc,1), we can still use the inverse-transform
method, Eq. (3.41), but with the random number ξ sampled uniformly in the interval
(ξc,1) with

ξc = PMW−I(µc). (3.44)

• Case II. The cumulative distribution function is

PMW−II(µ) ≡
∫ µ

0

pMW−II(µ
′) dµ′

=


(1−B)

(1 + A)µ

A+ µ
if 0 ≤ µ < 1

2
,

(1−B)
(1 + A)µ

A+ µ
+B 4

[
µ2 − µ+

1

4

]
if 1

2
≤ µ ≤ 1.

(3.45)

In principle, to sample µ in (0,1), we can adopt the inverse-transform method. The
sampling equation

ξ = PMW−II(µ) (3.46)

can be cast in the form of a cubic equation. This equation can be solved either by using
the analytical solution formulas for the cubic equation, which are somewhat complicated,
or numerically, e.g., by the Newton-Raphson method. We employ this last procedure
to determine the cutoff deflection for mixed simulation (see Section 4.1). To sample µ
in the restricted interval (µc,1) we use the composition method, which is easier than
solving Eq. (3.46). Notice that the sampling from the (restricted) Wentzel and from the
triangle distributions can be performed analytically by the inverse-transform method.

3.2 Inelastic collisions

The dominant energy loss mechanisms for electrons and positrons with intermediate and
low energies are inelastic collisions, i.e., interactions that produce electronic excitations
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and ionisations in the medium. The quantum theory of inelastic collisions of charged
particles with individual atoms and molecules was first formulated by Bethe (1930, 1932)
on the basis of the first-order (plane-wave) Born approximation. The extension of the
theory to inelastic collisions in condensed materials has been discussed by Fano (1963).
The formal aspects of the quantum theory for condensed matter are quite complicated.
Fortunately, the results are essentially equivalent to those from classical dielectric theory.

The effect of individual inelastic collisions on the projectile is completely specified
by giving the energy loss W and the polar and azimuthal scattering angles θ and ϕ,
respectively. For amorphous media with randomly oriented atoms (or molecules), the
DCS for inelastic collisions is independent of the azimuthal scattering angle ϕ. Instead
of the polar scattering angle θ, it is convenient to use the recoil energy Q [see Eqs. (A.29)
and (A.30)], defined by

Q(Q+ 2mec
2) = (cq)2. (3.47)

The quantity q is the magnitude of the momentum transfer q ≡ p−p′, where p and p′

are the linear momenta of the projectile before and after the collision. Notice that Q is
the kinetic energy of an electron that moves with a linear momentum equal to q.

Let us first consider the inelastic interactions of electrons or positrons (z20 = 1) with
an isolated atom (or molecule) containing Z electrons in its ground state. The DCS
for collisions with energy loss W and recoil energy Q, obtained from the first Born
approximation, can be written in the form (Fano, 1963)

d2σin
dW dQ

=
2πz20e

4

mev2

(
2mec

2

WQ(Q+ 2mec2)
+

β2 sin2 θrW2mec
2

[Q(Q+ 2mec2)−W 2]2

)
df(Q,W )

dW
, (3.48)

where v = βc is the velocity of the projectile. θr is the angle between the initial
momentum of the projectile and the momentum transfer, which is given by Eq. (A.42),

cos2 θr =
W 2/β2

Q(Q+ 2mec2)

(
1 +

Q(Q+ 2mec
2)−W 2

2W (E +mec2)

)2

. (3.49)

The result (3.48) is obtained in the Coulomb gauge (Fano, 1963); the two terms on the
right-hand side are the contributions from interactions through the instantaneous (lon-
gitudinal) Coulomb field and through the exchange of virtual photons (transverse field),
respectively. The factor df(Q,W )/dW is the atomic generalised oscillator strength
(GOS), which completely determines the effect of inelastic interactions on the projectile,
within the Born approximation. Notice, however, that knowledge of the GOS does not
suffice to describe the energy spectrum and angular distribution of secondary knock-on
electrons (delta rays).

The GOS can be represented as a surface over the (Q,W ) plane, which is called the
Bethe surface (see Inokuti, 1971; Inokuti et al., 1978). Unfortunately, the GOS is known
in analytical form only for two simple systems, namely, the (non-relativistic) hydrogenic
ions (see Fig. 3.7) and the free-electron gas. Even in these cases, the analytical expres-
sions of the GOSs are too complicated for simulation purposes. For ionisation of inner
shells, the GOS can be computed numerically from first principles (see, e.g., Manson,
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1972), but using GOSs defined through extensive numerical tables is impractical for
Monte Carlo simulation. Fortunately, the physics of inelastic collisions is largely deter-
mined by a few global features of the Bethe surface. Relatively simple GOS models can
be devised that are consistent with these features and, therefore, lead to a fairly realistic
description of inelastic interactions (see, e.g., Salvat and Fernández-Varea, 1992).
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Figure 3.7: The GOS for ionisation of the hydrogen atom (Z = 1) in the ground state.

All energies are in units of the ionisation energy Ui = 13.6 eV. The GOS for ionisation of

(non-relativistic) hydrogenic ions is independent of Z if energies are expressed in units of the

ionisation energy.

As mentioned above, the “atomic” DCS for inelastic interactions in dense media
can be obtained from a semiclassical treatment in which the medium is considered as a
dielectric, characterised by a complex dielectric function ϵ(k, ω), which depends on the
wave number k and the frequency ω. In the classical picture, the (external) electric field
of the projectile polarises the medium producing an induced electric field that causes the
slowing down of the projectile. The dielectric function relates the Fourier components
of the total (external+induced) and the external electric potentials. It is convenient to
interpret the quantities q = ~k andW = ~ω as the momentum and energy transfers and
consider that the dielectric function depends on the variables Q [defined by Eq. (3.47)]
and W . The DCSs obtained from the dielectric and quantum treatments are consistent
(i.e., the former reduces to the latter for a low-density medium) if one assumes the
identity

df(Q,W )

dW
≡ W

Q+mec
2

mec2
2Z

πΩ2
p

Im

(
−1

ϵ(Q,W )

)
, (3.50)

where Ωp is the plasma energy of a free-electron gas with the electron density of the
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medium, given by
Ω2

p = 4πNZ~2e2/me. (3.51)

Eq. (3.50) establishes the connection between the atomic GOS (a property of individual
atoms) and the dielectric function (a macroscopic concept). The DCS for the condensed
medium can be expressed in the form [cf. Eq. (3.48)],

d2σin
dW dQ

=
2πz20e

4

mev2
df(Q,W )

dW

(
2mec

2

WQ(Q+ 2mec2)

+

{
β2 sin2 θrW2mec

2

[Q(Q+ 2mec2)−W 2]2
−D(Q,W )

})
, (3.52)

where the termD(Q,W ), which is appreciable only for smallQ, accounts for the so-called
density-effect correction (Sternheimer, 1952). The origin of this term is the polarisability
of the medium, which “screens” the distant transverse interaction causing a net reduction
of its contribution to the stopping power. The density-effect correction D(Q,W ) is
determined by the dielectric function that, in turn, is related to the GOS. Thus, the
GOS contains all the information needed to compute the DCS for electron/positron
inelastic interactions in condensed media.

In the limit of very large recoil energies, the binding and momentum distribution
of the target electrons have a small effect on the interaction. Therefore, in the large-
Q region, the target electrons behave as if they were essentially free and at rest and,
consequently, the GOS reduces to a ridge along the line W = Q, which was named the
Bethe ridge by Inokuti (1971). In the case of hydrogenic ions in the ground state, Fig.
3.7, the Bethe ridge becomes clearly visible at relatively small recoil energies, of the
order of the ionisation energy Ui. For smaller Q’s, the structure of the Bethe surface
is characteristic of the material. In the limit Q → 0, the GOS reduces to the optical
oscillator strength (OOS),

df(W )

dW
≡ df(Q = 0,W )

dW
, (3.53)

which is closely related to the (dipole) photoelectric cross section for photons of energy
W (Fano, 1963). Experimental information on the OOS is provided by measurements
of either photoelectric cross sections or dielectric functions (see, e.g., Fernández-Varea
et al., 1993a). The GOS satisfies the Bethe sum rule (Inokuti, 1971)∫ ∞

0

df(Q,W )

dW
dW = Z for any Q. (3.54)

This sum rule, which is a result from non-relativistic theory (see, e.g., Mott and Massey,
1965), is assumed to be generally satisfied. It leads to the interpretation of the GOS as
the effective number of electrons per unit energy transfer that participate in interactions
with given recoil energy Q. The mean excitation energy I, defined by (Fano, 1963;
Inokuti, 1971)

Z ln I =

∫ ∞

0

lnW
df(W )

dW
dW, (3.55)
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plays a central role in the Bethe stopping power formula [Eq. (3.120)]. This quantity has
been determined empirically for a large number of materials (see Berger and Seltzer,
1982; and ICRU Report 37, 1984, and references therein) from measurements of the
stopping power of heavy charged particles and/or from experimental optical dielectric
functions. In the following, we shall assume that the mean excitation energy of the
stopping medium is known.

3.2.1 GOS model

The simulation of inelastic collisions of electrons and positrons in penelope is per-
formed on the basis of the following GOS model, which is tailored to allow fast random
sampling of W and Q. We assume that the GOS splits into contributions from the dif-
ferent atomic electron shells. Each atomic shell k is characterised by the number Zk of
electrons in the shell and the ionisation energy Uk. To model the contribution of a shell
to the GOS, we refer to the example of the hydrogen atom (Fig. 3.7) and observe that
for Q > Uk the GOS reduces to the Bethe ridge, whereas for Q < Uk it is nearly constant
with Q and decreases rapidly with W ; a large fraction of the OOS concentrates in a
relatively narrow W -interval. Consideration of other well-known systems, such as inner
shells of heavy atoms (Manson, 1972) and the free-electron gas (Lindhard and Winther,
1964), shows that these gross features of the GOS are universal. Liljequist (1983) pro-
posed modelling the GOS of each atomic electron shell as a single “δ-oscillator”, which
is an entity with a simple GOS given by (see Fig. 3.8)

Fk(Q,W ) = δ(W −Wk)Θ(Qk −Q) + δ(W −Q)Θ(Q−Qk), (3.56)

where δ(x) is the Dirac delta function and Θ(x) is the step function. The first term
represents resonant low-Q (distant) interactions, which are described as a single reso-
nance at the energy Wk. The second term corresponds to large-Q (close) interactions,
in which the target electrons react as if they were free and at rest (W = Q). Note that
close interactions are allowed for energy transfers W larger than Qk; for bound shells,
we set Qk = Uk (Fig. 3.8a). It is worth mentioning that the definition (3.56) of the
δ-oscillator differs from the one used in previous versions of penelope, which allowed
only excitations with W > Wk [usually, Wk is larger than Uk, see Eq. (3.63) below].
Notice that the oscillator GOS satisfies the sum rule∫ ∞

0

Fk(Q,W ) dW = 1 for any Q (3.57)

and, consequently, a δ-oscillator corresponds to one electron in the target. The Liljequist
GOS model for the whole atom is given by

df(Q,W )

dW
=
∑
k

fk [δ(W −Wk)Θ(Qk −Q) + δ(W −Q)Θ(Q−Qk)] . (3.58)

where the summation in k extends over all bound electron shells (and the conduction
band, in the case of conductors) and the partial oscillator strength fk is identified with
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the number of electrons in the k-th shell, i.e., fk = Zk. The corresponding OOS reduces
to

df(W )

dW
=
∑
k

fk δ(W −Wk), (3.59)

which has the same form (a superposition of resonances) as the OOS used by Sternheimer
(1952) in his calculations of the density effect correction. In order to reproduce the high-
energy stopping power given by the Bethe formula (Berger and Seltzer, 1982; ICRU
Report 37, 1984), the oscillator strengths must satisfy the Bethe sum rule (3.54),∑

k
fk = Z, (3.60)

and the excitation energies must be defined in such a way that the GOS model leads,
through Eq. (3.55), to the accepted value of the mean excitation energy I,∑

k
fk lnWk = Z ln I. (3.61)

As the partial oscillator strength fk has been set equal to the number of electrons in the
k-th shell, the Bethe sum rule is automatically satisfied.

Q  

W
Wm(Q)

W   = Q
(E+Uk)/2

Wk

Uk

Q
− Qk

(a)

Q  

W

W   = Q

Wcb

Qcb = Wcb

(b)

Figure 3.8: (a) Oscillator model for the GOS of an inner shell with Uk = 2 keV. The

continuous curve represents the maximum allowed energy loss as a function of the recoil energy,

Wm(Q), for electrons/positrons with E = 10 keV. For distant interactions the possible recoil

energies lie in the interval from Q− to Qk. Recoil energies larger than Qk correspond to

close interactions. The largest allowed energy loss Wmax is (E + Uk)/2 for electrons and E

for positrons (see text). (b) Oscillator-GOS model for excitations of the conduction band of

conductors.

The largest contribution to the total cross section arises from low-W (soft) excita-
tions. Therefore, the total cross section is mostly determined by the OOS of weakly
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bound electrons, which is strongly dependent on the state of aggregation. In the case
of conductors and semiconductors, electrons in the outermost shells form the conduc-
tion band (cb). These electrons can move quite freely through the medium and, hence,
their binding energy is set to zero, Ucb = 0. Excitations of the conduction band will
be described by a single oscillator, with oscillator strength fcb, resonance energy Wcb

and cutoff recoil energy Qcb = Wcb (Fig. 3.8b). The parameters fcb and Wcb should be
identified with the effective number of electrons (per atom or molecule) that participate
in plasmon excitations and the plasmon energy, respectively. They can be estimated,
e.g., from electron energy-loss spectra or from measured optical data. When this infor-
mation is not available, we will simply fix the value of fcb (as the number of electrons
with ionisation energies less than, say, 15 eV) and set the resonance energy Wcb equal
to the plasmon energy of a free-electron gas with the same density as that of conduction
electrons,

Wcb =
√

4πN fcb~2e2/me =

√
fcb
Z

Ωp. (3.62)

This gives a fairly realistic model for free-electron-like metals (such as aluminium), be-
cause the resonance energy is set equal to the plasmon energy of the free-electron gas
(see, e.g., Kittel, 1976). A similar approach, with fcb set equal to the lowest chemical va-
lence of an element, was adopted by Sternheimer et al. (1982, 1984) in their calculations
of the density effect correction for single-element metals.

Following Sternheimer (1952), the resonance energy of a bound-shell oscillator is
expressed as

Wk =

√
(aUk)2 +

2

3

fk
Z
Ω2

p, (3.63)

where Uk is the ionisation energy and Ωp is the plasma energy corresponding to the
total electron density in the material, Eq. (3.51). The term 2fkΩ

2
p/3Z under the square

root accounts for the Lorentz-Lorenz correction (the resonance energies of a condensed
medium differ from those of a free atom/molecule). The empirical adjustment factor a
in Eq. (3.63) (the same for all bound shells) is determined from the condition (3.61),
i.e., from

Z ln I = fcb lnWcb +
∑
k

fk ln

√
(aUk)2 +

2

3

fk
Z

Ω2
p. (3.64)

For a one-shell system, such as the hydrogen atom, relations (3.60) and (3.61) imply
that the resonance energy Wk is equal to I. Considering the ∼ W−3 dependence of
the hydrogenic OOS, it is concluded that a should be of the order of exp(1/2) = 1.65
(Sternheimer et al., 1982). It is worth noting that the Sternheimer adjustment factor
a is a characteristic of the considered medium; therefore, the DCSs for excitation of a
shell of a given element in two different compounds may be slightly different.

The present GOS model is completely determined by the ionisation energy Uk and
the number of electrons Zk of each electron shell, and by the empirical value of the mean
excitation energy I. In penelope, the target atoms are assumed to be in their ground
state configuration, and the shell ionisation energies given by Carlson (1975) are used.
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The adopted I-values are those proposed by Berger and Seltzer (1982), which were also
used to generate the ICRU (1984) tables of stopping powers for electrons and positrons.
Therefore, our inelastic collision model yields stopping powers that are consistent with
the ICRU recommended values (see below).

It should be mentioned that the oscillator model gives a Bethe ridge with zero width,
i.e., the broadening caused by the momentum distribution of the target electrons is ne-
glected. This is not a serious drawback for light projectiles (electrons and positrons),
but it can introduce sizeable errors in the computed cross sections for slow heavy pro-
jectiles with m ≫ me. The oscillator model also disregards the fact that, for low-Q
interactions, there is a transfer of oscillator strength from inner to outer shells (see, e.g.,
Shiles et al., 1980). As a consequence, the shell ionisation cross sections obtained from
this GOS model are only roughly approximate. Their use in a Monte Carlo code is
permissible only because the ionisation of inner shells is a low-probability process (see
Fig. 3.9 below) that has a very weak effect on the global transport properties. In what
follows, K, L and M shells with ionisation energies Uk larger than the absorption energies
of electrons or photons, EABS(1) or EABS(2) (see Section 6.1.2), will be referred to as
“inner” shells. Electron shells other than K, L and M shells, or with Uk < min(EABS(1),
EABS(2)), will be referred to as “outer” shells.

In mixed (class II) simulations, only hard collisions, with energy loss larger than a
specified cutoff value Wcc, are simulated (see Chapter 4). The effect of soft interactions
(with W < Wcc) is described by means of a multiple-scattering approximation, which
does not require detailed knowledge of the shell DCSs. Hard collisions may produce
ionisations in deep electron shells, which leave the target atom in a highly excited state
(with a vacancy in an inner shell) that decays by emission of energetic x-rays and
Auger electrons. In penelope we use the GOS model only to describe the effect of the
interactions on the projectile and the emission of knock-on secondary electrons. The
production of vacancies in inner shells, and their subsequent de-excitation, is simulated
by using more accurate ionisation cross sections (see Section 3.2.6).

The present GOS model is directly applicable to compounds (and mixtures), since
the oscillators may pertain either to atoms or molecules. When the value of the mean
excitation energy of the compound is not known, it may be estimated from Bragg’s
additivity rule as follows. Consider a compound XxYy, in which the molecules consist
of x atoms of the element X and y atoms of the element Y. The number of electrons
per molecule is ZM = xZX + yZY, where ZX stands for the atomic number of element
X. According to the additivity rule, the GOS of the compound is approximated as the
sum of the atomic GOSs of the atoms so that

ZM ln I = xZX ln IX + yZY ln IY, (3.65)

where IX denotes the mean excitation energy of element X.

For heavy elements, and also for compounds and mixtures with several elements, the
number of electron shells may be fairly large (of the order of sixty for an alloy of two
heavy metals). In these cases, it would be impractical to treat all shells with the same
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detail/accuracy. In fact, the description of the outer shells can be simplified without
sacrificing the reliability of the simulation results. In penelope, the maximum number
of oscillators for each material is limited. When the number of actual shells is too large,
oscillators with similar resonance energies are grouped together and replaced by a single
oscillator with oscillator strength equal to the sum of strengths of the original oscillators.
The resonance energy of the group oscillator is set by requiring that its contribution to
the mean excitation energy I equals the sum of contributions of the grouped oscillators;
this ensures that grouping will not alter the stopping power of fast particles (with E
substantially greater than the ionisation energy of the grouped oscillators).

3.2.2 Differential cross sections

The DCS for inelastic collisions obtained from our GOS model can be split into contri-
butions from distant longitudinal, distant transverse and close interactions,

d2σin
dW dQ

=
d2σdis,l
dW dQ

+
d2σdis,t
dW dQ

+
d2σclo
dW dQ

. (3.66)

The DCS for distant longitudinal interactions is given by the first term in Eq. (3.52),

d2σdis,l
dW dQ

=
2πe4

mev2

∑
k

fk
1

W

2mec
2

Q(Q+ 2mec2)
δ(W −Wk)Θ(Qk −Q). (3.67)

As mentioned above, the DCS for distant transverse interactions has a complicated
expression. To simplify it, we shall ignore the (very small) angular deflections of the
projectile in these interactions and replace the expression in curly brackets in Eq. (3.52)
by an averaged W -independent value that gives the exact contribution of the distant
transverse interactions to the high-energy stopping power (Salvat and Fernández-Varea,
1992). This yields the following approximate expression for the DCS of distant transverse
interactions,

d2σdis,t
dW dQ

=
2πe4

mev2

∑
k

fk
1

W

{
ln

(
1

1− β2

)
− β2 − δF

}
× δ(W −Wk)Θ(Qk −Q) δ(Q−Q−), (3.68)

where Q− is the minimum recoil energy3 for the energy transfer W , Eq. (A.31), and
δF is the Fermi density effect correction on the stopping power, which has been studied
extensively in the past (Sternheimer, 1952; Fano, 1963). δF can be computed as (Fano,
1963)

δF ≡
1

Z

∫ ∞

0

df(Q = 0,W )

dW
ln

(
1 +

L2

W 2

)
dW − L2

Ω2
p

(
1− β2

)
, (3.69)

3The recoil energy Q− corresponds to θ = 0, i.e., we consider that the projectile is not deflected by
distant transverse interactions.
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where L is a real-valued function of β2 defined as the positive root of the following
equation (Inokuti and Smith, 1982):

F(L) ≡ 1

Z
Ω2

p

∫ ∞

0

1

W 2 + L2

df(Q = 0,W )

dW
dW = 1− β2. (3.70)

The function F(L) decreases monotonically with L, and hence, the root L(β2) exists
only when 1 − β2 < F(0); otherwise it is δF = 0. Therefore, the function L(β2) starts
with zero at β2 = 1−F(0) and grows monotonically with increasing β2. With the OOS,
given by Eq. (3.59), we have

F(L) = 1

Z
Ω2

p

∑
k

fk
W 2

k + L2
(3.71)

and

δF ≡
1

Z

∑
k

fk ln

(
1 +

L2

W 2
k

)
− L2

Ω2
p

(
1− β2

)
. (3.72)

In the high-energy limit (β → 1), the L value resulting from Eq. (3.70) is large (L ≫
Wk) and can be approximated as L2 = Ω2

p/(1 − β2). Then, using the Bethe sum rule
(
∑
fk = Z) and the relation (3.61), we obtain

δF ≃ ln

(
Ω2

p

(1− β2)I2

)
− 1, when β → 1. (3.73)

The DCS for close collisions is given by

d2σclo
dW dQ

=
2πe4

mev2

∑
k

fk
1

W

(
2mec

2

W (W + 2mec2)
+
β2 sin2 θclo
2mec2

)
δ(W −Q)Θ(Q−Qk),

where θclo is the recoil angle, defined by Eq. (3.49) with Q =W ,

cos2 θclo =
W

E

E + 2mec
2

W + 2mec2
. (3.74)

It is worth mentioning that the formula (3.48) was derived by Fano (1963) under the
assumption that the projectile is a charged particle with a mass much larger than that
of the electron. When this assumption is avoided (see, e.g., Bote and Salvat, 2008), the
DCS for close collisions takes the following form

d2σclo
dW dQ

=
2πe4

mev2

∑
k

fk
1

W 2

(
1− (2E −W + 4mec

2)W

2(E +mec2)2

)
δ(W −Q)Θ(Q−Qk). (3.75)
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3.2.2.1 Distant interactions with inner-shell electrons

The formulas (3.67) and (3.68) provide quite a realistic description of distant interactions
with electrons in the conduction band of certain solids, like aluminium and silicon, which
behave as a nearly-free electron gas with a characteristic plasmon-excitation line. In
general, for real media, distant excitations of weakly-bound electrons have a continuous
energy spectrum that can be described approximately by using several δ-oscillators of
the “conduction-band” type (right diagram in Fig. 3.8) with oscillator strengths fk
and resonance energies Wk selected so as to mimic the continuous OOS of the medium
(see, e.g., Fernández-Varea et al., 1993a). If the spacing between resonance energies is
small enough, the energy-loss distributions obtained from the simulation have realistic
appearances.

In the case of inner-shells, however, the energy loss distribution associated with
single distant interactions with a given atomic electron shell is approximated as a single
resonance (a δ-distribution), while the actual distribution is continuous for energy losses
above the ionization threshold. As a consequence, energy loss spectra simulated from
the DCSs (3.67) and (3.68) would show unphysical narrow peaks at energy losses that
are multiples of the resonance energies. To get rid of this kind of artifact, we will
spread the resonance line by sampling the energy loss in distant interactions with inner-
shell electrons from a continuous distribution pdis(W ) that has the correct average value,
⟨W ⟩ =Wk. In principle, this distribution can be obtained by considering a realistic GOS
for inner-shell excitations. Since such an approach is too elaborate for our purposes, we
will adopt a simple distribution that differs from zero within a finite energy-loss interval
extending from the ionization threshold, Uk, up to a maximum value Wdis. The shaded
area (for Q < Qk) in Fig. 3.8a represents the distribution pdis(W ), which replaces the
delta function δ(W −Wk).

To facilitate the random sampling, we use a “triangle” distribution,

pdis(W ) =


2

(Wdis − Uk)2
(Wdis −W ) if Uk ≤ W < Wdis,

0 otherwise.

(3.76)

This distribution is convenient because it is determined by only the maximum energy loss
Wdis and, moreover, it allows all calculations to be performed analytically. Qualitative
considerations based on the dipole approximation indicate that the maximum energy
loss Wdis is nearly independent of the kinetic energy of the projectile when the latter is
much higher than Uk. The requirement

⟨W ⟩ =
∫ ∞

0

Wpdis(W ) dW = Wk

implies that
Wdis = 3Wk − 2Uk. (3.77)

Evidently, when E approaches the ionization threshold, Wdis should decrease, because
energy losses larger than E are forbidden. For the sake of consistency, when E decreases
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below the value (3.77) we will re-define the resonance energyWk to ensure that the DCSs
vary smoothly with E. We set

W ′
k =

Wk if E > 3Wk − 2Uk,

(E + 2Uk)/3 otherwise,
(3.78)

and, consistently, we replace the resonance energy by this modified value in all formulas
pertaining to the distant excitations of inner shells. Thus, the maximum allowed energy
loss in these excitations, Eq. (3.77), is given by

Wdis = 3W ′
k − 2Uk, (3.79)

and never exceeds E. Moreover, to get total cross sections with the approximate thresh-
old behaviour predicted by the (plane-wave) Born approximation (see Section 3.2.6), we
also replace the cutoff recoil energy Qk, which for inner shells is equal to Uk, by the
modified value

Q′
k =


Uk if E > 3Wk − 2Uk,

Uk
E

3Wk − 2Uk

otherwise.
(3.80)

This replacement lowers an excessively high peak of the total cross section at energies
E slightly above Uk, which is caused by the downward shift of the resonance energy W ′

k

(see Fig. 3.9 below).

The DCSs for distant longitudinal and transverse excitations of an inner shell are
obtained from expressions (3.67) and (3.68) by replacing the factor δ(W −Wk) by the
distribution pdis(W ). That is,

d2σdis,l
dW dQ

=
2πe4

mev2

∑
k

fk
1

W
pdis(W )

2mec
2

Q(Q+ 2mec2)
Θ(Q′

k −Q) (3.81)

and

d2σdis,t
dW dQ

=
2πe4

mev2

∑
k

fk
1

W
pdis(W )

{
ln

(
1

1− β2

)
− β2 − δF

}
×Θ(Q′

k −Q) δ(Q−Q−). (3.82)

At this point, it is convenient to mention that the δ-oscillator model provides a consistent
description of angular deflections in inelastic collisions (see Negreanu et al., 2005), and
therefore, it is convenient to sample the scattering angle θ according to that model.
Consequently, in the above equations the minimum recoil energy Q−, which defines the
angular distribution [see Eq. (3.117)], will be set equal to the value corresponding to
the modified resonance energy W ′

k, i.e.,

Q− =

√[√
E(E + 2mec2)−

√
(E −W ′

k)(E −W ′
k + 2mec2)

]2
+m2

ec
4 −mec

2 . (3.83)

This ad hoc modification has the further advantage of simplifying the calculation of
integrals of the restricted angular DCSs (see Section 4.3.2).
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3.2.2.2 DCS for close collisions of electrons

When the projectile is an electron, the DCS must be corrected to account for the indis-
tinguishability of the projectile and the target electrons. For distant interactions, the
effect of this correction is small (much smaller than the distortion introduced by our
modelling of the GOS) and will be neglected. The energy loss DCS for binary collisions
of electrons with free electrons at rest, obtained from the Born approximation with
proper account of exchange, is given by the Møller (1932) formula,

d2σM
dWdQ

=
2πe4

mev2
1

W 2

[
1 +

(
W

E −W

)2

− W

E −W

+a

(
W

E −W
+
W 2

E2

)]
δ(W −Q), (3.84)

where

a =

(
E

E +mec2

)2

=

(
γ − 1

γ

)2

. (3.85)

To introduce exchange effects in the DCS for close interactions of electrons, we replace
the factor in parenthesis in Eq. (3.75) by the analogous factor in Møller’s formula, i.e.,
we take

d2σ
(−)
clo

dW dQ
=

2πe4

mev2

∑
k

fk
1

W 2
F (−)(E,W )δ(W −Q)Θ(Q−Q′

k), (3.86)

with

F (−)(E,W ) ≡ 1 +

(
W

E ′ −W

)2

− W

E ′ −W
+ a

(
W

E ′ −W
+
W 2

E ′2

)
. (3.87)

For collisions with free electrons at rest, we should take E ′ = E [cf. Eq. (3.84)]. However,
in close collisions with bound electrons, the wave function of the projectile is distorted
by the electrostatic field of the target atom, which produces an increase in the effective
kinetic energy of the projectile. To account partially for this “Coulomb effect”, the
factor F (−)(E,W ) of each term on the right-hand side of Eq. (3.86) is calculated with
the energy E ′ = E + Uk. The replacement of E by the effective kinetic energy E ′

yields cross sections in better agreement with results from experimental measurements
and from more elaborate calculations (see Fig. 3.9 below). On the other hand, in the
final state we have two indistinguishable free electrons, and it is natural to consider
the fastest one as the “primary”. Accordingly, the maximum allowed energy transfer in
collisions (close and distant) with electrons in the k-th shell is set equal to

Wmax = E ′/2 = (E + Uk)/2. (3.88)

3.2.2.3 DCS for close collisions of positrons

Positrons in matter are unstable particles that annihilate with electrons giving photons
(see Section 3.4). On the other hand, electron-positron pairs can be created if enough
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electromagnetic energy (> 2mec
2) is available (either from real or virtual photons). A

positron does not interact with matter as a usual (stable) positively charged particle,
since the competing process of annihilation followed by re-creation can cause the same
transitions as “direct” scattering (see, e.g., Sakurai, 1967). The DCS for binary collisions
of positrons with free electrons at rest, obtained from the first Born approximation in-
cluding the “annihilation/creation” mechanism, is given by the Bhabha (1936) formula,

d2σB
dWdQ

=
2πe4

mev2
1

W 2

[
1− b1

W

E
+ b2

(
W

E

)2

− b3
(
W

E

)3

+ b4

(
W

E

)4
]
δ(W −Q),

(3.89)
where

b1 =

(
γ − 1

γ

)2
2(γ + 1)2 − 1

γ2 − 1
, b2 =

(
γ − 1

γ

)2
3(γ + 1)2 + 1

(γ + 1)2
,

b3 =

(
γ − 1

γ

)2
2γ(γ − 1)

(γ + 1)2
, b4 =

(
γ − 1

γ

)2
(γ − 1)2

(γ + 1)2
. (3.90)

To account approximately for the effect of annihilation/creation on the DCS for close
inelastic interactions of positrons, we shall use the expression (3.75), with the factor in
parenthesis replaced by the Bhabha factor,

F (+)(E,W ) = 1− b1
W

E
+ b2

(
W

E

)2

− b3
(
W

E

)3

+ b4

(
W

E

)4

. (3.91)

That is,

d2σ
(+)
clo

dW dQ
=

2πe4

mev2

∑
k

fk
1

W 2
F (+)(E,W )δ(W −Q)Θ(Q−Q′

k). (3.92)

Notice that the maximum energy loss in collisions of positrons with energy E is Wmax =
E.

3.2.3 Integrated cross sections

The energy-loss DCS is defined as

dσin
dW

≡
∫ Q+

Q−

d2σin
dW dQ

dQ =
dσdis,l
dW

+
dσdis,t
dW

+
dσclo
dW

, (3.93)

where Q− and Q+ are the minimum and maximum kinematically allowed recoil ener-
gies given by Eq. (A.31). The contributions from distant longitudinal and transverse
interactions are

dσdis,l
dW

=
2πe4

mev2

∑
k

fk
1

W
pdis(W ) ln

(
Q′

k

Q−

Q− + 2mec
2

Q′
k + 2mec2

)
Θ(Q′

k −Q−) (3.94)
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and

dσdis,t
dW

=
2πe4

mev2

∑
k

fk
1

W
pdis(W )

{
ln

(
1

1− β2

)
− β2 − δF

}
Θ(Q′

k −Q−), (3.95)

respectively. Note that hereafter we express these DCSs by assuming that all terms
correspond to inner shells; in the case of the conduction band the distribution pdis(W )
and the cutoff recoil energy Q′

k should be replaced by δ(W −Wk) and Qk, respectively.
The energy-loss DCS for close collisions is

dσ
(±)
clo

dW
=

2πe4

mev2

∑
k

fk
1

W 2
F (±)(E,W )Θ(W −Qk). (3.96)

The PDF of the energy loss in a single inelastic collision is given by

pin(W ) =
1

σin

dσin
dW

, (3.97)

where

σin =

∫ Wmax

0

dσin
dW

dW (3.98)

is the total cross section for inelastic interactions. It is convenient to introduce the
quantities

σ
(n)
in ≡

∫ Wmax

0

W ndσin
dW

dW = σin

∫ Wmax

0

W npin(W ) dW = σin ⟨W n⟩, (3.99)

where ⟨W n⟩ denotes the n-th moment of the energy loss in a single collision (notice

that σ
(0)
in = σin). σ

(1)
in and σ

(2)
in are known as the stopping cross section and the energy

straggling cross section (for inelastic collisions), respectively.

The mean free path λin for inelastic collisions is

λ−1
in = Nσin, (3.100)

where N is the number of scattering centres (atoms or molecules) per unit volume. The
stopping power Sin and the energy straggling parameter Ω2

in are defined by

Sin = Nσ(1)
in =

⟨W ⟩
λin

(3.101)

and

Ω2
in = Nσ(2)

in =
⟨W 2⟩
λin

. (3.102)

Notice that the stopping power gives the average energy loss per unit path length4. The
physical meaning of the straggling parameter is less direct. Consider a monoenergetic

4The term “stopping power” is somewhat misleading; in fact, Sin has the dimensions of force.
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electron (or positron) beam of energy E that impinges normally on a foil of material
of (small) thickness ds, and assume that the electrons do not scatter (i.e., they are
not deflected) in the foil. The product Ω2

in ds then gives the variance of the energy
distribution of the beam after traversing the foil (see also Section 4.2).

The integrated cross sections σ
(n)
in can be calculated as

σ
(n)
in = σ

(n)
dis,l + σ

(n)
dis,t + σ

(n)
clo . (3.103)

The contributions from distant longitudinal and transverse interactions are

σ
(n)
dis,l =

2πe4

mev2

∑
k

fk ln

(
Q′

k

Q−

Q− + 2mec
2

Q′
k + 2mec2

) ∫ Wmax

0

W n−1pdis(W ) dW (3.104)

and

σ
(n)
dis,t =

2πe4

mev2

∑
k

fk

{
ln

(
1

1− β2

)
− β2 − δF

}∫ Wmax

0

W n−1pdis(W ) dW , (3.105)

respectively.

The integrated cross sections for close collisions are

σ
(n)
clo =

2πe4

mev2

∑
k

fk

∫ Wmax

Q′
k

W n−2F (±)(E,W ) dW. (3.106)

In the case of electrons, the integrals in this formula are of the form

J (−)
n =

∫
W n−2

[
1 +

(
W

E −W

)2

− (1− a)W
E −W

+
aW 2

E2

]
dW (3.107)

and can be calculated analytically. For the orders 0, 1 and 2 we have

J
(−)
0 = − 1

W
+

1

E −W
+

1− a
E

ln

(
E −W
W

)
+
aW

E2
, (3.108)

J
(−)
1 = lnW +

E

E −W
+ (2− a) ln(E −W ) +

aW 2

2E2
(3.109)

and

J
(−)
2 = (2− a)W +

2E2 −W 2

E −W
+ (3− a)E ln(E −W ) +

aW 3

3E2
. (3.110)

For positrons, the integrals in (3.106),

J (+)
n ≡

∫
W n−2

[
1− b1

W

E
+ b2

(
W

E

)2

− b3
(
W

E

)3

+ b4

(
W

E

)4
]
dW, (3.111)
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can also be evaluated analytically as

J
(+)
0 = − 1

W
− b1

lnW

E
+ b2

W

E2
− b3

W 2

2E3
+ b4

W 3

3E4
, (3.112)

J
(+)
1 = lnW − b1

W

E
+ b2

W 2

2E2
− b3

W 3

3E3
+ b4

W 4

4E4
(3.113)

and

J
(+)
2 =W − b1

W 2

2E
+ b2

W 3

3E2
− b3

W 4

4E3
+ b4

W 5

5E4
. (3.114)
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Figure 3.9: Total inelastic cross sections for electrons in aluminium and gold and contribu-

tions from the K shell, L and M shells, conduction band (cb) and outer shells, calculated from

our model GOS ignoring density effect corrections (i.e., with δF = 0). In the calculations we

used the following values of the oscillator strength and the resonance energy for conduction-

band excitations: fcb = 3 and Wcb = 15.8 eV for aluminium, and fcb = 11 and Wcb = 40 eV

for Au. The dotted curves represent ionisation cross sections for the K shell and the L and

M shells taken from the numerical database described in Section 3.2.6. Note: 1 barn=10−24

cm2.

Figure 3.9 displays total inelastic cross sections for electrons in aluminium and gold,
as well as contributions from various groups of shells, as functions of the kinetic energy
of the projectile. The curves labelled “K shell”, “L shells” and “M shells” represent
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cross sections for ionisation in these shells (adding the contributions from L and M
subshells). The cross section for ionisation of a bound shell decreases rapidly with the
shell ionisation energy Uk (because energy transfers less than Uk, which would promote
the target electron to occupied states, are forbidden). As a consequence, collisions occur
preferentially with electrons in the conduction band and in outer bound shells. Inner-
shell ionisation by electron/positron impact is a relatively unlikely process. It should be
noted that our GOS model is too crude to provide an accurate description of inner-shell
ionisation. To illustrate this limitation, Fig. 3.9 includes K-, L and M-shell ionisation
cross sections obtained from the numerical database described in Section 3.2.6, which are
known to agree reasonably well with experimental data (Bote and Salvat, 2008). We see
that there are significant differences between the cross sections from the database and
the predictions of our simple GOS model, which is designed to yield accurate stopping
powers only. To get a realistic picture of inner-shell ionisation, we have to rely on
much more elaborate physics models. In fact, even the Born approximation ceases to be
appropriate for projectiles with kinetic energies near the ionisation threshold. Still, the
qualitatively good agreement between our cross sections and those from the numerical
database is noteworthy.

Collision stopping powers for electrons in aluminium, silver and gold obtained from
the present analytical model are compared with sample values from the ICRU (1984)
stopping power tables [given also in Berger and Seltzer (1982)] for E ≥ 10 keV in Fig.
3.10. Our results practically coincide with the values in the tables of reference, because
we are using the same values of the mean excitation energy I. In Fig. 3.11, inelastic
mean free paths and stopping powers for low-energy electrons (E = 100 eV to 100 keV)
in aluminium and gold obtained from the present model are compared with experimental
data from several authors. We see that the theory predicts the energy variation of total
integrated cross sections down to relatively low energies. It should be noted that the
adopted value of Wcb, the resonance energy of conduction band electrons, has a strong
effect on the calculated mean free paths. In the case of free-electron-like materials such
as aluminium, Wcb can be identified with the energy of plasmon excitations (which is
the dominant energy-loss mechanism). For other solids, the outermost electrons have
a broad energy loss spectrum and there is no simple way of predicting this parameter.
Fortunately, the stopping power (and, hence, the global stopping process) is practically
independent of the adopted value ofWcb. To generate the data for aluminium, Fig. 3.11,
we have setWcb = 15 eV, which is the measured energy of volume plasmons in the metal
[Eq. (3.62) with fcb = 3 conduction electrons per atom givesWcb = 15.8 eV]; in this case,
the calculated mean free paths are seen to agree fairly well with measured data. In the
case of gold, Eq. (3.62) with fcb = 11 conduction electrons per atom gives Wcb = 30 eV.
Figure 3.11 shows stopping powers and mean free paths for electrons in gold obtained
with Wcb = 30 and 40 eV. We see that, as indicated above, the mean free path varies
strongly with this parameter, but the stopping power is practically insensitive to it.
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results from the present model. Crosses are data from the ICRU Report 37 tables (1984) [also,

Berger and Seltzer, 1982)]. The dotted curves are predictions from the Bethe formula (3.120),

for electrons and positrons.

3.2.4 Stopping power of high-energy electrons and positrons

It is of interest to evaluate explicitly the stopping power for projectiles with high energies
(E ≫ Uk). We shall assume that Uk ≪ 2mec

2 (for the most unfavourable case of the
K shell of heavy elements, Uk is of the order of 2mec

2/10). Under these circumstances,
Q− ≪ 2mec

2 and we can use the approximation [see Eq. (A.35)]

Q− ≃ W 2
k /(2mec

2β2). (3.115)

The contribution from distant (longitudinal and transverse) interactions to the stopping
cross section is then [see Eqs. (3.94) and (3.95)]

σ
(1)
dis ≃

2πe4

mev2

∑
k

fk

{
ln

(
Qk 2mec

2 β2

W 2
k

)
+ ln

(
1

1− β2

)
− β2 − δF

}
. (3.116)

The contribution of close interactions is given by

σ
(1)
clo =

2πe4

mev2

∑
k

fk

∫ Wmax

Qk

W−1F (±)(E,W ) dW. (3.117)



132 Chapter 3. Electron and positron interactions

Al

10
2

10
3

10
4

10
5

E   (eV)

0.1 

1
 

10 

10
2

10
3

 ρ
λ
in
 (
µ
g/
cm

2 )
, 
  
  
S
in
/ρ
 (
eV
 c
m
2 /
µ
g)

 ρλin

Sin/ρ

10
2

10
3

10
4

10
5

E   (eV)

1
 

10
 

10
2

ρ
λ
in
 (
µ
g/
cm

2 )
, 
  
  
S
in
/ρ
 (
eV
 c
m
2 /
µ
g)

Sin/ρ

 ρλin

Au

Wcb = 30 eV

Wcb = 40 eV

Figure 3.11: Collision mean free path and stopping power for low-energy electrons in alu-

minium and gold. The plotted quantities are ρλin and Sin/ρ. Special symbols are experimental

data from different sources (see Fernández-Varea et al., 1993a); closed symbols for mean free

paths and open symbols for stopping powers.

Recalling that E ≫ Qk ≃ Uk, we have

σ
(1)
clo ≃

2πe4

mev2

∑
k

fk

{
ln

(
E

Qk

)
+ 1−

[
1 + β2 + 2

√
1− β2

]
ln 2

+
1

8

(
1−

√
1− β2

)2}
(3.118)

for electrons and

σ
(1)
clo ≃

2πe4

mev2

∑
k

fk

{
ln

(
E

Qk

)
− b1 +

b2
2
− b3

3
+
b4
4

}
(3.119)

for positrons. Adding the distant and close stopping cross sections, and using the relation
(3.61), we arrive at the familiar Bethe formula for the stopping power,

Sin ≡ N
(
σ
(1)
dis + σ

(1)
clo

)
= N 2πe4

mev2
Z

{
ln

(
E2

I2
γ + 1

2

)
+ f (±)(γ)− δF

}
, (3.120)

where

f (−)(γ) = 1− β2 − 2γ − 1

γ2
ln 2 +

1

8

(
γ − 1

γ

)2

(3.121)
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and

f (+)(γ) = 2 ln 2− β2

12

[
23 +

14

γ + 1
+

10

(γ + 1)2
+

4

(γ + 1)3

]
(3.122)

for electrons and positrons, respectively. This formula can be derived from very general
arguments that do not require knowing the fine details of the GOS; the only information
needed is contained in the Bethe sum rule (3.54) and in the definition (3.55) of the mean
excitation energy (see, e.g., Fano, 1963). Since our approximate analytical GOS model
is physically motivated, it satisfies the sum rule and reproduces the adopted value of
the mean ionisation energy, it yields (at high energies) the exact Bethe formula.

It is striking that the “asymptotic” Bethe formula is in fact valid down to fairly small
energies, of the order of 10 keV for high-Z materials (see Fig. 3.10). It also accounts
for the differences between the stopping powers of electrons and positrons (to the same
degree as our GOS model approximation).

For ultrarelativistic projectiles, for which the approximation (3.73) holds, the Bethe
formula simplifies to

Sin ≃ N
2πe4

mev2
Z

{
ln

(
E2

Ω2
p

γ + 1

2γ2

)
+ f (±)(γ) + 1

}
. (3.123)

The mean excitation energy I has disappeared from this formula, showing that at
very high energies the stopping power depends only on the electron density NZ of
the medium.

3.2.5 Simulation of hard inelastic collisions

The DCSs given by expressions (3.93)–(3.96) permit the random sampling of the energy
lossW and the angular deflection θ by using purely analytical methods. In the following
we consider the case of mixed (class II) simulation, in which only hard collisions, with
energy loss larger than a specified cutoff value Wcc, are simulated (see Chapter 4). As
the value of the cutoff energy loss can be selected arbitrarily, the sampling algorithm
can also be used in detailed (interaction-by-interaction) simulations (Wcc = 0).

The first stage of the simulation is the selection of the active oscillator, for which we
need to know the restricted total cross section,

σ(Wcc) ≡
∫ Wmax

Wcc

dσin
dW

dW = σdis,l(Wcc) + σdis,t(Wcc) + σclo(Wcc)

=
∑
k

σk(Wcc), (3.124)

as well as the contribution of each oscillator, σk(Wcc). The active oscillator is sampled
from the point probabilities pk = σk(Wcc)/σ(Wcc). In the present version of penelope,
these probabilities are calculated at initialisation time and stored in memory. Thus, with
a moderate increase in memory storage, the simulation speed is made fairly independent
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of the number of oscillators [in previous versions of the code, the total cross sections
σk(Wcc) of all the oscillators were calculated in each interaction].

After selecting the active oscillator, the oscillator branch (distant or close) is deter-
mined and, finally, the variables W and Q (or cos θ) are sampled from the associated
DCS. For close collisions, Q =W and, therefore, the scattering angle is obtained directly
from the energy loss.

3.2.5.1 Hard distant interactions

The energy loss in distant excitations of the k-th oscillator is sampled from the cor-
responding energy-loss DCS. In the case of the conduction band, W = Wk. For in-
ner shells, the energy loss follows the distribution pdist(W ), Eq. (3.76), restricted to
the interval (Wcc,Wdis). Using the inverse-transform method (Section 1.2.2) we find
that random values of the energy loss restricted to an arbitrary subinterval (W1,W2)
[Uk ≤ W1 < W2 ≤ Wdis] are provided by the following sampling formula,

W = Wdis −
√

(Wdis −W1)2 − ξ(W2 −W1)(2Wdis −W1 −W2), (3.125)

where ξ is a random number.

The contributions of transverse and longitudinal interactions to the restricted cross
section define the relative probabilities of these interaction modes. If the interaction is
(distant) transverse, the angular deflection of the projectile is neglected, i.e., cos θ = 1.
For distant longitudinal collisions, the PDF of the polar scattering angle θ is the one of
the δ-oscillator [see the comments after Eq. (3.82)]. The (unnormalised) PDF of Q is
defined by Eq. (3.67),

Pdk(Q) =


1

Q [1 +Q/(2mec2)]
if Q− < Q < Q′

k,

0 otherwise,

(3.126)

where Q− is the minimum recoil energy, Eq. (A.31), corresponding to either the res-
onance energy Wk (for the conduction band) or the modified resonance energy W ′

k,
Eq. (3.78) (for an inner shell). The quantity Q′

k is the modified cutoff recoil energy,
Eq. (3.80) (modified only for inner-shell excitations). Random sampling from the PDF
(3.126) can be performed by the inverse-transform method, which gives the sampling
formula

Q = QS

{[
QS

Q′
k

(
1 +

Q′
k

2mec2

)]ξ
− QS

2mec2

}−1

, (3.127)

where

QS ≡
Q−

1 +Q−/ (2mec2)
. (3.128)
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Once the energy loss and the recoil energy have been sampled, the polar scattering angle
θ is determined from Eq. (A.40),

cos θ =
E(E + 2mec

2) + (E −W ′
k)(E −W ′

k + 2mec
2)−Q(Q+ 2mec

2)

2
√
E(E + 2mec2) (E −W ′

k)(E −W ′
k + 2mec2)

, (3.129)

where we have considered that W = W ′
k. The azimuthal scattering angle ϕ is sampled

uniformly in the interval (0, 2π).

3.2.5.2 Hard close collisions of electrons

For the formulation of the sampling algorithm, it is convenient to introduce the reduced
energy loss κ ≡ W/(E+Uk). The PDF of κ in close collisions of electrons with the k-th
oscillator is given by [see Eqs. (3.86) and (3.87)]

P
(−)
k (κ) ≡ κ−2F (−)(E,W )Θ(κ− κc)Θ

(
1

2
− κ
)

=

[
1

κ2
+

1

(1− κ)2

− 1

κ(1− κ)
+ a

(
1 +

1

κ(1− κ)

)]
Θ(κ− κc)Θ

(
1

2
− κ
)
, (3.130)

with κc ≡ max(Qk,Wcc)/E. Notice that the maximum allowed value of κ is 1/2. Here,
normalisation is irrelevant.

We introduce the distribution

Φ(−)(κ) ≡ (κ−2 + 5a) Θ(κ− κc) Θ
(
1

2
− κ
)
, a ≡

(
γ − 1

γ

)2

. (3.131)

It may be shown that Φ(−) > P
(−)
k in the interval (κc,

1
2
). Therefore, we can sample the

reduced energy loss κ from the PDF (3.130) by using the rejection method (see Section
1.2.5) with trial values sampled from the distribution (3.131) and acceptance probability

P
(−)
k /Φ(−).

Random sampling from the PDF (3.131), can be performed by using the composition
method (Section 1.2.6). We consider the following decomposition of the (normalised)
PDF given by Eq. (3.131):

Φ(−)
norm(κ) =

1

1 + 5aκc/2
[p1(κ) + (5aκc/2)p2(κ)] , (3.132)

where

p1(κ) =
κc

1− 2κc
κ−2, p2(κ) =

2

1− 2κc
(3.133)

are normalised PDFs in the interval (κc,
1
2
). Random values of κ from the PDF (3.131)

can be generated by using the following algorithm:

(i) Generate ξ.
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(ii) Set ζ = (1 + 5aκc/2)ξ.

(iii) If ζ < 1, deliver the value κ = κc/[1− ζ(1− 2κc)].

(iv) If ζ > 1, deliver the value κ = κc + (ζ − 1)(1− 2κc)/(5aκc).

The rejection algorithm for random sampling of κ from the PDF (3.130) proceeds
as follows:

(i) Sample κ from the distribution given by Eq. (3.131).

(ii) Generate a random number ξ.

(iii) If ξ(1 + 5aκ2) < κ2P
(−)
k (κ), deliver κ.

(iv) Go to step (i).

Notice that in the third step we accept the κ value with probability P
(−)
k /Φ(−), which

approaches unity when κ is small.

The efficiency of this sampling method depends on the values of the energy E and
the cutoff reduced energy loss κc, as shown in Table 3.1. For a given energy and for Wcc

values which are not too large, the efficiency increases when Wcc decreases.

Table 3.1: Efficiency (%) of the random sampling algorithm of the energy loss in close

collisions of electrons and positrons for different values of the energy E and the cutoff energy

loss κc.

E (eV) κc

0.001 0.01 0.1 0.25 0.4

103 99.9 99.9 99.8 99.7 99.6

105 99.7 98 87 77 70

107 99 93 70 59 59

109 99 93 71 62 63

After sampling the energy loss W = κ(E + Uk), the polar scattering angle θ is
obtained from Eq. (A.40) with Q =W . This yields

cos2 θ =
E −W
E

E + 2mec
2

E −W + 2mec2
, (3.134)

which agrees with Eq. (A.17). The azimuthal scattering angle ϕ is sampled uniformly
in the interval (0, 2π).
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3.2.5.3 Hard close collisions of positrons

The PDF of the reduced energy loss κ ≡ W/E in positron close collisions with the k-th
oscillator is given by [see Eqs. (3.91) and (3.92)]

P
(+)
k (κ) = κ−2F

(+)
k (E,W )Θ(κ− κc)Θ(1− κ)

=

[
1

κ2
− b1
κ

+ b2 − b3κ+ b4κ
2

]
Θ(κ− κc)Θ(1− κ) (3.135)

with κc ≡ max(Qk,Wcc)/E. The maximum allowed reduced energy loss is 1. Again,
normalisation is not important.

Consider the distribution

Φ(+)(κ) ≡ κ−2Θ(κ− κc)Θ(1− κ). (3.136)

It is easy to see that Φ(+) > P
(+)
k in the interval (κc, 1). Therefore, we can generate

κ from the PDF, Eq. (3.135), by using the rejection method with trial values sampled

from the distribution of Eq. (3.136) and acceptance probability P
(+)
k /Φ(+). Sampling

from the PDF Φ(+) can easily be performed with the inverse-transform method.

The algorithm for random sampling from the PDF (3.135) is:

(i) Sample κ from the PDF (3.136), as κ = κc/[1− ξ(1− κc)].

(ii) Generate a new random number ξ.

(iii) If ξ < κ2P
(+)
k (κ), deliver κ.

(iv) Go to step (i).

The efficiency of this algorithm, for given values of the kinetic energy and the cutoff
reduced energy loss κc, practically coincides with that of the algorithm for electron
collisions described above (see Table 3.1).

3.2.5.4 Secondary electron emission

According to our GOS model, each oscillatorWk corresponds to a shell with fk electrons
and ionisation energy Uk. After a hard collision with an inner-shell electron, the primary
electron/positron has kinetic energy E − W , the “secondary” electron (delta ray) is
ejected with kinetic energy Es = W − Ui, and the residual ion is left in an excited
state, with a vacancy in shell i, which corresponds to an excitation energy equal to Ui.
This energy is eventually released by emission of energetic x rays and Auger electrons.
However, in penelope the relaxation of ions produced in hard collisions is not followed.
The production of vacancies in inner shells and their relaxation is simulated by an
independent, more accurate, scheme (see Section 3.2.6) that is free from the crude
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approximations involved in our GOS model. To avoid double counting, the excitation
energy Ui of the residual ion is deposited locally. On the other hand, when the impact
ionisation occurs in an outer shell or in the conduction band, the initial energy of the
secondary electron is set equal to W and no fluorescent radiation from the ionised atom
is followed by the simulation program. This is equivalent to assuming that the secondary
electron carries away the excitation energy of the target atom.

To set the initial direction of the delta ray, we assume that the target electron was
initially at rest, i.e., the delta ray is emitted in the direction of the momentum transfer
q. This implies that the polar emission angle θs (see Fig. 3.1) coincides with the recoil
angle θr [which is given by Eq. (A.42)],

cos2 θs =
W 2/β2

Q(Q+ 2mec2)

(
1 +

Q(Q+ 2mec
2)−W 2

2W (E +mec2)

)2

. (3.137)

For distant interactions, the value of W should be set equal to the modified resonance
energy W ′

k (Wk for the conduction band), because the recoil energy Q was sampled
under the assumption that W = W ′

k [see Eq. (3.126)]. In the case of close collisions
(Q =W ), expression (3.137) simplifies to

cos θs (Q = W ) =

(
W

E

E + 2mec
2

W + 2mec2

)1/2

, (3.138)

which agrees with the result for binary collisions with free electrons at rest, see Eq.
(A.18). Since the momentum transfer lies on the scattering plane (i.e., on the plane
formed by the initial and final momenta of the projectile), the azimuthal emission angle
is ϕs = π + ϕ.

In reality, the target electrons are not at rest and, therefore, the angular distribution
of emitted delta rays is broad. Since the average momentum of bound electrons is
zero, the average direction of delta rays coincides with the direction of q. Thus, our
simple emission model correctly predicts the average initial direction of delta rays, but
disregards the “Doppler broadening” of the angular distribution. This is not a serious
drawback, because secondary electrons are usually emitted with initial kinetic energies
that are much smaller than the initial energy of the projectile. This means that the
direction of motion of the delta ray is randomised, by elastic and inelastic collisions,
after a relatively short path length (much shorter than the transport mean free path of
the projectile).

3.2.6 Ionisation of inner shells

As indicated above, the theory presented in Sections 3.2.1 and 3.2.2 does not give realis-
tic values of the cross sections for ionisation of inner shells. Hence, it is not appropriate
to simulate inner-shell ionisation by electron and positron impact and the subsequent
emission of fluorescent radiation, i.e., Auger electrons and characteristic x rays. Never-
theless, the GOS model does provide an appropriate description of the average (stopping
and scattering) effect of inelastic collisions on the projectile.
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A consistent model for the simulation of inner-shell ionisation and relaxation must
account for the following features of the process: 1) space distribution of inner-shell
ionisations along the projectile’s track, 2) relative probabilities of ionising various atomic
electron shells and 3) energies and emission probabilities of the electrons and x rays
released through the de-excitation cascade of the ionised atom. The correlation between
energy loss/scattering of the projectile and ionisation events is of minor importance
and may be neglected (it is observable only in single-scattering experiments where the
inelastically scattered electrons and the emitted x rays or Auger electrons are observed
in coincidence). Consequently, we shall consider inner-shell ionisation as an independent
interaction process that has no effect on the state of the projectile. Accordingly, in the
simulation of inelastic collisions the projectile is assumed to cause only the ejection
of knock-on electrons (delta rays); in these collisions the target atom is considered
to remain unaltered to avoid double counting of ionisations. Then, to determine the
location of ionising events and the atomic shell that is ionised we only need to consider
total cross sections for ionisation of individual inner shells, which can be obtained from
elaborate theoretical models. The relaxation of the vacancies produced by inner-shell
ionisations is simulated as described in Section 2.6. This kind of simulation scheme is
trivial to implement, but it may cause artifacts (in the form of small negative doses)
in space regions where the simulated dose distributions have large relative statistical
uncertainties. The reason is that simulated Auger electrons and x rays remove energy
from their site (volume bin) of birth, in quantities that may exceed the actual energy
deposited by the projectile.

In previous versions of penelope the impact ionisation of inner shells was simulated
using cross sections obtained from an optical-data model of the GOS (Mayol and Salvat,
1990), i.e., from an approximate formulation of the plane-wave (first) Born approxima-
tion (PWBA). The PWBA provides reliable values of the ionisation cross section for
projectile electrons with kinetic energy E greater than about 30 times the ionisation
energy Ui of the active electron shell. The approximation worsens when the energy of
the projectile decreases, mainly because it neglects the distortion of the projectile wave
functions caused by the electrostatic field of the target atom and, in the case of electron
collisions, it does not account for exchange effects (which arise from the indistinguisha-
bility of the projectile and the target electrons). As a consequence, the PWBA yields
the same cross sections for electrons and positrons.

A more elaborate theoretical description of total ionisation cross sections is obtained
from the relativistic distorted-wave Born approximation (DWBA), which consistently
accounts for the effects of both distortion and exchange (see, e.g., Bote and Salvat,
2008, and references therein). DWBA calculations yield total cross sections in fairly
good agreement with experimental data for ionisation of K and L shells. These calcu-
lations involve the expansion of free-state wave functions as partial wave series and the
subsequent evaluation of multiple radial integrals. Since the convergence of partial-wave
series worsens with increasing kinetic energies, DWBA calculations are feasible only for
projectiles with relatively small energies, up to about 20Ui.

We have calculated an extensive numerical database of ionisation cross sections for
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K, L and M shells of all the elements from hydrogen (Z = 1) to einsteinium (Z = 99),
for projectiles with kinetic energies from threshold up to 1 GeV. The theoretical model
adopted in the calculations combines the DWBA and the PWBA, as described by Bote
and Salvat (2008). The DWBA is used to calculate the ionisation cross section for
projectiles with energies from ∼ Ui up to 16Ui. For higher energies, the cross section
is obtained by multiplying the PWBA cross section by an empirical energy-dependent
scaling factor, which tends to unity at high energies where the PWBA is expected to be
reliable. This calculation scheme accounts for differences between the cross sections for
ionisation by electrons and positrons. Bote et al. (2009) published analytical formulas for
the easy calculation of cross sections for ionization of K, L and M shells of neutral atoms
by impact of electrons and positrons. These formulas are coded in a simple Fortran
program that yields cross sections that agree with those in the numerical database to
within about 1 percent. The present database also includes ionization cross sections for
N shells of heavy elements, which were calculated using the PWBA. In the following,
the cross section for ionisation of the i-th shell of a given element by impact of electrons
(−) and positrons (+) with kinetic energy E will be denoted by σ

(±)
si,i (E).

Figure 3.12 displays the cross sections of the numerical database for the ionisation of
K shells and L and M subshells of atoms of the elements argon, silver, gold and uranium
by impact of electrons and positrons, together with results from the PWBA for K and
L shells (Scofield, 1978). The differences between the cross sections of the database
and the PWBA at relatively low energies are due to exchange and Coulomb corrections,
which are not considered in Scofield’s PWBA calculations. The dashed curves in Fig.
3.12 represent cross sections for ionisation by positron impact. Differences between
cross sections for electrons and positrons arise from the distortion of the projectile wave
functions by the electrostatic field of the target atom, which is attractive for electrons
and repulsive for positrons, and from electron exchange effects. It is worth mentioning
that the theoretical model used to generate the database disregards the influence of the
polarisability of the medium (density effect) on inner-shell ionisation. This effect causes
a reduction of the ionisation cross section for projectiles with very high energies (see,
e.g., Scofield, 1978).

In the present version of penelope, ionisation cross sections are obtained from
the numerical database, which consists of 198 files with tables of the cross sections for
ionisation of K, L, M and N shells of the elements (Z = 1−99) by electron and positron

impact. The grid of energies where σ
(±)
si,i (E) is tabulated varies with the element, because

it has a higher density of points above each ionisation threshold to allow accurate linear
log-log interpolation. The atomic cross section for inner shell ionisation is obtained as

σ
(±)
si,atom(E) =

∑
i

σ
(±)
si,i (E), (3.139)

where the summation extends over the inner shells of the atom. In the simulation, we
consider only K, L, M and N shells with ionisation energies Ui larger than the absorption
energies of electrons or photons, EABS(1) or EABS(2) (see Section 6.1.2). There is no
need of simulating ionisations of shells that are unable to originate x rays and Auger



3.2. Inelastic collisions 141

102 104 106 108

E   (eV)

10
2

10
3

10
4

10
5

10
6

 σ s
i,
i

(±
)  (
E

 )
  
 (
b
ar
n
)

Ar

K shell

L shells

102 104 106 108

E   (eV)

10 

10
2

103

104

105

106

 σ s
i,i(±
)  (
E

 )
  
 (
b
ar
n
)

Ag

K shell

L shells

M shells

10
4

10
6

10
8

E   (eV)

1 

10
 

102

103

104

105

 σ s
i,i(±
)  (
E

 )
  
 (
b
ar
n
)

Au

K shell

L shells

M shells

104 106 108

E   (eV)

1
 

10
 

10
2

10
3

10
4

 σ s
i,
i

(±
)  (
E

 )
  
 (
b
ar
n
)

U

K shell

L shells

M shells

Figure 3.12: Cross sections for ionisation of the K shell and the L and M subshells of argon,

silver, gold and uranium atoms by electron and positron impact as functions of the kinetic

energy E of the projectiles. Solid and dashed curves represent the cross sections from the

numerical database for electrons and positrons, respectively. Circles are values calculated by

Scofield (1978) using the PWBA.
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electrons with energies higher than the corresponding cutoffs. In the case of compounds,
the molecular cross section is evaluated as (additivity approximation)

σ
(±)
si,mol(E) =

∑
i

σ
(±)
si,i (E), (3.140)

where the summation now extends over all inner shells of the atoms in the molecule.

3.3 Bremsstrahlung emission

As a result of the acceleration caused by the electrostatic field of atoms, swift electrons
(or positrons) emit bremsstrahlung (braking radiation). In each bremsstrahlung event,
an electron with kinetic energy E generates a photon of energy W , which takes values
in the interval from 0 to E. The process is described by an atomic DCS, differential in
the energy loss W , the final direction of the projectile and the direction of the emitted
photon (Koch and Motz, 1959; Tsai, 1974). The habitual practice in Monte Carlo
simulation is to sample the energy loss from the single-variable distribution obtained by
integrating the DCS over the other variables. This permits the generation of W easily,
but information on the angular distributions is completely lost and has to be regained
from suitable approximations. Angular deflections of the projectile are considered to be
accounted for by the elastic scattering DCS and, consequently, the direction of movement
of the projectile is kept unaltered in the simulation of radiative events.

3.3.1 The energy-loss scaled DCS

A simple description of the bremsstrahlung DCS is provided by the Bethe-Heitler for-
mula with screening, which is derived within the Born approximation (Bethe and Heitler,
1934; Tsai, 1974). Although this formula is valid only when the kinetic energy of the
electron before and after photon emission is much larger than its rest energy mec

2, it
accounts for the most relevant features of the emission process. Within the Born approx-
imation, bremsstrahlung emission is closely related to electron-positron pair production.
In particular, the Bethe-Heitler DCS formulae for pair production and bremsstrahlung
emission involve the same screening functions. Considering the exponential screening
model (2.78), the Bethe-Heitler DCS for bremsstrahlung emission by electrons in the
field of an atom of atomic number Z and screening radius R can be expressed as (Salvat
and Fernández-Varea, 1992)

dσ
(BH)
br

dW
= r2eαZ(Z + η)

1

W

[
ϵ2 φ1(b) +

4

3
(1− ϵ)φ2(b)

]
, (3.141)

where α is the fine-structure constant, re is the classical electron radius,

ϵ =
W

E +mec2
=

W

γmec2
, b =

Rmec

~
1

2γ

ϵ

1− ϵ
, (3.142)
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and

φ1(b) = 4 ln(Rmec/~) + 2− 2 ln(1 + b2)− 4b arctan(b−1),

φ2(b) = 4 ln(Rmec/~) +
7

3
− 2 ln(1 + b2)− 6b arctan(b−1)

− b2
[
4− 4b arctan(b−1)− 3 ln(1 + b−2)

]
. (3.143)

The quantity η in Eq. (3.141) accounts for the production of bremsstrahlung in the field
of the atomic electrons (see, e.g., Seltzer and Berger, 1985); in the high-energy limit
η ≃ 1.2.

The Bethe-Heitler formula indicates that, for a given value of Z, the quantity
Wdσbr/dW varies smoothly with E and W . It is therefore customary to express the
DCS for bremsstrahlung emission by electrons in the form

dσbr
dW

=
Z2

β2

1

W
χ(Z,E, κ), (3.144)

where W is the energy of the emitted photon, κ is the reduced photon energy, defined
as

κ ≡ W/E, (3.145)

which takes values between 0 and 1. The quantity

χ(Z,E, κ) = (β2/Z2)W
dσbr
dW

(3.146)

is known as the “scaled” bremsstrahlung DCS; for a given element Z, it varies smoothly
with E and κ. Seltzer and Berger (1985, 1986) produced extensive tables of the scaled
DCS for all the elements (Z =1–92) and for electron energies from 1 keV to 10 GeV.
They tabulated the scaled DCSs for emission in the (screened) field of the nucleus
(electron-nucleus bremsstrahlung) and in the field of atomic electrons (electron-electron
bremsstrahlung) separately, as well as their sum, the total scaled DCS. The electron-
nucleus bremsstrahlung DCS was calculated by combining analytical high-energy theo-
ries with results from partial-wave calculations by Pratt et al. (1977) for bremsstrahlung
emission in screened atomic fields and energies below 2 MeV. The scaled DCS for
electron-electron bremsstrahlung was obtained from the theory of Haug (1975) com-
bined with a screening correction that involves Hartree-Fock incoherent scattering func-
tions. Seltzer and Berger’s scaled DCS tables constitute the most reliable theoretical
representation of bremsstrahlung energy spectra available at present.

The penelope database of scaled bremsstrahlung DCSs consists of 99 files, one
for each element from hydrogen to einsteinium, which were generated from the origi-
nal database of Seltzer and Berger. The file of the element Z contains the values of
χ(Z,Ei, κj) for a set of electron kinetic energies Ei, which covers the range from 1 keV
to 10 GeV and is suitably spaced to allow accurate natural cubic spline interpolation in
lnE. For each energy Ei in this grid, the table contains the values of the scaled DCS
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for a given set of 32 reduced photon energies κj (the same for all elements), which span
the interval (0,1), with a higher density at the upper end of this interval to reproduce
the structure of the bremsstrahlung “tip” (see Fig. 3.13). The spacing of the κ-grid is
dense enough to allow linear interpolation of χ(Z,Ei, κj) in κ.
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Figure 3.13: Numerical scaled bremsstrahlung energy-loss DCSs of aluminium and gold for

electrons with the indicated energies (Seltzer and Berger, 1986).

In the case of compounds (or mixtures) we use the additivity rule and compute the
molecular DCS as the sum of the DCSs of all the atoms in a molecule. Consider a
compound XxYy, whose molecules consist of x atoms of the element X and y atoms of
the element Y. The molecular DCS is

dσbr,mol

dW
= x

Z2
X

β2

1

W
χ(ZX, E, κ) + y

Z2
Y

β2

1

W
χ(ZY, E, κ). (3.147)

To simulate each radiative event in a compound, we should first select the element (X
or Y) where the emission occurs and then sample the photon energy and direction from
the corresponding atomic DCS. This is a lengthy process and requires storing the scaled
DCSs for all the elements present. To simplify the simulation, we shall express the
molecular DCS in the same form as the atomic DCS, Eq. (3.144),

dσbr,mol

dW
=
Z2

eq

β2

1

W
χmol(Zeq, E, κ), (3.148)
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where

Z2
eq ≡

1

x + y

(
xZ2

X + yZ2
Y

)
(3.149)

is the “equivalent” atomic number Zeq and

χmol(Zeq, E, κ) =
xZ2

X

Z2
eq

χ(ZX, E, κ) +
yZ2

Y

Z2
eq

χ(ZY, E, κ) (3.150)

is the molecular scaled DCS. Radiative events will be sampled directly from the molec-
ular DCS (3.148). This method may introduce slight inconsistencies in the angular
distribution of the emitted photons (see below), which usually have a negligible effect
on the simulation results.

The radiative DCS for positrons reduces to that of electrons in the high-energy limit
but is smaller for intermediate and low energies. Owing to the lack of more accurate
calculations, the DCS for positrons is obtained by multiplying the electron DCS by a
κ-independent factor, i.e.,

dσ
(+)
br

dW
= Fp(Z,E)

dσ
(−)
br

dW
. (3.151)

The factor Fp(Z,E) is set equal to the ratio of the radiative stopping powers for positrons
and electrons, which has been calculated by Kim et al. (1986) (cf. Berger and Seltzer,
1982). In the calculations we use the following analytical approximation

Fp(Z,E) = 1− exp(−1.2359× 10−1 t+ 6.1274× 10−2 t2 − 3.1516× 10−2 t3

+ 7.7446× 10−3 t4 − 1.0595× 10−3 t5 + 7.0568× 10−5 t6

− 1.8080× 10−6 t7), (3.152)

where

t = ln

(
1 +

106

Z2

E

mec2

)
. (3.153)

Expression (3.152) reproduces the values of Fp(Z,E) tabulated by Kim et al. (1986) to
an accuracy of about 0.5%.

3.3.2 Integrated cross sections

The total cross section for bremsstrahlung emission is infinite due to the divergence of
the DCS (3.144) for small reduced photon energies. Nevertheless, the cross section for
emission of photons with reduced energy larger than a given cutoff value Wcr is finite.
The corresponding mean free path is

λ−1
br (E;Wcr) ≡ N

∫ E

Wcr

dσbr
dW

dW = N Z2

β2

∫ 1

κcr

1

κ
χ(Z,E, κ) dκ, (3.154)
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where κcr = Wcr/E. Note that λ
−1
br (E;Wcr) gives the average number of photons emitted

per unit path length with energy greater than Wcr.

The radiative stopping power and the radiative energy straggling parameter, defined
by

Sbr(E) ≡ N
∫ E

0

W
dσbr
dW

dW = N Z2

β2
E

∫ 1

0

χ(Z,E, κ) dκ (3.155)

and

Ω2
br(E) ≡ N

∫ E

0

W 2dσbr
dW

dW = N Z2

β2
E2

∫ 1

0

κχ(Z,E, κ) dκ, (3.156)

are both finite. For the kinetic energies Ei of the grid, these quantities are easily calcu-
lated from the tabulated scaled DCS by using linear interpolation in κ. For positrons,
the definitions (3.154)–(3.156) must be multiplied by the factor Fp(Z,E) [Eq. (3.152)].
The quantities Sbr(E) and Ω2

br(E) give, respectively, the average energy-loss per unit
path length and the increase of variance of the energy-loss distribution of particles with
kinetic energy E (see Section 4.2).
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Figure 3.14: Radiative stopping power Sbr/ρ for electrons and positrons in aluminium,

silver (×10) and gold (×100) as a function of the kinetic energy. Solid and dashed curves are

results from the present model. Crosses are data from the ICRU Report 37 (1984) (given also

in Berger and Seltzer, 1982).

Radiative stopping powers of aluminium, silver and gold for electrons and positrons
are shown as functions of the kinetic energy in Fig. 3.14. The stopping powers com-
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puted from the DCS defined by Eq. (3.144) practically coincide with those given by
Berger and Seltzer (1982) and in the ICRU Report 37 (1984). To leave room for future
improvements, penelope reads the radiative stopping power for electrons from the in-
put material data file, and renormalizes the DCS, Eq. (3.144), (i.e., multiplies it by a
κ-independent factor) so as to exactly reproduce the input radiative stopping power.

As mentioned above, the stopping power gives the average energy loss per unit path
length. Thus, when an electron/positron with kinetic energy E advances a small distance
ds within a medium, it loses an (average) energy dE = −S(E) ds, where

S(E) = Sin(E) + Sbr(E) = −
dE

ds
(3.157)

is the total (collisional+radiative) stopping power. Figure 3.15 compares the radiative
and collision stopping powers of aluminium, silver and gold for electrons. It is seen
that radiative losses dominate for projectiles with kinetic energies above a critical value,
Ecrit (indicated by diamonds in Fig. 3.15), which decreases with the atomic number.
For higher energies, the radiative stopping power is approximately proportional to the
energy,

Sbr(E) ≃ E/X0 (3.158)

where the distance X0 is known as the radiation length. The values of this parameter,
determined graphically from the Sbr(E) curves in Fig. 3.15, are ρX0 = 25 g/cm2 for
aluminium, ρX0 = 9.2 g/cm2 for silver, and ρX0 = 6.6 g/cm2 for gold. Since the
radiative stopping powers for electrons and positrons with very high energies are equal
(see Fig. 3.14), these particles have the same radiation lengths.

3.3.2.1 CSDA range and radiative yield

Many electron transport calculations and old Monte Carlo simulations are based on the
so-called continuous slowing down approximation (CSDA), which assumes that particles
lose energy in a continuous way and at a rate equal to the stopping power. Evidently,
the CSDA disregards energy-loss fluctuations and, therefore, it provides only average
values.

A quantity of much practical importance is the so-called CSDA range (or Bethe
range), R(E), which is defined as the average path length travelled by a particle of
kinetic energy E (in an infinite medium) in the course of its slowing down, i.e., before
being absorbed. It is given by

R(E) =

∫
ds

dE ′ dE
′ =

∫ E

Eabs

dE ′

S(E ′)
, (3.159)

where we have considered that particles are effectively absorbed when they reach the
energy Eabs. Notice that the CSDA range gives the average path length, actual (or
Monte Carlo generated) path lengths fluctuate about the mean R(E); the distribution of
ranges has been studied by Lewis (1952). Figure 3.15 displays CSDA ranges for electrons



148 Chapter 3. Electron and positron interactions

10
4

10
5

10
6

10
7

10
8

10
9

E   (eV)

10
4

105

10
6

10
7

10
8

109

10
10

S
b
r/
ρ
  
  
(e
V
 c
m
2
/
g
)

Sbr(E )

Sin(E )

E/X0

Au (×100)

Ag (×10)

Al

electrons
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Dot-dashed lines represent the high-energy approximation given by Eq. (3.158). Diamonds

indicate the critical energy Ecrit at which the radiative stopping power starts dominating for

each material.

and positrons in aluminium and gold, this information is useful, e.g., in estimating the
maximum penetration depth of a beam and for range rejection (a variance-reduction
method). Compare Fig. 3.15 with Figs. 3.10 and 3.14 (right plots only) to get a feeling
of how differences in stopping power between electrons and positrons are reflected on
the CSDA ranges of these particles.

The CSDA sets a correspondence between the travelled path length s and the average
energy E, which takes a simple form when the energy of the projectile is well above the
critical energy Ecrit. Under such conditions, radiative energy losses dominate and the
approximation (3.158) applies. That is,

S(E) ≃ Sbr(E) ≃ E/X0 . (3.160)

Electrons with initial energy E(0) after travelling a path length s acquire an average
energy E(s). The relation

s =

∫ E(0)

E(s)

dE ′

S(E ′)
≃ X0 ln

(
E(0)

E(s)

)
(3.161)
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Figure 3.16: CSDA ranges for electrons and positrons in aluminium and gold as functions

of the kinetic energy of the particle.

implies that
E(s) = E(0) exp(−s/X0) . (3.162)

Hence, when the electron travels a distance equal to the radiation length X0 the energy
drops by a factor e ∼ 2.71. The importance of the radiation length is due to this
straightforward physical interpretation.

The radiative yield or bremsstrahlung yield, Ybr(E), is the average fraction of the
initial kinetic energy E of an electron that is emitted as bremsstrahlung photons when
the electron comes to rest, assuming that the medium where it moves is unbounded.
The average energy emitted as radiation is

Ebr =

∫ R(E)

0

(
dE ′

ds

)
br

ds =

∫ E

0

(
dE ′

ds

)
br

ds

dE ′ dE
′ =

∫ E

0

Sbr(E
′)

S(E ′)
dE ′. (3.163)

Hence,

Ybr(E) =
Ebr

E
=

1

E

∫ E

0

Sbr(E
′)

S(E ′)
dE ′ . (3.164)

Knowledge of the radiative yield is useful, e.g., to calculate the energy taken by brems-
strahlung photons away from the active volume of an electron detector. Figure 3.17
displays radiative yields of electrons and positrons in carbon, aluminium, silver and
gold, as functions of the kinetic energy E. It shows that Ybr(E) increases with the
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atomic number of the medium, being roughly proportional to Z. The radiative yields
of positrons are smaller than those of electrons, because of their smaller stopping power
(see Fig. 3.14). The relative differences increase with the atomic number, and decrease
when the kinetic energy of the particle increases.
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Figure 3.17: Radiative yields of electrons and positrons in carbon, aluminium, silver and

gold.

A related quantity is the photon number yield, Yph(E;Wcr), which is defined as the
average number of photons having energy W larger than the given cutoff energy, Wcr,
that are emitted during the slowing down of a particle with initial kinetic energy E. It
can be calculated as follows,

Yph(E;Wcc) =

∫ R(E)

0

λ−1
br (E

′;Wcr) ds =

∫ E

Eabs

λ−1
br (E

′;Wcr)

S(E ′)
dE ′ . (3.165)

Note that the number of photons emitted with energies W in an interval (W1,W2) can
be obtained as the difference between the corresponding photon number yields, i.e.,
Yph(E;W1)− Yph(E;W2). That is, from Yph(E;Wcr) we can build the energy spectrum
of all photons emitted by a particle with initial kinetic energy E when it comes to rest.
From the photon number yield we can also obtain the average number Nph of photons
emitted with energy W > Wcr when a particle slows from an initial energy E0 down to
an arbitrary final energy E, lower than E0,

Nph = Yph(E0;Wcr)− Yph(E;Wcr) . (3.166)
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Photon number yields of electrons and positrons in aluminium and gold, for various
cutoff energiesWcr, are displayed in Fig. 3.18. Again, the yields are smaller for positrons
than for electrons, and the differences are larger for hevier elements.
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Figure 3.18: Photon number yields of electrons and positrons in aluminium and gold, for

the indicated values of the cutoff energy Wcr, as functions of the kinetic energy E.

3.3.3 Angular distribution of emitted photons

The direction of the emitted bremsstrahlung photon is defined by the polar angle θ (see
Fig. 3.1) and the azimuthal angle ϕ. For isotropic media, with randomly oriented atoms
or molecules, the bremsstrahlung DCS is independent of ϕ and can be expressed as

d2σbr
dW d(cos θ)

=
dσbr
dW

pbr(Z,E, κ; cos θ) =
Z2

β2

1

W
χ(Z,E, κ) pbr(Z,E, κ; cos θ), (3.167)

where pbr(Z,E, κ; cos θ) is the PDF of cos θ.

Numerical values of the “shape function” pbr(Z,E, κ; cos θ), calculated by partial-
wave methods, have been published by Kissel et al. (1983) for the following benchmark
cases: Z = 2, 8, 13, 47, 79, 92; E = 1, 5, 10, 50, 100, 500 keV and κ = 0, 0.6, 0.8, 0.95.
These authors also gave a parameterisation of the shape function in terms of Legendre
polynomials. Unfortunately, their analytical form is not suited for random sampling
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of the photon direction. In penelope we use a different parameterisation that allows
the random sampling of cos θ in a simple way. Owing to the lack of numerical data for
positrons, it is assumed that the shape function for positrons is the same as for electrons.

In previous simulation studies of x-ray emission from solids bombarded by electron
beams (Acosta et al., 1998), the angular distribution of bremsstrahlung photons was
described by means of the semiempirical analytical formulae derived by Kirkpatrick
and Wiedmann (1945) [and subsequently modified by Statham (1976)]. These formulae
were obtained by fitting the bremsstrahlung DCS derived from Sommerfeld’s theory.
The shape function obtained from the Kirkpatrick-Wiedmann-Statham fit reads

p
(KWS)
br (Z,E, κ; cos θ) =

σx(1− cos2 θ) + σy(1 + cos2 θ)

(1− β cos θ)2
, (3.168)

where the quantities σx and σy are independent of θ. Although this simple formula
predicts the global trends of the partial-wave shape functions of Kissel et al. (1983)
in certain energy and atomic number ranges, its accuracy is not sufficient for general-
purpose simulations. In a preliminary analysis, we tried to improve this formula and
determined the parameters σx and σy by direct fitting to the numerical partial-wave
shape functions, but the improvement was not substantial. However, this analysis con-
firmed that the analytical form (3.168) is flexible enough to approximate the “true”
(partial-wave) shape.

The analytical form (3.168) is plausible even for projectiles with relatively high
energies, say E larger than 1 MeV, for which the angular distribution of emitted photons
is peaked at forward directions. This can be understood by means of the following
classical argument (see e.g., Jackson, 1975). Assume that the incident electron is moving
in the direction of the z-axis of a reference frame K at rest with respect to the laboratory
frame. Let (θ′, ϕ′) denote the polar and azimuthal angles of the direction of the emitted
photon in a reference frame K′ that moves with the electron and whose axes are parallel
to those of K. In K′, we expect that the angular distribution of the emitted photons will
not depart much from the isotropic distribution. To be more specific, we consider the
following ansatz (modified dipole distribution) for the shape function in K′,

pbr,d(cos θ
′) = A

3

8
(1 + cos2 θ′) + (1− A)3

4
(1− cos2 θ′), (0 ≤ A ≤ 1), (3.169)

which is motivated by the relative success of the Kirkpatrick-Wiedmann-Statham for-
mula at low energies (note that the projectile is at rest in K′). The direction of emission
(θ, ϕ) in K is obtained by means of the Lorentz transformation

cos θ =
cos θ′ + β

1 + β cos θ′
, ϕ = ϕ′. (3.170)
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Thus, the angular distribution in K reads

pbr(cos θ) = pbr,d(cos θ
′)
d(cos θ′)

d(cos θ)

= A
3

8

[
1 +

(
cos θ − β
1− β cos θ

)2
]

1− β2

(1− β cos θ)2

+ (1− A)3
4

[
1−

(
cos θ − β
1− β cos θ

)2
]

1− β2

(1− β cos θ)2
. (3.171)

Now, it is clear that when β tends to unity, the shape function concentrates at forward
directions.

We found that the benchmark partial-wave shape functions of Kissel et al. (1983)
can be closely approximated by the analytical form (3.171) if one considers A and β as
adjustable parameters (Acosta et al., 2002). Explicitly, we write

pbr,fit(cos θ) = A
3

8

[
1 +

(
cos θ − β′

1− β′ cos θ

)2
]

1− β′2

(1− β′ cos θ)2

+ (1− A) 3
4

[
1−

(
cos θ − β′

1− β′ cos θ

)2
]

1− β′2

(1− β′ cos θ)2
, (3.172)

with β′ = β(1 + B). The parameters A and B have been determined, by least squares
fitting, for the 144 combinations of atomic number, electron energy and reduced photon
energy corresponding to the benchmark shape functions tabulated by Kissel et al. (1983).
Results of this fit are compared with the original partial-wave shape functions in Fig.
3.19. The largest differences between the fits and the data were found for the higher
atomic numbers, but even then the fits are very accurate, as shown in Fig. 3.19. The
quantities ln(AZβ) and Bβ vary smoothly with Z, β and κ and can be obtained by
cubic spline interpolation of their values for the benchmark cases. This permits the fast
evaluation of the shape function for any combination of Z, β and κ. Moreover, the
random sampling of the photon direction, i.e., of cos θ, can be performed by means of a
simple, fast analytical algorithm (see below). For electrons with kinetic energies larger
than 500 keV, the shape function is approximated by the classical dipole distribution,
i.e., by the analytical form (3.172) with A = 1 and β′ = β.

3.3.4 Simulation of hard radiative events

Let us now consider the simulation of hard radiative events (W > Wcr) from the DCS
defined by Eqs. (3.167) and (3.172). penelope reads the scaled bremsstrahlung DCS
from the database files and, by natural cubic spline interpolation/extrapolation in lnE,
produces a table for a denser logarithmic grid of 200 energies (and for the “standard”



154 Chapter 3. Electron and positron interactions

-1.0 -0.5 0.0 0.5 1.0
cos θ

0

1

2

p
 (
co
s 
θ)

Al, E = 50 keV

κ = 0 (+1.5)

κ = 0.6 (+1.0)

κ = 0.8(+0.5)

κ = 0.95

-1.0 -0.5 0.0 0.5 1.0
cos θ

0

4

8

12

p
 (
co
s 
θ)

Al, E = 500 keV

κ = 0 (+6)

κ = 0.6 (+4)

κ = 0.8(+2)

κ = 0.95

-1.0 -0.5 0.0 0.5 1.0
cos θ

0

1

2

p
 (
co
s 
θ)

Au, E = 50 keV

κ = 0 (+1.5)

κ = 0.6 (+1.0)

κ = 0.8(+0.5)

κ = 0.95

-1.0 -0.5 0.0 0.5 1.0
cos θ

0

4

8

p
 (
co
s 
θ)

Au, E = 500 keV

κ = 0 (+4.5)

κ = 0.6 (+3)

κ = 0.8(+1.5)

κ = 0.95
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mesh of 32 κ’s), which is stored in memory. This energy grid spans the full energy range
considered in the simulation and allows accurate (and fast) linear interpolation of the
scaled DCS in the variable lnE, which is more adequate than E when interpolation over
a wide energy interval is required.

Notice that in the Monte Carlo simulation the kinetic energy of the transported
electron (or positron) varies in a random way and may take arbitrary values within
a certain domain. Hence, we must be able to simulate bremsstrahlung emission by
electrons with energies E not included in the grid.

3.3.4.1 Sampling of the photon energy

The PDF for the reduced photon energy, κ =W/E, is given by [see Eq. (3.144)]

pbr(E, κ) =
1

κ
χ(Z,E, κ)Θ(κ− κcr)Θ(1− κ), (3.173)

where κcr =Wcr/E and χ(Z,E, κ) is calculated by linear interpolation, in both lnE and
κ, in the stored table. That is, χ(Z,E, κ) is considered to be a piecewise linear function
of κ. To sample κ from the PDF (3.173) for an energy Ei in the grid, we express the
interpolated scaled DCS as

χ(Z,Ei, κ) = aj + bjκ if κj ≤ κ ≤ κj+1, (3.174)

and introduce the cumulative distribution function,

Pj =

∫ κj

κcr

p(Ei, κ) dκ, (3.175)

which, for a piecewise linear χ, can be computed exactly. We also define

χmax,j = max
{
χ(Z,E, κ), κ ∈ (κj, κj+1)

}
j = 1, . . . , 32. (3.176)

With all this we can formulate the following sampling algorithm, which combines a
numerical inverse transform and a rejection,

(i) Generate a random number ξ and determine the index j for which Pj ≤ ξP32 ≤
Pj+1 using the binary-search method.

(ii) Sample κ from the distribution κ−1 in the interval (κj, κj+1), i.e.,

κ = κj (κj+1/κj)
ξ . (3.177)

(iii) Generate a new random number ξ. If ξχmax,j < aj + bjκ, deliver κ.

(iv) Go to step (i).
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This sampling algorithm is exact and very fast [notice that the binary search in step
(i) requires at most 5 comparisons], but is only applicable for the energies in the grid
where χ is tabulated.

To simulate bremsstrahlung emission by electrons with energies E not included in
the grid, we should first obtain the PDF pbr(E, κ) by interpolation along the energy
axis and then perform the random sampling of κ from this PDF using the algorithm
described above. This procedure is too time consuming. A faster method consists of
assuming that the grid of energies is dense enough so that linear interpolation in lnE
is sufficiently accurate. If Ei < E < Ei+1, we can express the interpolated PDF as [cf.
Eq. (3.22)]

pbr,int(E, κ) = πi pbr(Ei, κ) + πi+1 pbr(Ei+1, κ) (3.178)

with the interpolation weights

πi =
lnEi+1 − lnE

lnEi+1 − lnEi

, πi+1 =
lnE − lnEi

lnEi+1 − lnEi

. (3.179)

These weights are positive and add to unity, i.e., they can be interpreted as point
probabilities. Therefore, to perform the random sampling of κ from pbr,int(E, κ) we can
employ the composition method (Section 1.2.6), which leads to the following algorithm:

(i) Sample the integer variable k, which can take the values i or i + 1 with point
probabilities πi and πi+1, respectively.

(ii) Sample κ from the distribution pbr(Ek, κ).

With this interpolation-by-weight method we only need to sample κ from the tabulated
PDFs, i.e., for the energies Ei of the grid.

3.3.4.2 Angular distribution of emitted photons

The random sampling of cos θ is simplified by noting that the PDF given by Eq. (3.172)
results from a Lorentz transformation, with speed β′, of the PDF (3.169). This means
that we can sample the photon direction cos θ′ in the reference frame K′ from the PDF
(3.169) and then apply the transformation (3.170) (with β′ instead of β) to get the
direction cos θ in the laboratory frame.

To generate random values of cos θ from (3.172) we use the following algorithm,
which combines the composition and rejection methods,

(i) Sample a random number ξ1.

(ii) If ξ1 < A, then
1) Sample a random number ξ and set cos θ′ = −1 + 2ξ.
2) Sample a random number ξ.
3) If 2ξ > 1 + cos2 θ′, go to 1).
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(iii) If ξ1 ≥ A, then
4) Sample a random number ξ and set cos θ′ = −1 + 2ξ.
5) Sample a random number ξ.
6) If ξ > 1− cos2 θ′, go to 4).

(iv) Deliver cos θ =
cos θ′ + β′

1 + β′ cos θ′
.

The efficiencies of the rejections in steps (ii) and (iii) are both equal to 0.66. That is,
on average, we need 4 random numbers to generate each value of cos θ.

3.4 Positron annihilation

Following Nelson et al. (1985), we consider that positrons penetrating a medium of
atomic number Z with kinetic energy E can annihilate with the electrons in the medium
by emission of two photons. We assume that the target electrons are free and at rest,
thus disregarding electron binding effects, which enable one-photon annihilation (Heitler,
1954). When annihilation occurs in flight, i.e., when the kinetic energy E of the positron
is larger than the “absorption” energy, the two photons may have different energies, say
E− and E+, which add to E+2mec

2. In what follows, quantities referring to the photon
with the lowest energy will be denoted by the subscript “−”. Each annihilation event
is then completely characterised by the quantity

ζ ≡ E−

E + 2mec2
. (3.180)

Assuming that the positron moves initially in the direction of the z-axis, from conserva-
tion of energy and momentum it follows that the two photons are emitted in directions
with polar angles [see Eqs. (A.21) and (A.22) in Appendix A]

cos θ− = (γ2 − 1)−1/2(γ + 1− 1/ζ) (3.181)

and

cos θ+ = (γ2 − 1)−1/2[γ + 1− 1/(1− ζ)], (3.182)

and azimuthal angles ϕ− and ϕ+ = ϕ− + π. The quantity γ = 1+E/(mec
2) is the total

energy of the positron in units of its rest energy.

The maximum value of ζ is 1/2, its minimum value is found when cos θ− = −1 and
is given by

ζmin =
1

γ + 1 + (γ2 − 1)1/2
. (3.183)

The DCS (per electron) for two-photon annihilation, as observed in the centre-of-
mass system of the positron and the electron, is given by Heitler (1954). Nelson et al.
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(1985) transformed this DCS to the laboratory system (where the electron is at rest),
their result can be written as

dσan
dζ

=
πr2e

(γ + 1)(γ2 − 1)
[S(ζ) + S(1− ζ)] , (3.184)

where

S(ζ) = −(γ + 1)2 + (γ2 + 4γ + 1)
1

ζ
− 1

ζ2
. (3.185)

Owing to the axial symmetry of the process, the DCS is independent of the azimuthal
angle ϕ−, which is uniformly distributed on the interval (0, 2π). For fast positrons,
annihilation photons are emitted preferentially at forward directions. When the kinetic
energy of the positron decreases, the angular distribution of the generated photons
becomes more isotropical (see Fig. 3.20).
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Figure 3.20: Left: angular distributions of photons produced by annihilation in flight

of positrons with the indicated kinetic energies. The dashed line represents the isotropic

distribution. Right: Annihilation cross section per target electron as a function of the kinetic

energy of the positron.

The cross section (per target electron) for two-photon annihilation is

σan =

∫ 1/2

ζmin

dσan
dζ

dζ =
πr2e

(γ + 1)(γ2 − 1)

×
{
(γ2 + 4γ + 1) ln

[
γ +

(
γ2 − 1

)1/2]− (3 + γ)
(
γ2 − 1

)1/2}
. (3.186)
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The annihilation mean free path is given by

λ−1
an = NZσan, (3.187)

where NZ is the density of electrons in the medium. The annihilation cross section is
displayed in Fig. 3.20. The cross section decreases with the kinetic energy and, therefore,
high-energy positrons can travel path lengths of the order of the CSDA range before
annihilating.

3.4.1 Generation of emitted photons

The PDF of ζ is given by (normalisation is irrelevant here)

pan(ζ) = S(ζ) + S(1− ζ), ζmin ≤ ζ ≤ 1/2. (3.188)

To sample ζ, we may take advantage of the symmetry of this expression under the
exchange of the two photons, which corresponds to exchanging ζ and 1 − ζ. We first
consider the distribution

P (υ) ≡ S(υ), ζmin ≤ υ ≤ 1− ζmin (3.189)

and write it in the form
P (υ) = π(υ)g(υ) (3.190)

with

π(υ) =

[
ln

(
1− ζmin

ζmin

)]−1
1

υ
(3.191)

and

g(υ) =

[
−(γ + 1)2υ + (γ2 + 4γ + 1)− 1

υ

]
. (3.192)

π(υ) is a proper PDF (i.e., it is definite positive and normalised to unity) and g(υ) is a
monotonically decreasing function. Random values of υ from the distribution P (υ) can
be generated by using the following algorithm (rejection method):

(i) Sample a value υ from the distribution π(υ). This is easily done with the inverse-
transform method, which yields the following sampling equation

υ = ζmin

(
1− ζmin

ζmin

)ξ

. (3.193)

(ii) Generate a new random number ξ.

(iii) If ξg(ζmin) > g(υ), go to step (i).

(iv) Deliver υ.
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It is clear that the random value

ζ = min(υ, 1− υ) (3.194)

follows the distribution given by Eq. (3.188) when υ is sampled from the distribution
P (υ). The efficiency of this sampling algorithm practically equals 100% for positrons
with kinetic energy E less than 10 keV, decreases when E increases to reach a minimum
value of ∼ 80% at E ∼ 10 MeV and increases monotonically for larger energies.

As the result of annihilation, two photons with energies E− = ζ(E + 2mec
2) and

E+ = (1−ζ)(E+2mec
2) are emitted in the directions given by Eqs. (3.181) and (3.182).



Chapter 4

Electron/positron transport
mechanics

In principle, the scattering model and sampling techniques described in Chapter 3 al-
low the detailed Monte Carlo simulation of electron and positron transport in matter.
However, detailed simulation is feasible only when the mean number of interactions per
track is small (a few hundred at most). This occurs for electrons with low initial kinetic
energies or for thin geometries. The number of interactions experienced by an electron or
positron before being effectively stopped increases with its initial energy and, therefore,
detailed simulation becomes impractical at high energies.

penelope implements a “mixed” simulation scheme (Berger, 1963; Reimer and
Krefting, 1976; Andreo and Brahme, 1984), which combines the detailed simulation of
hard events (i.e., events with polar angular deflection θ or energy loss W larger than
previously selected cutoff values θc and Wc) with condensed simulation of soft events, in
which θ < θc or W < Wc. Owing to the fact that for high-energy electrons the DCSs for
the various interaction processes decrease rapidly with the polar scattering angle and the
energy loss, cutoff values can be selected such that the mean number of hard events per
electron track is sufficiently small to permit their detailed simulation. In general, this
is accomplished by using relatively small cutoff values, so that each soft interaction has
only a slight effect on the simulated track. The global effect of the (usually many) soft
interactions that take place between each pair of consecutive hard events can then be
simulated accurately by using a multiple-scattering approach. Hard events occur much
less frequently than soft events, but they have severe effects on the track evolution (i.e.,
they cause large angular deflections and lateral displacements or considerable energy
losses), which can only be properly reproduced by detailed simulation. The computer
time needed to simulate each track diminishes rapidly when the cutoff values for the
angular deflection and the energy loss are increased. Mixed simulation algorithms are
usually very stable under variations of the adopted cutoff values, whenever these are
kept below some reasonable limits. Mixed simulation is then preferable to condensed
simulation because 1) spatial distributions are simulated more accurately, 2) tracks in
the vicinity of interfaces are properly handled, and 3) possible dependence of the results



162 Chapter 4. Electron/positron transport mechanics

on user-defined parameters is largely reduced.

4.1 Elastic scattering

Let us start by considering electrons (or positrons) with kinetic energy E moving in a
hypothetical infinite homogeneous medium, with N scattering centres per unit volume,
in which they experience only pure elastic collisions (i.e., with no energy loss).

4.1.1 Multiple elastic scattering theory

Assume that an electron starts off from a certain position, which we select as the origin
of our reference frame, moving in the direction of the z-axis. Let f(s; r, d̂) denote the
probability density of finding the electron at the position r = (x, y, z), moving in the
direction given by the unit vector d̂ after having travelled a path length s. The diffusion
equation for this problem is (Lewis, 1950)

∂f

∂s
+ d̂ · ∇f = N

∫ [
f(s; r, d̂′)− f(s; r, d̂)

] dσel(θ)
dΩ

dΩ, (4.1)

where θ ≡ arccos(d̂ · d̂′) is the scattering angle corresponding to the angular deflection
d̂′ → d̂. This equation has to be solved with the boundary condition f(0; r, d̂) =
(1/π)δ(r)δ(1 − cosχ), where χ is the polar angle of the direction d̂. By expanding
f(s; r, d̂) in spherical harmonics, Lewis (1950) obtained exact expressions for the angular
distribution and for the first moments of the spatial distribution after a given path length
s. The probability density F (s;χ) of having a final direction in the solid angle element
dΩ around a direction defined by the polar angle χ is given by

F (s;χ) =

∫
f(s; r, d̂) dr =

∞∑
ℓ=0

2ℓ+ 1

4π
exp(−s/λel,ℓ)Pℓ(cosχ), (4.2)

where Pℓ(cosχ) are Legendre polynomials and λel,ℓ = 1/(Nσel,ℓ) is the ℓ-th transport
mean free path defined by Eq. (3.16). The result given by Eq. (4.2) coincides with the
multiple-scattering distribution obtained by Goudsmit and Saunderson (1940a, 1940b).
Evidently, the distribution F (s;χ) is symmetric about the z-axis, i.e., independent of
the azimuthal angle of the final direction.

From the orthogonality of the Legendre polynomials, it follows that

⟨Pℓ(cosχ)⟩ ≡ 2π

∫ 1

−1

Pℓ(cosχ)F (s;χ) d(cosχ) = exp(−s/λel,ℓ). (4.3)

In particular, we have

⟨cosχ⟩ = exp(−s/λel,1) (4.4)
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and

⟨cos2 χ⟩ = 1

3
[1 + 2 exp(−s/λel,2)] . (4.5)

Lewis (1950) also derived analytical formulas for the first moments of the spatial
distribution and the correlation function of z and cosχ. Neglecting energy losses, the
results explicitly given in Lewis’ paper simplify to

⟨z⟩ ≡ 2π

∫
zf(s; r, d̂) d(cosχ) dr = λel,1 [1− exp(−s/λel,1)] , (4.6)

⟨x2 + y2⟩ ≡ 2π

∫ (
x2 + y2

)
f(s; r, d̂) d(cosχ) dr

=
4

3

∫ s

0

dt exp(−t/λel,1)
∫ t

0

[1− exp(−u/λel,2)] exp(u/λel,1) du, (4.7)

⟨z cosχ⟩ ≡ 2π

∫
z cosχf(s; r, d̂) d(cosχ) dr

= exp(−s/λel,1)
∫ s

0

[1 + 2 exp(−t/λel,2)] exp(t/λel,1) dt. (4.8)

It is worth observing that the quantities (4.4)–(4.8) are completely determined by the
values of the transport mean free paths λel,1 and λel,2; they are independent of the elastic
mean free path λel.

4.1.2 Mixed simulation of elastic scattering

At high energies, where detailed simulation becomes impractical, λel,1 ≫ λel (see Fig.
3.3) so that the average angular deflection in each collision is small. In other words,
the great majority of elastic collisions of fast electrons are soft collisions with very small
deflections. We shall consider mixed simulation procedures (see Fernández-Varea et al.,
1993b; Baró et al., 1994b) in which hard collisions, with scattering angle θ larger than a
certain value θc, are individually simulated and soft collisions (with θ < θc) are described
by means of a multiple-scattering approach.

In practice, the mixed algorithm will be defined by specifying the mean free path
λ
(h)
el between hard elastic events, defined by [see Eq. (3.25)]

1

λ
(h)
el

= N 2π

∫ π

θc

dσel(θ)

dΩ
sin θ dθ. (4.9)

This equation determines the cutoff angle θc as a function of λ
(h)
el . A convenient recipe

to set the mean free path λ
(h)
el is

λ
(h)
el (E) = max {λel(E), C1λel,1(E)} , (4.10)
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where C1 is a pre-selected small constant (say, less than ∼ 0.1). For increasing energies,
λel attains a constant value and λel,1 increases steadily (see Fig. 3.3) so that the formula
(4.10) gives a mean free path for hard collisions that increases with energy, i.e., hard
collisions are less frequent when the scattering effect is weaker. The recipe (4.10) also

ensures that λ
(h)
el will reduce to the actual mean free path λel for low energies. In this case,

soft collisions cease to occur (θc = 0) and mixed simulation becomes purely detailed. It

is worth noticing that, when mixed simulation is effective (i.e., when λ
(h)
el > λel), the

mean angular deflection in a path length λ
(h)
el is [see Eq. (4.4)]

1− ⟨cosχ⟩ = 1− exp(−λ(h)el /λel,1) ≃ C1. (4.11)

Hence, when using the prescription (4.10), the average angular deflection due to all

elastic collisions occurring along a path length λ
(h)
el equals C1.

The PDF of the step length s between two successive hard collisions is

p(s) =
1

λ
(h)
el

exp(−s/λ(h)el ), (4.12)

and random values of s can be generated by means of the sampling formula, Eq. (1.36)

s = −λ(h)el ln ξ. (4.13)

The (unnormalised) PDF of the polar deflection θ in single hard collisions is

p(h)(θ) =
dσel(θ)

dΩ
sin θΘ(θ − θc), (4.14)

where Θ(x) stands for the step function.

The inverse transport mean free paths λ−1
el,ℓ, see Eqs. (3.14) and (3.16), for the actual

scattering process can be split into contributions from soft and hard collisions, that is

1

λel,ℓ
=

1

λ
(s)
el,ℓ

+
1

λ
(h)
el,ℓ

, (4.15)

where
1

λ
(s)
el,ℓ

= N 2π

∫ θc

0

[1− Pℓ(cos θ)]
dσel(θ)

dΩ
sin θ dθ (4.16a)

and
1

λ
(h)
el,ℓ

= N 2π

∫ π

θc

[1− Pℓ(cos θ)]
dσel(θ)

dΩ
sin θ dθ. (4.16b)

Let us assume that an electron starts off from the origin of coordinates moving in
the direction of the z-axis and undergoes the first hard collision after travelling a path
length s. The exact angular distribution produced by the soft collisions along this step
is

F (s)(s;χ) =
∞∑
ℓ=0

2ℓ+ 1

4π
exp(−s/λ(s)el,ℓ)Pℓ(cosχ). (4.17)
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The exact average longitudinal and transverse displacements at the end of the step are
given by [see Eqs. (4.6) and (4.7)]

⟨z⟩(s) = λ
(s)
el,1

[
1− exp(−s/λ(s)el,1)

]
= s

1− 1

2

(
s

λ
(s)
el,1

)
+

1

6

(
s

λ
(s)
el,1

)2

− . . .

 , (4.18)

⟨x2 + y2⟩(s) = 2

9

s3

λ
(s)
el,2

[
1− 1

4

(
1 +

λ
(s)
el,1

λ
(s)
el,2

)(
s

λ
(s)
el,1

)
+ . . .

]
, (4.19)

where λ
(s)
el,1, the first transport mean free path for soft collisions, is larger than λel,1. As

the mean free path between hard collisions is normally much less than λ
(s)
el,1 (depending

on the value of C1), the value s/λ
(s)
el,1 is, on average, much less than unity (note that

⟨s⟩ = λ
(h)
el ). Therefore, the global effect of the soft collisions in the step, i.e., the

change in direction of movement and the lateral displacement, is very small (part of the
deflection is caused by the hard interaction at the end of the step).

In penelope, the angular deflection and the lateral displacement due to the multiple
soft collisions in a step of length s are simulated by means of the random-hinge method1

(Fernández-Varea et al., 1993b). The associated algorithm can be formulated as follows
(see Fig. 4.1),

(i) The electron first moves a random distance τ , which is sampled uniformly in the
interval (0, s), in the initial direction.

(ii) Then a single artificial soft scattering event (a hinge) takes place, in which the
electron changes its direction of movement according to the multiple-scattering
distribution F (s)(s;χ).

(iii) Finally, the electron moves a distance s− τ in the new direction.

s  —  τ

τ

χ

z s

Figure 4.1: Simulation of the global effect of soft collisions between two consecutive hard

collisions by the random-hinge method.

1The name was coined by Ron Kensek.
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Obviously, this algorithm leads to the exact angular distribution at the end of the
step. The average longitudinal displacement at the end of the simulated step is

⟨z⟩(s)sim =
s

2
+
s

2
⟨cosχ⟩(s) = s

1− 1

2

(
s

λ
(s)
el,1

)
+

1

4

(
s

λ
(s)
el,1

)2

− . . .

 , (4.20)

which agrees closely with the exact result given by Eq. (4.18). Moreover, the average
simulated transverse displacement is

⟨x2 + y2⟩(s)sim = ⟨(s− τ)2 sin2 χ⟩(s)sim =
1

3
s2
(
1− ⟨cos2 χ⟩(s)

)
=

2

9

s3

λ
(s)
el,2

[
1− 1

2

λ
(s)
el,1

λ
(s)
el,2

(
s

λ
(s)
el,1

)
+ . . .

]
, (4.21)

which does not differ much from the exact value given by Eq. (4.19). From these facts,
we may conclude that the random-hinge method provides a faithful description of the
transport when the step length s is much shorter than the first transport mean free path
λel,1, so that the global angular deflection and lateral displacement are small. Surpris-
ingly, it does work well also in condensed (class I) simulations, where this requirement
is not met. In spite of its simplicity, the random-hinge method competes in accuracy
and speed with other, much more sophisticated transport algorithms (see Bielajew and
Salvat, 2001, and references therein). It seems that the randomness of the hinge posi-
tion τ leads to correlations between the angular deflection and the displacement that
are close to the actual correlations.

χ

t

1 2

^
r+τ d

^
r+s dr

Figure 4.2: Simulation of a track near the crossing of an interface.

The random-hinge algorithm can be readily adapted to simulate multiple-scattering
processes in limited material structures, which may consist of several regions of different
compositions separated by well-defined surfaces (interfaces). In these geometries, when
the track crosses an interface, we simply stop it at the crossing point, and resume the
simulation in the new material. In spite of its simplicity, this recipe gives a fairly
accurate description of interface crossing. To see this, consider that a hard collision has
occurred at the position r in region “1” and assume that the following hard collision
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occurs in region “2”. The step length s between these two hard collisions is larger
than the distance t from r to the interface (see Fig. 4.2). If the artificial soft elastic
collision occurs in region “1”, the angular deflection in this collision is sampled from the
distribution F (s)(s;χ). Otherwise, the electron reaches the interface without changing

its direction of movement. Assuming s≪ λ
(s)
el,1, the mean angular deflection due to soft

collisions is
1− ⟨cosχ⟩(s) = 1− exp(−s/λ(s)el,1) ≃

s

λ
(s)
el,1

. (4.22)

Moreover, when this assumption is valid, lateral displacements due to soft collisions are
small and can be neglected to a first approximation. As the probability for the soft
collision to occur within region “1” equals t/s, the average angular deflection of the
simulated electron track when it reaches the interface is

1− ⟨cosχ⟩ = t

s

(
1− ⟨cosχ⟩(s)

)
≃ t

λ
(s)
el,1

, (4.23)

which practically coincides with the exact mean deviation after the path length t within
region “1”, as required. Thus, by sampling the position of the soft collision uniformly in
the segment (0, s) we make sure that the electron reaches the interface with the correct
average direction of movement.

4.1.2.1 Angular deflections in soft scattering events

In the random-hinge method, the global effect of the soft collisions experienced by
the particle along a path segment of length s between two consecutive hard events is
simulated as a single artificial soft scattering event. The angular deflection follows the
multiple-scattering distribution F (s)(s;χ). Unfortunately, the exact Legendre expansion,
Eq. (4.17), is not appropriate for Monte Carlo simulation, since this expansion converges
very slowly (because the associated single-scattering DCS is not continuous) and the sum
varies rapidly with the path length s.

Whenever the cutoff angle θc is small, the distribution F (s)(s;χ) may be calculated
by using the small-angle approximation (see, e.g., Lewis, 1950). Notice that θc can be
made as small as desired by selecting a small enough value of C1, see Eqs. (4.9) and
(4.10). Introducing the limiting form of the Legendre polynomials

Pℓ(cos θ) ≃ 1− 1

4
ℓ(ℓ+ 1)θ2 (4.24)

into Eq. (4.16a) we get

1

λ
(s)
el,ℓ

= N 2π
ℓ(ℓ+ 1)

4

∫ θc

0

θ2
dσel(θ)

dΩ
sin θ dθ =

ℓ(ℓ+ 1)

2

1

λ
(s)
el,1

, (4.25)

i.e., the transport mean free paths λ
(s)
el,ℓ are completely determined by the single value
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λ
(s)
el,1. The angular distribution F (s) then simplifies to

F (s)(s;χ) =
∞∑
ℓ=0

2ℓ+ 1

4π
exp

[
−ℓ(ℓ+ 1)

2

s

λ
(s)
el,1

]
Pℓ(cosχ). (4.26)

This expression can be evaluated by using the Molière (1948) approximation for the
Legendre polynomials, we obtain (see Fernández-Varea et al., 1993b)

F (s)(s;χ) =
1

2π

(
χ

sinχ

)1/2 λ
(s)
el,1

s
exp

[
s

8λ
(s)
el,1

−
λ
(s)
el,1

2s
χ2

]
, (4.27)

which does not differ significantly from the Gaussian distribution with variance s/λ
(s)
el,1.

This result is accurate whenever s ≪ λ
(s)
el,1 and θc ≪ 1. It offers a possible method

of generating the angular deflection in artificial soft events. When the result given by
Eq. (4.27) is applicable, the single parameter λ

(s)
el,1 completely determines the multiple-

scattering distribution due to soft collisions, i.e., other details of the DCS for scattering
angles less than θc are irrelevant. However, in actual Monte Carlo simulations, the
small-angle approximation is seldom applicable.

In most practical cases the number of hard collisions per electron track can be made
relatively large by simply using a small value of the parameter C1 [see Eq. (4.10)].
When the number of steps is large enough, say larger than ∼ 10, it is not necessary
to use the exact distribution F (s)(s;χ) to sample the angular deflection in artificial soft
collisions. Instead, we may use a simpler distribution, Fa(s;χ), with the same mean
and variance, without appreciably distorting the simulation results. This is so because
the details of the adopted distribution are washed out after a sufficiently large number
of steps and will not be seen in the simulated distributions. Notice that, within the
small-angle approximation, it is necessary to keep only the proper value of the first
moment to get the correct final distributions. However, if the cutoff angle θc is not
small enough, the angular distribution F (s)(s;χ) may become sensitive to higher-order
moments of the soft single-scattering distribution. Thus, by also keeping the proper
value of the variance, the range of validity of the simulation algorithm is extended, i.e.,
we can speed up the simulation by using larger values of C1 (or of λ

(h)
el ) and still obtain

the correct distributions.

4.1.3 Simulation of soft events

We now return to the notation of Section 3.1, and use the variable µ ≡ (1 − cosχ)/2
to describe angular deflections resulting from multiple soft scattering events. The exact
first and second moments of the multiple-scattering distribution F (s)(s;µ) are

⟨µ⟩(s) ≡
∫ 1

0

µFa(s;µ) dµ =
1

2

[
1− exp(−s/λ(s)el,1)

]
(4.28)
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and

⟨µ2⟩(s) ≡
∫ 1

0

µ2Fa(s;µ) dµ = ⟨µ⟩(s) − 1

6

[
1− exp(−s/λ(s)el,2)

]
. (4.29)

The angular deflection in soft scattering events will be generated from a distribution
Fa(s;µ), which is required to satisfy Eqs. (4.28) and (4.29), but is otherwise arbitrary.
penelope uses the following,

Fa(s;µ) = aU0,b(µ) + (1− a)Ub,1(µ), (4.30)

where Uu,v(x) denotes the normalised uniform distribution in the interval (u, v),

Uu,v(x) =

 1/(v − u) if u ≤ x ≤ v,

0 otherwise.
(4.31)

The parameters a and b, obtained from the conditions (4.28) and (4.29), are

b =
2⟨µ⟩(s) − 3⟨µ2⟩(s)

1− 2⟨µ⟩(s)
, a = 1− 2⟨µ⟩(s) + b. (4.32)

The simple distribution (4.30) is flexible enough to reproduce the combinations of first
and second moments encountered in the simulations [notice that ⟨µ⟩(s), Eq. (4.28), is
always less than 1/2] and allows fast random sampling of µ.

penelope simulates elastic scattering by using either numerical DCSs from the
elsepa database or the MW DCS model (see Section 3.1). The polar deflection µ
in hard events is sampled by using the algorithms described in Section 3.1. These
algorithms implement the inverse-transform method (Section 1.2.2), i.e., random values
of µ are obtained from the sampling equation [see Eq. (3.24)]

µ = P−1
el (ξ), (4.33)

where

Pel(µ) =

∫ µ

0

pel(E;µ) dµ (4.34)

is the cumulative distribution function of µ. To get sampled µ-values greater than the
cutoff deflection µc = (1 − cos θc)/2, we only need to use random numbers ξ restricted
to the interval (ξc, 1) [see Eq. (3.27)].

The angular distribution of soft events Fa(s;µ), Eq. (4.30), is determined by the
first and second transport mean free paths for soft collisions. Evidently, these quantities
depend on the cutoff deflection. The mean free path λ

(h)
el between hard elastic events

and the cutoff deflection µc are related through [see Eqs. (3.26) and (4.9)]

1

λ
(h)
el

=
1

λel

∫ 1

µc

pel(µ) dµ. (4.35)
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This equation can be inverted to give

µc = P−1
el (ξc) , (4.36)

where

ξc ≡ 1− λel

λ
(h)
el

(4.37)

and P−1
el is the inverse of the single-scattering cumulative distribution function, as de-

fined in Eq. (3.24). Note that Eq. (4.36) has the same form as the sampling equation
for µ, Eq. (4.33), and, therefore, the value of µc can be obtained by simply invoking the
elastic-scattering sampling routine.

Now, we can calculate the first and second transport mean free paths for soft colli-
sions, which are given by(

λ
(s)
el,1

)−1

=
2

λel
T1(µc) and

(
λ
(s)
el,2

)−1

=
6

λel
[T1(µc)− T2(µc)] (4.38)

with

T1(µc) =

∫ µc

0

µpel(µ) dµ and T2(µc) =

∫ µc

0

µ2pel(µ) dµ. (4.39)

When numerical DCSs from the elsepa database are used, these integrals have to be
calculated numerically. With the MW DCS, they can be evaluated analytically. For the
case-I MW model, Eq. (3.34), we have

T1(µc) =

∫ µc

0

µpMW−I(µ) dµ

=


(1−B)I1(µc) if 0 ≤ ξc < ξ0

(1−B)I1(µ0) + (ξc − ξ0)µ0 if ξ0 ≤ ξc < ξ0 +B

(1−B)I1(µc) +Bµ0 if ξ0 +B ≤ ξc ≤ 1

(4.40)

and

T2(µc) =

∫ µc

0

µ2pMW−I(µ) dµ

=


(1−B)I2(µc) if 0 ≤ ξc < ξ0

(1−B)I2(µ0) + (ξc − ξ0)µ2
0 if ξ0 ≤ ξc < ξ0 +B

(1−B)I2(µc) +Bµ2
0 if ξ0 +B ≤ ξc ≤ 1

(4.41)

with

I1(µ) ≡ A

[
(1 + A) ln

(
A+ µ

A

)
− (1 + A)µ

A+ µ

]
(4.42)

and

I2(µ) ≡ A

[
(1 + A)µ2

A+ µ
− 2I1(µ)

]
. (4.43)

The quantities ξ0 and ξc are defined by Eqs. (3.43) and (4.37), respectively. The corre-
sponding formulas for the case-II MW model can be derived in a similar way.
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4.2 Soft energy losses

The high-energy codes currently available implement different approximate methods to
simulate inelastic collisions. Thus, etran and its3 make use of the multiple-scattering
theories of Landau (1944) and Blunck and Leisegang (1950) to obtain the energy loss dis-
tribution due to inelastic collisions after a given path length; the production of secondary
electrons is simulated by means of the Møller (1932) and Bhabha (1936) DCSs, which
neglect binding effects. This approach accounts for the whole energy straggling, within
the accuracy of the multiple-scattering theory, but disregards the correlation between
delta ray emission and energy loss in each track segment. As a consequence, energetic
delta rays can be generated in a track segment where the energy lost by the primary
particle is smaller than the energy of the emitted delta rays. egs4 uses a mixed proce-
dure to simulate collision energy losses: hard inelastic collisions are simulated from the
Møller and Bhabha DCSs, thus neglecting binding effects, and soft inelastic collisions
are described by means of the continuous slowing down approximation (CSDA), i.e.,
energy straggling due to soft inelastic collisions is ignored. As regards bremsstrahlung
emission, egs4 implements a mixed procedure in which hard radiative events are sim-
ulated in detail and use is made of the CSDA to simulate the effect of soft photon
emission; etran uses strictly detailed simulation.

To make the arguments more precise, we introduce the cutoff valuesWcc andWcr, and
consider inelastic collisions with energy loss W < Wcc and emission of bremsstrahlung
photons with W < Wcr as soft stopping interactions. The use of the CSDA to describe
soft interactions is well justified when the energy straggling due to these interactions
is negligible, as happens when the cutoff energies Wcc and Wcr are both small, so that
the fraction of the stopping power due to soft interactions is also small. To improve the
description of energy straggling one should reduce the cutoff energies, but this enlarges
the number of hard inelastic and radiative events to be simulated along each track and
hence the simulation time. Our purpose is to go beyond the CSDA by introducing energy
straggling in the description of soft stopping interactions. It is clear that, by proceeding
in this way, we will be able to use larger values of the cutoff energies Wcc and Wcr, and
hence speed up the simulation, without distorting the energy distributions.

In previous versions of penelope, soft energy losses were simulated by using the
mixed simulation algorithm described by Baró et al. (1995). The quantities that define

the algorithm are the mean free paths λ
(h)
in and λ

(h)
br between hard collisions and hard ra-

diative events, the stopping power Ss and the energy straggling parameter Ω2
s associated

with soft interactions. These quantities are given by

λ
(h)
in (E) =

(
N
∫ E

Wcc

dσin
dW

dW

)−1

, (4.44)

λ
(h)
br (E) =

(
N
∫ E

Wcr

dσbr
dW

dW

)−1

, (4.45)
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Ss(E) = N
∫ Wcc

0

W
dσin
dW

dW +N
∫ Wcr

0

W
dσbr
dW

dW (4.46)

and

Ω2
s (E) = N

∫ Wcc

0

W 2dσin
dW

dW +N
∫ Wcr

0

W 2dσbr
dW

dW. (4.47)

To prevent λ
(h)
br (E) from vanishing (infrared divergence), in penelope the radiative

cutoff energy Wcr is required to be larger than or equal to 10 eV.

Let us consider that a particle, electron or positron, travels a step of length s be-
tween two consecutive hard events of any kind (i.e., hard elastic or inelastic collisions,
hard bremsstrahlung emissions, and annihilation in the case of positrons). Along this
step, the particle is assumed to interact only through soft inelastic collisions and soft
bremsstrahlung emission. We consider that the average energy loss in this path length,
Ss(E)s, is much less than the initial energy E so that the DCSs can be assumed to
stay essentially constant along the step. Let G(s;ω) denote the PDF of the energy loss
ω along the path length s; this distribution satisfies the transport equation (Landau,
1944)

∂G(s;ω)

∂s
= N

∫ ∞

0

[G(s;ω −W )−G(s;ω)]σs(E;W ) dW (4.48)

with the initial value G(0;ω) = δ(ω). Here, σs(E;W ) stands for the DCS for soft
stopping interactions, i.e.,

σs(E;W ) ≡ dσs
dW

=
dσin
dW

Θ(Wcc −W ) +
dσbr
dW

Θ(Wcr −W ), (4.49)

where Θ(x) is the step function. A closed formal solution of the integral equation (4.48)
may be obtained by considering its Fourier, or Laplace, transform with respect to ω (see,
e.g., Landau, 1944, Blunck and Leisegang, 1950). For our purposes it is only necessary
to know the first moments of the energy loss distribution after the path length s,

⟨ωn⟩ ≡
∫ ∞

0

ωnG(s;ω) dω. (4.50)

From Eq. (4.48) it follows that

d

ds
⟨ωn⟩ = N

∫ ∞

0

dω

∫ ∞

0

dW ωn [G(s;ω −W )−G(s;ω)]σs(E;W )

= N
(∫ ∞

0

dω′
∫ ∞

0

dW (ω′ +W )nG(s;ω′)σs(E;W )− ⟨ωn⟩
∫ ∞

0

σs(E;W ) dW

)
=

n∑
k=1

n!

k!(n− k)!
⟨ωn−k⟩N

∫ ∞

0

W kσs(E;W ) dW, (4.51)

where use has been made of the fact that σs(E;W ) vanishes whenW < 0. In particular,
we have

d

ds
⟨ω⟩ = N

∫ ∞

0

Wσs(E;W ) dW = Ss, (4.52)
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d

ds
⟨ω2⟩ = 2⟨ω⟩N

∫ ∞

0

Wσs(E;W ) dW +N
∫ ∞

0

W 2σs(E;W ) dW

= 2⟨ω⟩Ss + Ω2
s (4.53)

and, hence,
⟨ω⟩ = Sss, (4.54)

⟨ω2⟩ = (Sss)
2 + Ω2

ss. (4.55)

The variance of the energy loss distribution is

var(ω) = ⟨ω2⟩ − ⟨ω⟩2 = Ω2
ss, (4.56)

i.e., the energy straggling parameter Ω2
s equals the variance increase per unit path

length.

The key point in our argument is that soft interactions involve only comparatively
small energy losses. If the number of soft interactions along the path length s is statisti-
cally sufficient, it follows from the central limit theorem that the energy loss distribution
is Gaussian with mean Sss and variance Ω2

ss,

G(s;ω) ≃ 1

(2πΩ2
s (E)s)

1/2
exp

[
−(ω − Ss(E)s)

2

2Ω2
s (E)s

]
. (4.57)

This result is accurate only if 1) the average energy loss Ss(E)s is much smaller than
E (so that the DCS dσs/dW is nearly constant along the step) and 2) its standard
deviation [Ω2

s (E)s]
1/2 is much smaller than its mean Ss(E)s (otherwise there would be

a finite probability of negative energy losses), i.e.,[
Ω2

s (E)s
]1/2 ≪ Ss(E)s≪ E. (4.58)

Requirement 1) implies that the cutoff energies Wcc and Wcr for delta ray production
and photon emission have to be relatively small. The second requirement holds for path
lengths larger than scrit = Ω2

s/S
2
s .

Now, we address ourselves to the problem of simulating the energy losses due to soft
stopping interactions between two consecutive hard events. The distribution (4.57) gives
the desired result when conditions (4.58) are satisfied. In fact, the use of a Gaussian
distribution to simulate the effect of soft stopping interactions was previously proposed
by Andreo and Brahme (1984). Unfortunately, the step lengths found in our simulations
are frequently too short for conditions (4.58) to hold (i.e., s is usually less than scrit).
To get over this problem, we replace the actual energy loss distribution G(s;ω) by a
simpler “equivalent” distribution Ga(s;ω) with the same mean and variance, given by
Eqs. (4.54) and (4.56). Other details of the adopted distribution have no effect on the
simulation results, provided that the number of steps along each track is statistically
sufficient (say, larger than∼ 20). penelope generates ω from the following distributions
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• Case I. If ⟨ω⟩2 > 9 var(ω), we use a truncated Gaussian distribution (normalisation is
irrelevant here),

Ga,I(s;ω) =

 exp

[
− (ω − ⟨ω⟩)2

2(1.015387σ)2

]
if |ω − ⟨ω⟩| < 3σ,

0 otherwise,
(4.59)

where σ = [var(ω)]1/2 is the standard deviation and the numerical factor 1.015387
corrects for the effect of the truncation. Notice that the shape of this distribution is
very similar to that of the “true” energy-loss distribution, Eq. (4.57). Random sampling
from the distribution (4.59) is performed by means of the RITA method (Section 1.2.4)
with Walker’s aliasing.
• Case II. When 3 var(ω) < ⟨ω⟩2 < 9 var(ω), the energy loss is sampled from the uniform
distribution

Ga,II(s;ω) = Uω1,ω2(ω) (4.60)

with
ω1 = ⟨ω⟩ −

√
3σ, ω2 = ⟨ω⟩+

√
3σ. (4.61)

• Case III. Finally, when ⟨ω⟩2 < 3 var(ω), the adopted distribution is an admixture of a
delta and a uniform distribution,

Ga,III(s;ω) = aδ(ω) + (1− a)U0,ω0(ω) (4.62)

with

a =
3var(ω)− ⟨ω⟩2

3var(ω) + 3⟨ω⟩2
and ω0 =

3var(ω) + 3⟨ω⟩2

2⟨ω⟩
. (4.63)

It can be easily verified that these distributions have the required mean and variance.
It is also worth noticing that they yield ω values that are less than

ωmax =


⟨ω⟩+ 3σ in case I,

ω2 in case II,

ω0 in case III.

(4.64)

ωmax is normally much less than the kinetic energy E of the transported particle. Energy
losses larger than E might be generated only when the step length s has a value of the
order of the Bethe range, but this never happens in practical simulation (see below). It
is worth noticing that, after a moderately large number of steps, this simple simulation
scheme effectively yields an energy loss distribution that has the correct first and second
moments and is similar in shape to the “true” distribution. Further improvements of
the distribution of soft energy losses would mean considering higher order moments of
the single scattering inelastic DCS given by Eq. (4.49).

In spatial-dose calculations, the energy loss ω due to soft stopping interactions can be
considered to be locally deposited at a random position uniformly distributed along the
step. This procedure yields dose distributions identical to those obtained by assuming
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that the energy loss is deposited at a constant rate along the step, but is computationally
simpler. According to this, penelope simulates the combined effect of all soft elastic
collisions and soft stopping interactions that occur between a pair of successive hard
events, separated a distance s, as a single event (a hinge) in which the particle changes
its direction of movement according to the distribution Fa(s;µ), Eqs. (4.30)–(4.32), and
loses energy ω that is generated from the distribution Ga(s;ω), Eqs. (4.59)–(4.63). The
position of the hinge is sampled uniformly along the step, as in the case of purely elastic
scattering (Section 4.1.2). When the step crosses an interface (see Fig. 4.2), the artificial
event is simulated only when its position lies in the initial material; otherwise the track
is stopped at the interface and restarted in the new material. It can be easily verified
that the particle reaches the interface not only with the correct average direction of
movement, but also with the correct average energy, E − Sst.

4.2.1 Energy dependence of the soft DCS

The simulation model for soft energy losses described above is based on the assumption
that the associated energy-loss DCS does not vary with the energy of the transported
particle. To account for the energy dependence of the DCS in a rigorous way, we have
to start from the transport equation [cf. Eq. (4.48)]

∂G(s;ω)

∂s
= N

∫ ∞

0

G(s;ω −W ) σs(E0 − ω +W ;W ) dW

− N
∫ ∞

0

G(s;ω) σs(E0 − ω;W ) dW, (4.65)

where E0 denotes the kinetic energy of the particle at the beginning of the step. We de-
sire to obtain expressions for the first and second moments, ⟨ω⟩ and ⟨ω2⟩, of the multiple-
scattering energy-loss distribution, which define the artificial distribution Ga(s;ω) as de-
scribed above. Unfortunately, for a realistic DCS, these moments can only be obtained
after arduous numerical calculations and we have to rely on simple approximations that
can be easily implemented in the simulation code.

Let us consider that, at least for relatively small fractional energy losses, the DCS
varies linearly with the kinetic energy of the particle,

σs(E0 − ω;W ) ≃ σs(E0;W )−
[
∂σs(E;W )

∂E

]
E=E0

ω. (4.66)

We recall that we are considering only soft energy-loss interactions (inelastic collisions
and bremsstrahlung emission) for which the cutoff energies, Wcc and Wcr, do not vary
with E. Therefore, the upper limit of the integrals in the right hand side of Eq. (4.65)
is finite and independent of the energy of the particle. The stopping power Ss(E0 − ω)
can then be approximated as

Ss(E0 − ω) ≡ N
∫
Wσs(E0 − ω;W ) dW ≃ Ss(E0)− S ′

s(E0)ω, (4.67)



176 Chapter 4. Electron/positron transport mechanics

where the prime denotes the derivative with respect to E. Similarly, for the straggling
parameter Ω2

s (E) we have

Ω2
s (E0 − ω) ≡ N

∫
W 2σs(E0 − ω;W ) dW ≃ Ω2

s (E0)− Ω2
s
′
(E0)ω. (4.68)

From Eq. (4.65) it follows that the moments of the multiple-scattering distribution,

⟨ωn⟩ =
∫
ωnG(s;ω) dω,

satisfy the equations

d

ds
⟨ωn⟩ = N

∫
dω

∫
dW [(ω +W )nG(s;ω)σs(E0 − ω;W )]

− N
∫

dω

∫
dW ωnG(s;ω)σs(E0 − ω;W )

= N
n∑

k=1

n!

k!(n− k)!

∫
dω

∫
dW ωn−kW kG(s;ω)σs(E0 − ω;W ). (4.69)

By inserting the approximation (4.66), we obtain

d

ds
⟨ωn⟩ =

n∑
k=1

n!

k!(n− k)!
(⟨
ωn−k

⟩
Mk −

⟨
ωn−k+1

⟩
M ′

k

)
, (4.70)

where

Mk ≡ N
∫
W kσs(E0;W ) dW (4.71)

and

M ′
k ≡ N

∫
W k

[
∂σs(E;W )

∂E

]
E=E0

dW =

[
dMk

dE

]
E=E0

. (4.72)

The equations (4.70) with the boundary conditions ⟨ωn⟩s=0 = 0 can now be solved
sequentially to any order. For n = 1 we have

d

ds
⟨ω⟩ = Ss(E0)− S ′

s(E0)⟨ω⟩, (4.73)

which yields

⟨ω⟩ = Ss(E0)

S ′
s(E0)

{
1− exp [−S ′

s(E0)s]
}
. (4.74)

The equation for n = 2 reads,

d

ds
⟨ω2⟩ = Ω2

s (E0) +
[
2Ss(E0)− Ω2

s
′
(E0)

]
⟨ω⟩ − 2S ′

s(E0)⟨ω2⟩, (4.75)
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and its solution is

⟨ω2⟩ = Ω2
s (E0)

1− exp[−2S ′
s(E0)s]

2S ′
s(E0)

+ s
[
2Ss(E0)− Ω2

s
′
(E0)

]
Ss(E0)

[
1− exp[−S ′

s(E0)s]

2S ′
s(E0)

]2
. (4.76)

Hence,

var(ω) = ⟨ω2⟩ − ⟨ω⟩2

= Ω2
s (E0)

1− exp[−2S ′
s(E0)s]

2S ′
s(E0)

− 2Ω2
s
′
(E0)Ss(E0)

[
1− exp[−S ′

s(E0)s]

2S ′
s(E0)

]2
. (4.77)

Since these expressions are derived from the linear approximation, Eq. (4.66), it is
consistent to evaluate ⟨ω⟩ and var(ω) from their Taylor expansions to second order,

⟨ω⟩ = Ss(E0) s

[
1− 1

2
S ′
s(E0) s+O(s2)

]

≃ Ss(E0) s

{
1− 1

2

[
d lnSs(E)

dE

]
E=E0

Ss(E0) s

}
(4.78)

and

var(ω) = Ω2
s (E0) s−

[
1

2
Ω2

s
′
(E0)Ss(E0) + Ω2

s (E0)S
′
s(E0)

]
s2 +O(s3)

≃ Ω2
s (0) s

{
1−

[
1

2

d lnΩ2
s (E)

dE
+

d lnSs(E)

dE

]
E=E0

Ss(E0) s

}
, (4.79)

where the logarithmic derivatives have been introduced for numerical convenience. The
factors in curly brackets account for the global effect of the energy dependence of the
soft energy-loss DCS (within the linear approximation). To simulate soft energy losses,
we sample ω from the artificial distribution Ga(ω; s), Eqs. (4.59) to (4.63), with the “cor-
rect” first moment and variance, given by expressions (4.78) and (4.79). In penelope,
we use step lengths s such that the fractional energy loss along each step is relatively
small (see below) and, consequently, the energy-dependence correction is also small (i.e.,
the correcting factors are close to unity).

4.3 Combined scattering and energy loss

Up to this point, soft scattering and energy loss have been regarded as essentially in-
dependent processes, while in reality they coexist. In this Section, we consider their
interplay and set the basis of an algorithm that simulates their combined effect.
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Ours is a mixed algorithm, where hard interactions are described individually from
the associated DCSs (see Chapter 3). These interactions are 1) hard elastic collisions,
“el”, 2) hard inelastic collisions, “in”, 3) hard bremsstrahlung photon emission, “br”,
4) ionisation of inner shells, “si”, and, in the case of positrons, 5) positron annihilation,

“an”. The mean free path between consecutive hard events, λ
(h)
T , is given by[

λ
(h)
T

]−1

= Nσ(h)
T = N

[
σ
(h)
el + σ

(h)
in + σ

(h)
br + σsi (+σan)

]
≡ Σh, (4.80)

where σ
(h)
T is the total atomic cross section for hard interactions. We recall that the

inverse mean free path, Σh, gives the interaction probability per unit path length. In the
absence of soft energy-loss events, the PDF of the step length s between two successive
hard events (or from a given point in the track to the next hard event) is

p(s) = Σh exp (−Σhs) . (4.81)

In each hard event, one and only one interaction (i=“el”, “in”, “br”, “si” or “an”) occurs
with probability

pi = σ
(h)
i /σ

(h)
T . (4.82)

When soft energy-losses are considered, the PDF of the distance s travelled by the
particle to the following hard interaction is not given by Eq. (4.81), because the mean

free path λ
(h)
T varies with energy and may change appreciably along a single step. The

simplest way to cope with this problem is to limit the length of the step to make sure
that the average energy loss is much smaller than the kinetic energy E at the beginning
of the step, and consider that λ

(h)
T (E) remains essentially constant along the step. Then,

the mean energy loss in a step is given by

⟨∆E⟩ = λ
(h)
T S(E), (4.83)

where
S(E) = Sin(E) + Sbr(E) (4.84)

is the total stopping power. Since the mean free path between consecutive hard events of
any kind is shorter than the mean free path between hard elastic events, the energy loss
per step can be limited by re-defining the hard mean free path. If we wish to tolerate
average fractional energy losses ∆E/E along a step of the order of C2 (a small value,
say, 0.05), we simply take

λ
(h)
el (E) = max

{
λel(E),min

[
C1λel,1(E), C2

E

S(E)

]}
. (4.85)

This effectively limits the average energy loss per step at the expense of increasing the
frequency of hard elastic events. The parameters C1 and C2 in Eq. (4.85), to be selected
by the user, determine the computer time needed to simulate each track. Ideally, they
should not have any influence on the accuracy of the simulation results. This happens
only when their values are sufficiently small (see below).
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Figure 4.3: Elastic mean free path λel, first transport mean free path λel,1 and E/S(E) for

electrons in aluminium and lead. The solid line represents the mean free path between hard

elastic events λ
(h)
el obtained from Eq. (4.85) with C1 = C2 = 0.05.

It should be noted that C1 and C2 act on different energy domains. This is illustrated
in Fig. 4.3, where the lengths λel, λel,1 and E/S for electrons in aluminium and lead

are represented as functions of the kinetic energy. The mean free path λ
(h)
el for hard

elastic events, determined from the prescription (4.85) with C1 = C2 = 0.05 is also

plotted. For low energies, λ
(h)
el = λel and the simulation is purely detailed (µc = 0).

For intermediate energies, λ
(h)
el = C1λel,1, whereas λ

(h)
el = C2E/S(E) in the high-energy

domain. From Fig. 4.3 it is clear that increasing the value of C2 does not have any effect
on the simulation of electron tracks with initial energies that are less than ∼ 10 MeV.

4.3.1 Variation of λ
(h)
T with energy

With the definition (4.85) of the hard elastic mean free path, we only set a limit on
the average step length. However, since s is sampled from the exponential distribution,
its realisations fluctuate amply about the average value. On the other hand, the soft
energy loss ω along a step of given length s also fluctuates about the mean value ⟨ω⟩
given by Eq. (4.78). This means that the inverse mean free path Σh(E) varies along the
step in an essentially unpredictable way.

Let us consider for a moment that the CSDA is applicable (i.e., that the effect of
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soft energy straggling is negligible). In this case, there is a one-to-one correspondence
between the kinetic energy E of the electron and the travelled path length s,

s =

∫ E0

E

dE ′

Ss(E ′)
, (4.86)

where E0 is the initial energy (at s = 0) and Ss(E) is the soft stopping power, Eq. (4.46)
[we consider that no hard interactions occur along the step]. Equivalently,

ds

dE
= − 1

Ss(E)
. (4.87)

Thus, the inverse mean free path Σh can be formally considered as a function of the path
length s. The probability p(s) ds of having the first hard interaction when the particle
has travelled a length in the interval (s, s + ds) is determined by the equation [cf. Eq.
(1.109)]

p(s) = Σh(s)

∫ ∞

s

p(s′) ds′, (4.88)

with the normalisation condition, ∫ ∞

0

p(s) ds = 1. (4.89)

Instead of the path length s, it is convenient to consider the dimensionless variable

q ≡
∫ E0

E

Σh(E
′)

Ss(E ′)
dE ′ =

∫ s

0

Σh(s
′) ds′, (4.90)

which varies with energy and
dq

dE
= −Σh(E)

Ss(E)
. (4.91)

The PDF of q is

π(q) = p(s)
ds

dq
= p(s)

ds

dE

dE

dq
= p(s)

1

Σh(s)
. (4.92)

From Eq. (4.88) it follows that π(q) satisfies the equation

π(q) =

∫ ∞

q

π(q′) dq′. (4.93)

Therefore, q is distributed exponentially,

π(q) = exp(−q). (4.94)

The PDF of the step length s is obtained by inverting the transformation (4.90),

p(s) = Σh(s) exp

(
−
∫ s

0

Σh(s
′) ds′

)
. (4.95)
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It is not practical to sample s from this complicated PDF. It is much more convenient
to sample q [as − ln ξ, cf. Eq. (1.36)] and then determine s from (4.90), which can be
inverted numerically (for practical details, see Berger, 1998). Although this sampling
method effectively accounts for the energy dependence of Σs(E), it is applicable only to
simulations in the CSDA.

A more versatile algorithm for sampling the position of hard events, still within the
CSDA, is the following. We let the electron move in steps of maximum length smax, a
value specified by the user. This determines the maximum energy loss along the step,

ωmax =

∫ smax

0

Ss(s) ds. (4.96)

Let Σh,max denote an upper bound for the inverse mean free path of hard events in the
swept energy interval, i.e.,

Σh,max > max {Σh(E), E ∈ (E0 − ωmax, E0)} (4.97)

We now assume that the electron may undergo fictitious events in which the energy and
direction remain unaltered (delta interactions). The inverse mean free path of these
interactions is defined as

Σδ(E) = Σh,max − Σh(E), (4.98)

so that the inverse mean free path of the combined process (delta interactions + hard
events) equals Σh,max, a constant. Owing to the Markovian character of the processes,
the introduction of delta interactions does not influence the path-length distribution
between hard events. Therefore, the occurrence of hard events can be sampled by
means of the following simple algorithm,

(i) Sample a distance s from the exponential distribution with inverse mean free path
Σh,max, i.e., s = (− ln ξ)/Σh,max.

(ii) If s > smax, move the electron a path length smax and determine the soft energy
loss ω along this path length. Modify the electron energy2, E ← E − ω, and
assume that a delta interaction occurs at the end of the step.

(iii) If s < smax, move the electron a step of length s. Determine the energy loss ω and
update the energy, E ← E − ω. Sample a random number ξ.

(1) If ξΣh,max < Σh(E), simulate a hard interaction

(2) Otherwise, assume that the particle undergoes a delta interaction.

(i) Return to (i).

2In the description of the algorithms we use the symbol← in expressions such as “a← b” to indicate
that the value b replaces the value of a.
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It is clear that the path-length s to the first hard interaction generated with this algo-
rithm follows the PDF (4.95). The interesting peculiarity of this algorithm is that it
makes no explicit reference to the CSDA. Therefore, it can be adopted in mixed sim-
ulations with soft-energy-loss straggling, provided only that an upper bound exists for
the energy ω lost along the path length smax.
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Figure 4.4: Inverse mean free path (interaction probability per unit path length) for hard

interactions of electrons in aluminium and gold for the indicated values of the simulation

parameters. The plotted curves were calculated with Wcc = Wcr = 100 eV. Note that, by

varying the values of C1 and C2, the inverse mean free path cannot be made smaller than the

contributions from hard inelastic and radiative events.

Fortunately, the energy loss generated from the artificial distribution Ga(ω; s), Eqs.
(4.59)–(4.63), is always less than ωmax, Eq. (4.64). Indeed, in case I we use the truncated
Gaussian distribution (4.59) just to enforce this property. In our mixed simulation
we shall select a maximum step length smax, which serves to set an upper bound for
the energy that the transported electrons may lose along each step. Since the hard
inverse mean free path Σh(E) has a broad minimum (and no local maxima) in the
whole energy interval of interest (see Fig. 4.4), the maximum value of Σh within a
certain energy interval (E1, E2) occurs at one of the end points. This makes the practical
implementation of the above algorithm very easy.
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4.3.2 Scattering by atomic electrons

Most of the existing high-energy simulation codes have difficulties in accounting for the
angular deflections of the projectile due to inelastic collisions (see, e.g., Jenkins et al.,
1988). The inelastic cross section differential in the scattering angle can be calculated
approximately in terms of the incoherent scattering function (see, e.g., Mott and Massey,
1965). This was the approach followed by Fano (1954a) in order to introduce electron
scattering effects in the Molière (1948) multiple-scattering theory. However, the DCS
calculated in this way accounts for all excitations and, hence, it is not adequate for mixed
simulations, where the part of electron scattering due to hard collisions is explicitly
simulated. Moreover, the calculation of the DCS from the incoherent scattering function
involves an average over excitation energies that cannot be performed exactly; instead
an effective “minimum momentum transfer” is introduced, which must be estimated
empirically. This may cause inconsistencies for low-energy projectiles. A more consistent
approach (Baró et al., 1995) is obtained by simply computing the restricted angular
DCS, for soft collisions with W < Wcc, from our inelastic scattering model (see Section
3.2), as follows.

We recall that the recoil energy Q is given by (see Appendix A)

Q(Q+ 2mec
2) = c2(p2 + p′2 − 2pp′ cos θ), (4.99)

where p and p′ are the magnitudes of the momentum of the projectile before and after
the collision,

(cp)2 = E(E + 2mec
2) and (cp′)2 = (E −W )(E −W + 2mec

2). (4.100)

In soft distant interactions with the k-th oscillator, the angular deflection µ = (1 −
cos θ)/2 and the recoil energy Q are related through

Q(Q+ 2mec
2) = 4cp cpkµ+ (cp− cpk)2, (4.101)

where pk is the momentum of the projectile after the collision, calculated by assuming
that the energy loss equals the resonance energy Wk of the oscillator,

(cpk)
2 = (E −Wk)(E −Wk + 2mec

2). (4.102)

In the case of inner-shell excitations, Wk should be replaced by the modified resonance
energy W ′

k, Eq. (3.78) [see the comments about Eqs. (3.83) and (3.126) in Section 3.2].
The scattering DCS for soft distant interactions3, Eq. (3.81), can then be expressed in
terms of the variable µ as

dσdis,l
dµ

=
2πe4

mev2

∑
k

fk

(∫ Wcc

0

1

W
pdis(W ) dW

)

× 2mec
2

4 cp cpkµ+ (cp− cpk)2
4 cp cpk

2(Q+mec2)
, (4.103)

3Distant transverse interactions do not cause scattering.



184 Chapter 4. Electron/positron transport mechanics

with pin(W ) = δ(W −Wk) for the conduction band. Considering that Q≪ mec
2 for the

majority of soft distant collisions, we have

dσdis,l
dµ

=
2πe4

mev2

∑
k

fk

(∫ Wcc

0

1

W
pdis(W ) dW

)
1

Rk + µ
, 0 < µ < µk1, (4.104)

where

Rk =
(cp− cpk)2

4 cp cpk
(4.105)

and

µk1 = µ(Q = Qk) =
Qk(Qk + 2mec

2)− (cp− cpk)2

4cp cpk
. (4.106)

Again, in the case of inner shells the cutoff recoil energy Qk should be replaced by the
modified value Q′

k given by Eq. (3.80).

On the other hand, the DCS for soft (W < Wcc) close collisions is given by [see Eqs.
(3.86) and (3.92)]

dσ
(±)
clo

dW
=

2πe4

mev2

∑
k

fk
1

W 2
F (±)(E,W ). (4.107)

The angular deflection and the energy loss are related by (3.134), which implies that

W =
E(E + 2mec

2)2(µ− µ2)

2E(µ− µ2) + mec2
(4.108)

and
dW

dµ
=
E(E + 2mec

2)mec
22(1− 2µ)

[2E(µ− µ2) + mec2]2
. (4.109)

Therefore,

dσ
(±)
clo

dµ
=

2πe4

mev2

∑
k

fk
1

W 2
F (±)(E,W )

dW

dµ
, µk2 < µ < µk3, (4.110)

where

µk2 = µ(Q = Qk) =
Qk(Qk + 2mec

2)− (cp− cpk2)2

4cp cpk2
,

µk3 = µ(Q = Wcc) =
Wcc(Wcc + 2mec

2)− (cp− cpk3)2

4cp cpk3
, (4.111)

with

(cpk2)
2 = (E −Qk)(E −Qk + 2mec

2),

(cpk3)
2 = (E −Wcc)(E −Wcc + 2mec

2). (4.112)
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The angular DCS for soft inelastic interactions is then given by

dσ
(s)
in

dµ
=

dσdis,l
dµ

+
dσ

(±)
clo

dµ

=
2πe4

mev2

∑
k

fk

{(∫ Wcc

0

1

W
pdis(W ) dW

)
1

Rk + µ

+
1

W 2
F (±)(E,W )

dW

dµ

}
, (4.113)

where the summation extends over the oscillators with resonance energy Wk less than
Wcc (ionization energy Uk less than Wcc in the case of inner shells), and each term
contributes only for the µ-intervals indicated above. The mean free path and the first
and second transport mean free paths for soft inelastic scattering are

[
λ
(s)
in

]−1

= N
∫ µ

(s)
max

0

dσ
(s)
in

dµ
dµ, (4.114)

[
λ
(s)
in,1

]−1

= N
∫ µ

(s)
max

0

2µ
dσ

(s)
in

dµ
dµ (4.115)

and [
λ
(s)
in,2

]−1

= N
∫ µ

(s)
max

0

6(µ− µ2)
dσ

(s)
in

dµ
dµ , (4.116)

where µ
(s)
max is the maximum angular deflection in soft inelastic interactions.

In penelope, soft electronic scattering is simulated together with soft elastic scat-
tering, by means of the artificial distribution (4.30). The combined process is described
by the transport mean free paths[

λ
(s)
comb,1

]−1

=
[
λ
(s)
el,1

]−1

+
[
λ
(s)
in,1

]−1

(4.117)

and [
λ
(s)
comb,2

]−1

=
[
λ
(s)
el,2

]−1

+
[
λ
(s)
in,2

]−1

. (4.118)

Thus, to account for soft electronic scattering we only have to replace the soft elastic
transport mean free paths by those of the combined process.

4.3.3 Bielajew’s alternate random hinge

Angular deflections due to soft interactions along a step of length s are generated from
the artificial distribution (4.30) with first and second moments given by Eqs. (4.28) and

(4.29), which are determined by the transport mean free paths λ
(s)
comb,1 and λ

(s)
comb,2. To

account (at least partially) for the energy dependence of these quantities we use a trick



186 Chapter 4. Electron/positron transport mechanics

due to Alex Bielajew. The soft energy loss and angular deflection, which occur at the
hinge, are considered as independent processes and are simulated in random order. Let
E1 and E2 = E1 − ω be the energies of the particle at the beginning and at the end
of the step, respectively, and let τ be the position of the hinge (see Fig. 4.1). The soft
angular deflection is sampled from the distribution (4.30) evaluated at either E1 or E2

with respective probabilities

p(E1) =
s− τ
s

and p(E2) =
τ

s
. (4.119)

On average, this is equivalent to assuming that the transport mean free paths λ
(s)
comb,1(E)

and λ
(s)
comb,2(E) vary linearly with energy. The method is fairly accurate and computa-

tionally inexpensive provided only that the fractional energy loss along each step (which
is of the order of C2) is sufficiently small.

4.4 Generation of random tracks

Each simulated electron or positron history consists of a chronological succession of
events. These can be either hard events, artificial soft events (hinges) or other relevant
stages of the particle history (such as its initial state, the crossing of an interface or the
effective absorption after slowing down). The trajectory of the particle between a pair
of successive events is straight and will be referred to as a “segment”. We keep the term
“step” to designate the portion of a track between two hard events, which consists of
two segments and a hinge (when mixed simulation is effective).

Simulation with penelope is controlled by the constants C1 and C2 [see Eq. (4.85)]
and the cutoff energies Wcc and Wcr. Hereafter, these four quantities will be referred
to as simulation parameters. The parameter C1, which determines the mean free path
λ
(h)
el between hard elastic events, should be small enough to ensure reliable simulation

results. penelope admits values of C1 from 0 (detailed simulation) up to 0.2, which

corresponds to a mean angular deflection ⟨θ⟩ ∼ 37 deg after a step-length λ
(h)
el . The

simulation parameter C2 gives the maximum average fractional energy loss in a single
step and it is effective only at high energies. From the discussion in Section 4.3, it is
clear that C2 should also be small. penelope allows values of C2 between zero and 0.2.
The cutoff energies Wcc and Wcr mainly influence the simulated energy distributions.
The simulation speeds up by using larger cutoff energies, but if these are too large
the simulated distributions may be somewhat distorted. In practice, simulated energy
distributions are found to be quite insensitive to the adopted values of Wcc and Wcr

when these are less than the bin width used to tally the energy distributions. Thus, the
desired energy resolution determines the maximum allowed cutoff energies.

The combined effect of all soft elastic and stopping interactions in a step is sim-
ulated as a single artificial event or hinge, in which the particle changes its direction
of movement and loses energy. When Wcc is less than the lowest oscillator resonance
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energy, the simulation of inelastic collisions becomes purely detailed, i.e., inelastic col-
lisions do not contribute to the soft stopping power. On the other hand, the simulation
of bremsstrahlung emission is only possible by means of a mixed scheme, because of
the divergence of the DCS at W = 0 [see Eq. (3.144)]. To test the accuracy of mixed
algorithms, and also in studies of low-energy electron and positron transport (with, say,
E < 100 keV), it may be convenient to perform strictly detailed simulations (see be-
low). For this purpose, penelope allows the user to switch off the emission of soft
bremsstrahlung photons with energy less than 10 eV. This option is activated when the
Wcr value selected by the user is negative, in which case the program sets Wcr = 10 eV,
disregards soft bremsstrahlung events and simulates hard events (with W > 10 eV) in
a detailed way. The generation of the angular deflection in artificial events is discontin-
ued when the simulation of elastic and inelastic scattering becomes detailed (i.e., when

λ
(h)
el = λel, Wcc = 0).

As indicated above, the length of the steps generated by penelope is always less than
smax, an upper bound selected by the user. The simulation code limits the step length
by placing delta interactions along the particle track. These are fictitious interactions
that do not alter the state of the particle. Their only effect is to interrupt the sequence
of simulation operations, which requires altering the values of inner control variables to
permit resuming the simulation in a consistent way. The use of bounded step lengths
is necessary to account for the energy dependence of the DCSs for soft interactions.
However, this is not the only reason for limiting the step length. Since energy losses
and deflections at the hinges are sampled from artificial distributions, the number of
hinges per primary track must be “statistically sufficient”, i.e., larger than ∼ 10, to
smear off the unphysical details of the adopted artificial distributions. Therefore, when
the particle is in a thin region, it is advisable to use a small value of smax to make
sure that the number of hinges within the material is sufficient. In penelope, the
parameter smax can be varied freely during the course of the simulation of a single track.
To ensure internal consistency, smax is required to be less than 4λ

(h)
T . When the user-

selected value is larger, the code sets smax = 4λ
(h)
T ; in this case, about 2 per cent of the

sampled steps have lengths that exceed smax and are terminated by a delta interaction.
This slows down the simulation a little (∼5%), but ensures that the energy dependence

of λ
(h)
T is correctly accounted for. In order to eliminate an artefact in the depth-dose

distribution from parallel electron/positron beams near the entrance interface, instead
of the smax value set by the user, penelope uses a random maximum step length [from a
uniform distribution in the interval (0.5, 1.0)×smax] that averages to 0.75 times the user’s
value. Incidentally, limiting the step length is also necessary to perform simulation of
electron/positron transport in external static electromagnetic fields (see Appendix D).

The state of the particle immediately after an event is defined by its position coor-
dinates r, energy E and direction cosines of its direction of movement d̂, as seen from
the laboratory reference frame. It is assumed that particles are locally absorbed when
their energy becomes smaller than a preselected value Eabs; positrons are considered to
annihilate after absorption. The practical generation of random electron and positron
tracks in arbitrary material structures, which may consist of several homogeneous re-
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gions of different compositions separated by well-defined surfaces (interfaces), proceeds
as follows:

(i) Set the initial position r, kinetic energy E and direction of movement d̂ of the
primary particle.

(ii) Determine the maximum allowed soft energy loss ωmax along a step and set the
value of inverse mean free path for hard events (see Section 4.3). The results
depend on the adopted smax, which can vary along the simulated track.

(iii) Sample the distance s to be travelled to the following hard event (or delta inter-
action) as

s = − ln ξ/Σh,max. (4.120)

If s > smax, truncate the step by setting s = smax.

(iv) Generate the length τ = sξ of the step to the next hinge. Let the particle advance
this distance in the direction d̂: r← r+ τ d̂.

(v) If the track has crossed an interface:
Stop it at the crossing point (i.e., redefine r as equal to the position of this point
and set τ equal to the travelled distance).
Go to (ii) to continue the simulation in the new material, or go to (xi) if the new
material is the outer vacuum.

(vi) Simulate the energy loss and deflection at the hinge. This step consists of two
actions:
a) Sample the polar angular deflection µ = (1 − cos θ)/2 from the distribution
Fa(s;µ), Eq. (4.30), corresponding to the current energy E. Sample the azimuthal
scattering angle as ϕ = 2πξ. Perform a rotation R(θ, ϕ) of the vector d̂ according
to the sampled polar and azimuthal angular deflections (as described in Section
1.4.4) to obtain the new direction: d̂←R(θ, ϕ)d̂.
b) Sample the energy loss ω due to soft stopping interactions along the step s
from the distribution Ga(s;ω), Eqs. (4.59)–(4.63), and reduce the kinetic energy:
E ← E − ω.
These two actions are performed in random order to account for the energy de-
pendence of the soft transport mean free paths (see Section 4.3.3).
Go to (xi) if E < Eabs.

(vii) Let the particle advance the distance s− τ in the direction d̂: r← r+ (s− τ)d̂.

(viii) Do as in (v).

(ix) If in step (iii) the step length was truncated, i.e., s = smax, simulate a delta
interaction.
Go to (ii).
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(x) Simulate the hard event:
Sample the kind of interaction according to the point probabilities,

pel =
Nσ(h)

el

Σh,max

, pin =
Nσ(h)

in

Σh,max

, pbr =
Nσ(h)

br

Σh,max

, psi =
Nσsi
Σh,max

,

pδ =
Σδ

Σh,max

, and pan =
Nσan
Σh,max

in the case of positrons. (4.121)

If the event is a delta interaction, return to (ii).
If the event is an inner-shell ionisation, sample the active shell, simulate the re-
laxation cascade of the residual ion and return to (ii). Notice that in this case the
state of the projectile remains unaltered.
Sample the polar scattering angle θ and the energy lossW from the corresponding
DCS. Generate the azimuthal scattering angle as ϕ = 2πξ. Perform a rotation
R(θ, ϕ) of the vector d̂ to obtain the new direction: d̂←R(θ, ϕ)d̂.
Reduce the kinetic energy of the particle: E ← E −W .
If, as a result of the interaction, a secondary particle is emitted in a direction d̂s,
with energy Es > Eabs, store its initial state (r, Es, d̂s).
Go to (ii) if E > Eabs.

(xi) Simulate the tracks of the secondary electrons and photons produced by the pri-
mary particle (or by other secondaries previously followed) before starting a new
primary track.

4.4.1 Stability of the simulation algorithm

The present simulation scheme for electrons/positrons is relatively stable under varia-
tions of the simulation parameters, due mostly to the effectiveness of the energy-loss
corrections. This implies that the simulation parameters can be varied amply without
practically altering the accuracy of the results. For the important case of low-energy
electrons/positrons (with energies of the order of 500 keV or less), the relevant param-
eters are Eabs, C1, Wcc and smax, because C2 is not effective (see Fig. 4.3) and radiative
emission is unimportant (hard bremsstrahlung events occur very seldom and, therefore,
Wcr has no influence). The value of the parameter smax is important to ensure the relia-
bility of the results; a safe recipe is to set smax equal to one tenth of the “expected track
length” or less. Since the values of Eabs and Wcc are dictated by the characteristics of
the considered experiment, it follows that the only “critical” parameter, with a direct
influence on the speed of the simulation, is C1. As mentioned above, penelope accepts
values of C1 ranging from 0 (detailed simulation of elastic scattering) to 0.2.

In practice, the value of C1 does not influence the accuracy of the simulation results
when the other parameters are given “safe” values. This is illustrated in Fig. 4.5, which
displays results from simulations of 500 keV electrons in aluminium (infinite medium).
Electrons started off from the origin of coordinates moving in the direction of the z axis.



190 Chapter 4. Electron/positron transport mechanics

-0.02 -0.01 0.00 0.01 0.02
z   (cm)

10−2

0.1 

1 

10 

102

p
       (z

 
) 
 (
1/
cm
)

e−,  E = 500 keV
s = 200 µm in Al

mixed; C1 = C2 = 0.2, smax = 0.004 cm

detailed; C1 = C2 = 0=

0 30 60 90 120 150 180
θ   (deg)

10−5

10−4

10−3

10−2

p
       (θ
  )
  
(1
/d
eg
)

e−,  E = 500 keV
s = 200 µm in Al

mixed; C1 = C2 = 0.2, smax = 0.004 cm

detailed; C1 = C2 = 0=

10−5

10−4

10−3

10−2

0.1 

p
       (E
  )
  
(1
/k
eV
)

100 200 300 400

E   (keV)

e−,  E = 500 keV
s = 200 µm in Al

mixed; C1 = C2 = 0.2, smax = 0.004 cm

detailed; C1 = C2 = 0=

-0.02 -0.01 0.00 0.01 0.02
z   (cm)

0

1

2

3

4

5

6

7

D
       (z
  ) 
 (
M
eV
/c
m
)

e−,  E = 500 keV
s = 200 µm in Al

×50

mixed; C1 = C2 = 0.2, smax = 0.004 cm

detailed; C1 = C2 = 0=

Figure 4.5: Results from the simulations of 500 keV electrons in aluminium described in the

text. Crosses, detailed simulation; continuous curves, mixed simulation. p(z) is the PDF of

the z-coordinate of the final electron position, after travelling the prescribed 200 µm. p(θ) and

p(E) are the PDFs of the direction of motion (specified by the polar angle θ) and the kinetic

energy E of the electrons at the end of the simulated tracks. The function D(z) represents

the “depth-dose” function, i.e., the average energy deposited in the material per unit length

along the z-direction (the residual energy at the end of the track is not included in the dose).
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During the generation of each electron track, we scored the energy deposited at different
“depths” (z-coordinate) to get the “depth-dose” distribution. The simulation of a track
was discontinued when the electron had travelled a path length s equal to 200 µm,
and the PDFs of the final electron energy and position coordinates were tallied. Notice
that no secondary radiation was followed and that the kinetic energy of the electrons at
s = 200 µm was not included in the dose distribution (i.e., the calculated “dose” does
not represent the quantity that would be obtained from a measurement).

The results displayed in Fig. 4.5 are from equivalent detailed and mixed simulations
with Eabs = 10 keV and smax = 40 µm. The detailed simulation was performed by
setting C1 = C2 = 0, Wcc = 0 and Wcr = −100. Notice that when the user enters a
negative value of the cutoff energy loss for radiative events, penelope setsWcr = 10 eV,
disregards the emission of soft bremsstrahlung photons with W < 10 eV (which rep-
resents a negligible fraction of the stopping power) and simulates hard bremsstrahlung
events as usually, that is, in a detailed way. The mixed simulation results shown in Fig.
4.5 were generated with C1 = C2 = 0.2, Wcc = 1 keV and Wcr = −100 (i.e., radiative
events were described as in the detailed simulation).

In the detailed simulation, about 10 million electron tracks were generated by running
a modified version of the code pencyl.f (see Section 6.2.1) on a 2.00 GHz Intel Pentium
M computer for about 13 hours, which corresponds to a simulation speed of 211 tracks/s.
The average numbers of elastic, inelastic and bremsstrahlung interactions that had to
be simulated to produce each detailed track were 1297, 1171 and 0.03, respectively. On
the same computer, the mixed simulation generated 100 million tracks in about 1.8
hours, which represents a simulation speed of 15,640 tracks/s, 74 times faster than that
of detailed simulation. The reason for this higher speed is that, on average, there were
only 2.4 hard elastic collisions, 6.3 hard inelastic collisions, 0.03 hard bremsstrahlung
events and 3.2 delta interactions along each track. From Fig. 4.5 we conclude that, in
this case, the mixed algorithm is not only stable under variations of the parameter C1

over the accepted range (0,0.2), but also provides results that are essentially equivalent
to those from the detailed simulation. It is worth recalling that detailed simulation is
nominally exact, the results are affected only by statistical uncertainties.

In general, our mixed simulation algorithm yields very accurate results (i.e., agree-
ing with those from detailed simulation) for electron and positron transport in infinite
media, but not necessarily for limited geometries. The existence of interfaces poses
considerable problems to condensed (class I) simulation, for which a satisfactory solu-
tion/approximation is not yet known. The present mixed (class II) algorithm handles
interface crossing in a more accurate, but still approximate way. The rule to ensure
accuracy for transport in the vicinity of interfaces is to use a small-enough value of
smax.
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Chapter 5

Radiation fields and dosimetry

Monte Carlo simulation finds important applications in radiation dosimetry and metrol-
ogy, which may require calculations of local and global characteristics of radiation fields
and of the energy imparted by radiation to matter. In this Chapter we present basic
concepts and quantities of common use in radiation dosimetry, and we consider their
calculation by Monte Carlo methods. In previous chapters we have introduced various
macroscopic quantities (inverse mean free paths, stopping powers, energy straggling pa-
rameters, . . . ) that are defined as integrals of the interaction cross sections. Here the
emphasis is on transport characteristics, that is, on quantities that involve the emission
and transport of secondary radiations released in the interactions of energetic particles.

We essentially follow the terminology of the ICRU Report 60 (1998) on fundamen-
tal quantities and units for ionizing radiation. However, the sequence of definitions
of radiometric quantities presented here is opposite to the one adopted in the ICRU
report. We start from the microscopic properties of the radiation field and the differ-
ential cross sections of the various interaction mechanisms, and we obtain macroscopic
(average) quantities by integration. The discrete nature of matter and radiation fields
(considered respectively as ensembles of individual atoms and energetic particles) is thus
incorporated in a natural way.

Monte Carlo simulation is also based on a microscopic picture of radiation and mat-
ter. Simulation provides the most detailed description of radiation fields and of the
spatial distributions of absorbed dose in material structures. It can be employed for
calculating intermediate dosimetric quantities (such as linear energy absorption, photon
mass energy-absorption coefficients, and linear energy transfers of charged particles)
for different energies and materials. Programming a Monte Carlo calculation of these
quantities helps to uncover the assumptions, and subtleties, underlying their definitions.
Simulation also allows avoiding approximations, such as the continuous-slowing down
approximation for charged particles, that are frequently adopted in conventional calcu-
lations (see, e.g., Kellerer et al., 1992). Conversely, the so-called track-length estimators
utilize macroscopic quantities for improving the efficiency of Monte Carlo calculations
of absorbed dose and secondary particle emission (Sections 5.2.3 and 6.6.1).
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5.1 Radiation fields

A radiation field is an ensemble of energetic particles of various types (photons, electrons,
positrons, protons, neutrons, alphas, etc.). Each particle moves in a direction specified
by the unit vector Ω with radiant energy E, which is the energy of the particle excluding
its rest energy. That is, for massive particles, E is the kinetic energy and, in the case
of photons, E is simply the energy. In general, particles can be in different “inner”
states: photons can have various polarisations, electrons and positrons can be in different
spin-polarisation states, etc. In the following we shall assume that radiation fields are
unpolarised and, consequently, that all definitions and equations include an implicit
average over possible inner states of the particles. Because most radiometric quantities
are additive, definitions will be given for radiation fields with particles of one type only.
For mixed fields, with particles of different types, the definitions contain an implicit
summation over the different types of particles.

A complete description of the radiation field is provided by the particle density,
n(t, r, E,Ω). The quantity n(t, r, E,Ω) dr dE dΩ is the number of particles in the vol-
ume element dr at r that move with directions within the solid angle element dΩ about
the direction Ω and have energies in the interval (E,E + dE) at time t. A classical
particle of mass M > 0 that moves freely with velocity v1 is described by the particle
density

n(t, r, E,Ω) = δ(r− r01 − v1t) δ(Ω− v̂1) δ(E − E1), (5.1)

where r01 is the initial position vector (at t = 0), E1 is the kinetic energy of the particle,
and δ(x) is the Dirac delta distribution (see, e.g., Schiff, 1968). We recall that

δ(r) = δ(x) δ(y) δ(z) and δ(Ω) = δ(cos θ) δ(ϕ), (5.2)

where θ and ϕ are the polar and azimuthal angles of the unit vector Ω.

In the case of classical particles, their instantaneous positions and velocities can be
determined with arbitrarily high accuracy. The evolution of radiation fields, however,
is governed by the laws of quantum mechanics, which imply that particles cannot be
assigned definite values of position andmomentum. Indeed, for non-relativistic particles,
results from measurements of these two quantities yield random values with standard
deviations satisfying Heisenberg’s uncertainty relation,

∆ri∆pi ≥
~
2

(i = x, y, z). (5.3)

Thus, a particle with well-defined momentum has a poorly defined position. Interac-
tions with the atoms of the medium can be regarded as position measurements (Schiff,
1968), which determine the position vector r of the particle with an uncertainty ∆r1 of
the order of the atomic radius. The Thomas-Fermi model (see e.g., Condon and Od-
abasi, 1980) leads to the approximate expression Z−1/3a0 for the atomic radius, where
a0 is the Bohr radius. After the interaction, the components of the linear momentum
have uncertainties ∆pi ∼ ~/(2∆ri) = ~Z1/3/(2a0). In transport studies, r and p are
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considered as independent variables, that is, quantum correlations between position and
momentum are disregarded. This simplification is acceptable only when the momentum
of the particle is much larger than its uncertainty, i.e., pi ≫ ∆pi. Hence, the trajectory
picture underlying transport calculations and Monte Carlo simulation is valid for elec-
trons and positrons with kinetic energies much higher than (∆pi)

2/(2me) ∼ 0.4Z2/3Eh,
where Eh = 27.2114 eV is the Hartree energy.

5.1.1 Current density and flux density

The angular current density of a radiation field is defined by

j(t, r, E,Ω) ≡ Ω v(E)n(t, r, E,Ω), (5.4)

where v(E) is the speed of particles with energy E. To clarify the physical meaning
of the angular current density, we recall that an oriented surface element of area dA
with normal unit vector n̂ is represented by the vector dA = n̂ dA. Let us consider a
surface element dA at the position r and a particle that at the time t is at the point r1
moving with velocity v1 = v1Ω1; in a time interval dt, the particle will cross the surface
element dA at r only if the point r1 is within the space region swept by the surface
dA when it is translated a distance −v1dt (see Fig. 5.1); the volume of this region is
|v1 ·dA|dt = |n̂·Ω1| v1dt dA. Hence, the quantity

dN ≡ j(t, r, E,Ω) · dA dE dΩ dt = v(E)n(t, r, E,Ω) (n̂·Ω) dA dE dΩ dt (5.5)

is the net number of particles in the ranges dE and dΩ that cross the surface element
dA placed at r during the time interval dt. Note that particles moving in directions Ω
such that n̂·Ω > 0 (< 0) give positive (negative) contributions.

In most practical cases, the radiation field is present only during a finite time interval,
i.e., n(t, r, E,Ω) = 0 when t → ±∞, and one is usually interested in total quantities,
integrated over time. Let us consider a finite volume V limited by a closed surface S;
an element of this surface is represented by a vector dA ≡ n̂ dA where n̂ is the outward
normal to the surface. The total number of particles that enter the volume V through
its limiting surface is

Nin(S) = −
∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt

∫
S
dA·j(t, r, E,Ω)Θ(−n̂·Ω)

= −
∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt

∫
S
dA (n̂·Ω)v(E)n(t, r, E,Ω)Θ(−n̂·Ω), (5.6)

where we have introduced the unit step function Θ(x) (= 1 if x > 0, = 0 otherwise)
to count only particles that enter the volume (i.e., with directions Ω such that n̂·Ω <
0). If we remove this step function, particles that enter and leave the volume would
not contribute, and the integral would give the net number of particles absorbed in V
(i.e., the number of entering particles that are absorbed minus the number of particles
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Figure 5.1: Surfaces in a radiation field. a) A surface element dA in a field of particles

moving with the same velocity v1. In a time interval dt the surface element is crossed by the

particles that initially are within the volume that would be swept by the surface if it were

moving with velocity −v1. b) Schematic diagram of the coordinate system used to calculate

the integral of Eq. (5.7) over the surface of the sphere.

generated in the volume). When S is a sphere of small radius rs, the surface integral in
(5.6) can be easily evaluated by using spherical polar coordinates with the origin at the
centre of the sphere and the polar axis along the direction of Ω (see Fig. 5.1), so that
n̂·Ω = cos θ. We have

−
∫
S
dA (n̂·Ω)n(t, r, E,Ω)Θ(−n̂·Ω) = 2πr2s

∫ π

π/2

dθ sin θ (− cos θ)n(t, r, E,Ω)

= πr2s n(t, r, E,Ω). (5.7)

Hence

Nin(sphere) = πr2s

∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt v(E)n(t, r, E,Ω), (5.8)

where πr2s is the cross-sectional area of the sphere.

Analogously, the total radiant energy that enters the volume V through its surface
is given by

Rin(S) = −
∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt

∫
S
dA·j(t, r, E,Ω)EΘ(−n̂·Ω). (5.9)

In the case of a small sphere with radius rs,

Rin(sphere) = πr2s

∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt v(E)n(t, r, E,Ω)E. (5.10)

The angular current density is awkward to handle because of its vector nature. A
more convenient quantity is the angular flux density, which is defined as the magnitude
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of the angular current density,

Φ(t, r, E,Ω) ≡ v(E)n(t, r, E,Ω). (5.11)

Notice that Φ(t, r, E,Ω) dE dΩ dA dt is the number of particles in the ranges dE and
dΩ that in the time interval dt cross a small surface element dA placed at r and
perpendicular to Ω, i.e., dA = Ω dA. The SI unit of angular flux density is (J·m2·s)−1.
The integral of the angular flux density over directions is the flux density,

Φ(t, r, E) ≡
∫

dΩΦ(t, r, E,Ω). (5.12)

That is, Φ(t, r, E) dA dE dt gives the number of particles with energies in (E,E + dE)
that cross a small surface of area dA, placed at r and perpendicular to the direction
of motion of each particle, during the time interval dt. Also, according to Eq. (5.8),
Φ(t, r, E) dA dE dt is the number of particles incident on a small sphere of cross-sectional
area dA, centred at r, with energies in (E,E + dE) during the time dt.

5.1.2 Radiometric quantities

The angular flux density, Φ(t, r, E,Ω), and the angular current density, j(t, r, E,Ω) =
ΩΦ(t, r, E,Ω), provide the most detailed description of a radiation field. Other ra-
diometric quantities can be expressed as integrals of these fundamental functions over
appropriate ranges of their arguments. As mentioned above, we follow the terminology
of the ICRU Report 60 (1998) for radiometric quantities. However, we adopt a more
explicit notation, where the dependence of a quantity on the variables t, r, E, and Ω
(when applicable) is indicated in the list of arguments.

In the ICRU Report 60, the angular flux density, (5.11), is denoted by Φ̇Ω,E and is
called the distribution of the scalar particle radiance with respect to energy. The quantity

Ψ(t, r, E,Ω) ≡ EΦ(t, r, E,Ω) (5.13)

[Ψ̇Ω,E in the ICRU notation] is the distribution of the scalar energy radiance with respect
to energy. The ICRU Report 60 also considers vector quantities, which are expressed
as the product of a scalar function and the direction vector Ω. Thus, from the scalar
quantities (5.11) and (5.13) we can define the distribution of the vector particle radiance
with respect to energy,

Ω Φ(t, r, E,Ω) = j(t, r, E,Ω), (5.14)

and the distribution of the vector energy radiance with respect to energy,

ΩΨ(t, r, E,Ω) = ΩEΦ(t, r, E,Ω). (5.15)

Although vector quantities are useful in transport theory, they are of limited interest
in radiation dosimetry because most radiation effects are independent of the particle
direction.
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The fluence Φ(r) at the point r is defined as

Φ(r) ≡ dNin

dA
, (5.16)

where dNin is the total number of particles incident on a small sphere S of cross-sectional
area dA, centred at r. The unit of fluence in the SI is m−2. Equation (5.8) implies that

Φ(r) =

∫ ∞

−∞
dt

∫ ∞

0

dE

∫
dΩΦ(t, r, E,Ω)

=

∫ ∞

−∞
dt

∫ ∞

0

dE

∫
dΩ v(E)n(t, r, E,Ω). (5.17)

The average fluence in a finite volume V is

Φ ≡ 1

V

∫
V
drΦ(r). (5.18)

That is,

Φ =
1

V

∫
V
dr

∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt v(E)n(t, r, E,Ω). (5.19)

To reveal the physical significance of Φ, we consider a field of free, non-interacting
classical particles with density [cf. Eq. (5.1)]

n(t, r, E,Ω) =
∑
i

δ(r− r0i − vit) δ(Ω− v̂i) δ(E − Ei), (5.20)

where r0i , vi and Ei are, respectively, the initial position vector (at t = 0), the velocity
and the energy of the i-th particle. The average fluence in a volume V is

Φ =
1

V

∫
V
dr

∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt v(E)

∑
i

δ(r− r0i − vit) δ(Ω− v̂i) δ(E − Ei)

=
1

V
∑
i

∫
V
dr

∫ ∞

−∞
dt vi δ(r− r0i + vit) . (5.21)

The integral over r is now trivial: the delta function δ(r− r0i + vit) simply implies that
a particle contributes only when its trajectory intersects the volume V . Moreover, the
product dt vi is the path length ds that particle i travels within the volume V during the
time dt. Hence,

Φ =
1

V
∑
i

(path length of particle i in V). (5.22)

That is, the average fluence gives the total path length of particles per unit volume. It
has dimensions of (surface)−1 and is expressed in m−2 or a multiple of it. The equality
(5.22) is valid also for real radiation fields, provided only that particles follow classical
trajectories, ri(t) = r0i + vi t, between consecutive interactions. Expression (5.22) can
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be used to estimate the average fluence in Monte Carlo simulations. Normally, the
efficiency of the simulation decreases when the detector volume V is reduced, because
less and less particles contribute to the fluence score. That is, Monte Carlo codes are
only able to provide average fluences in finite volumes.

The energy fluence is defined by

Ψ(r) ≡
∫ ∞

−∞
dt

∫ ∞

0

dE

∫
dΩE Φ(t, r, E,Ω)

=

∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt E v(E)n(t, r, E,Ω). (5.23)

Note that

Ψ(r) =
dRin

dA
, (5.24)

where dRin is the total radiant energy of particles incident on a small sphere of cross-
sectional area dA, centred at r. The average energy fluence in a finite volume V is

Ψ ≡ 1

V

∫
V
drΨ(r). (5.25)

That is,

Ψ =
1

V

∫
V
dr

∫ ∞

0

dE

∫
dΩ

∫ ∞

−∞
dt E v(E)n(t, r, E,Ω). (5.26)

A derivation parallel to that of Eq. (5.22) leads to

Ψ =
1

V
∑
ik

Eik × (path length of particle i with energy Eik in V), (5.27)

where the subscript k denotes the different energies acquired by a particle along its
trajectory.

The fluence rate, Φ(t, r), and the energy-fluence rate Ψ(t, r) are defined as

Φ(t, r) ≡
∫

dΩ

∫ ∞

0

dE Φ(t, r, E,Ω) =

∫
dΩ

∫ ∞

0

dE v(E)n(t, r, E,Ω) , (5.28)

and

Ψ(t, r) ≡
∫

dΩ

∫ ∞

0

dEΨ(t, r, E,Ω) =

∫
dΩ

∫ ∞

0

dE E v(E)n(t, r, E,Ω), (5.29)

respectively. The physical significance of these quantities is made clear by considering
a small sphere of cross-sectional area dA centred at r. Then, Φ(t, r) dA and Ψ(t, r) dA
are, respectively, the number of particles and the radiant energy incident on the sphere
per unit time.

For a monoenergetic radiation field composed of particles with radiant energy E0,

n(t, r, E,Ω) = n(t, r,Ω) δ(E − E0), (5.30)
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the fluence rate and the energy-fluence rate are, respectively,

Φ(t, r) = v(E0)n(t, r) and Ψ(t, r) = E0 v(E0)n(t, r) , (5.31)

where

n(t, r) =

∫
dΩn(t, r,Ω) (5.32)

is the particle number density (i.e., the number of particles per unit volume).

The particle radiance Φ(t, r,Ω) is defined by

Φ(t, r,Ω) ≡
∫ ∞

0

dE Φ(t, r, E,Ω) =

∫ ∞

0

dE v(E)n(t, r, E,Ω), (5.33)

and the energy radiance is

Ψ(t, r,Ω) ≡
∫ ∞

0

dEΨ(t, r, E,Ω) =

∫ ∞

0

dE E v(E)n(t, r, E,Ω). (5.34)

The quantities Φ(t, r,Ω) dA and Ψ(t, r,Ω) dA are, respectively, the number of particles
and the radiant energy that enter a small sphere of cross sectional area dA per unit time
and per unit solid angle in the direction Ω.

The distribution of fluence with respect to energy is defined as

Φ(r, E) ≡
∫ ∞

−∞
dt

∫
dΩΦ(t, r, E,Ω) =

∫ ∞

−∞
dt

∫
dΩ v(E)n(t, r, E,Ω), (5.35)

and the distribution of energy fluence with respect to energy is

Ψ(r, E) ≡
∫ ∞

−∞
dt

∫
dΩΨ(t, r, E,Ω) =

∫ ∞

−∞
dt

∫
dΩE v(E)n(t, r, E,Ω) . (5.36)

The quantities Φ(r, E) dE dA and Ψ(r, E) dE dA are, respectively, the number of par-
ticles and the radiant energy that enter a small sphere of cross sectional area dA with
energies in the interval (E,E + dE).

The distribution of fluence with respect to energy Φ(r, E) is used in dosimetry to
calculate important quantities such as the absorbed dose and the kerma (see below).
In a Monte Carlo simulation we can only determine the average distribution of fluence
with respect to energy in a finite volume V ,

Φ(E) ≡ 1

V

∫
V
drΦ(r, E) =

1

V

∫
V
dr

∫ ∞

−∞
dt

∫
dΩ v(E)n(t, r, E,Ω). (5.37)

In the limit of small volumes, Φ(E) reduces to Φ(r, E). Since Φ(E) is a function of
the continuous variable E, it is generated as a histogram (see Section 1.5). Arguments
similar to those employed in the derivation of Eq. (5.22) show that

Φ(E)∆E ≃
∫ E+∆E

E

Φ(E ′) dE ′ =
1

V
∑
i

 path length of particle i while it is

inside V and its radiant energy Ei

is in the interval (E,E +∆E)

 .

(5.38)
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Therefore, Φ(E)∆E is the total path length per unit volume of field particles having
radiant energies in the interval (E,E +∆E).

For intense fields, the fluence, Φ(r), and the distribution of fluence with respect to
energy, Φ(r, E), are continuous functions of their arguments. In this case,

lim
V→0

Φ = Φ(r) , (5.39)

and
lim
V→0

Φ(E)∆E = Φ(r, E)∆E , (5.40)

where r is the position vector of a point in the small volume V .
The flux NS(t) of particles across a surface S is defined as the net number of particles

that cross the surface per unit time,

NS(t) ≡
∫ ∞

0

dE

∫
dΩ

∫
S
dA (n̂·Ω)Φ(t, r, E,Ω)

=

∫ ∞

0

dE

∫
dΩ

∫
S
dA (n̂·Ω)v(E)n(t, r, E,Ω), (5.41)

where n̂ is the unit vector normal to the surface. The energy flux Rt(S) is the net
radiant energy that flows across the surface per unit time,

RS(t) ≡
∫ ∞

0

dE

∫
dΩ

∫
S
dA (n̂·Ω)E v(E)n(t, r, E,Ω). (5.42)

The number of particles and the radiant energy that cross the surface during the time
interval (t1, t2) are

NS =

∫ t2

t1

dtNS(t) and RS =

∫ t2

t1

dt RS(t), (5.43)

respectively.

5.2 Monte Carlo simulation and dosimetry

The fundamental quantity in radiation dosimetry is the absorbed dose, D(r), which is
defined as the mean energy absorbed (i.e., deposited into matter) per unit mass at r
(ICRU Report 60). Considering a small volume element, dr around the point r and the
average energy, dε, absorbed by the matter in dr, we have

D(r) ≡ dε

dm
=

1

ρ(r)

dε

dr
, (5.44)

where dm is the mass contained in dr, and ρ(r) = dm/dr is the mass density. In the SI,
the special name for the unit of absorbed dose is gray, 1 Gy = 1 J/kg. When radiant
energies of particles are given in eV, absorbed doses are frequently expressed in eV/g,

1 eV/g = 1.602 176 × 10−16 Gy , (5.45)
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or in some multiple or submultiple, such as keV/µg. Although D(r) is defined as a
function of position, measurements are usually performed with dosimeters having finite
sensitive volumes, V. After appropriate transformations, the output of these devices
gives the absorbed dose in the volume V ,

D =
1

M

∫
V
D(r) ρ(r) dr =

ε

M
, (5.46)

where

M =

∫
V
ρ(r) dr (5.47)

is the total mass contained in V , and ε is the mean energy absorbed by that mass.

Because of the discrete nature of radiation fields and the randomness of interactions,
the concept of absorbed dose is useful only when the number of interactions within the
sensitive volume of the dosimeter, dr or V , is “statistically sufficient”, i.e., so large that
the mean energy absorbed, ε, is well defined. In the case of weak fields (with small
fluences) or small sensitive volumes, repeated measurements of the energy ϵ absorbed
in a given volume under identical conditions may give widely fluctuating results. Under
these conditions, it is more appropriate to consider the specific energy absorbed 1 by the
matter in a volume containing a total mass M ,

z ≡ ε

M
. (5.48)

Note that z is a stochastic quantity, and is meaningful even when the number of inter-
actions with the mass M is small. Evidently, D = z and, in the limit of small volumes,
the absorbed dose D(z) is equal to the mean specific energy absorbed at r.

We have already mentioned that Monte Carlo simulation offers the most direct
method for computing the absorbed dose in finite volumes. In Monte Carlo calcula-
tions the tracking of particles P is discontinued when their radiant energy E falls below
the adopted absorption energy Eabs,P . The absorption energies must be finite, because
the number of particles in the shower induced by a primary particle, and the simulation
time spent to generate a complete shower (primary particle and all its descendants),
increase without limit when Eabs,P decreases. Normally, the spatial distribution of ab-
sorbed dose is tallied using volume bins with a certain “thickness” ℓb (e.g., the edge
length for cubic voxels). The absorption energy, Eabs,P , should be selected so that par-
ticles P with radiant energy equal to Eabs,P deposit the totality of their energy within
distances that are much less than ℓb. Thus, particles with energy less than Eabs,P are
absorbed inside the same bin where they are released, and the distortion of local ab-
sorbed dose caused by the finite values of the absorption energies is expected to be small.

1With the ICRU conventions, the term specific indicates per unit mass, and the quantity z is named
the specific energy imparted. We prefer to call it “specific energy absorbed”, which emphasizes the fact
that it excludes the energy that leaves the sensitive volume V of the dosimeter in the form of secondary
radiations. For instance, consider the photoelectric absorption of a photon of energy E followed by
the emission of a characteristic x ray of energy Ex from the target atom. When that x ray leaves the
volume V, the energy imparted is E, while the energy absorbed is only E − Ex.
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That is, in Monte Carlo calculations we may consider that particles with energies below
Eabs,P are absorbed on the spot.

The central problem in classical dosimetry is to obtain the absorbed dose D(r) from
knowledge of the distributions of fluence with respect to energy, ΦP (r, E), of the particles
P present in the radiation field. The fluence distribution can be regarded as a surrogate
of dose; it provides a complete description of the radiation field, from which we can
calculate the absorbed dose in any material medium. It is employed, for instance, to
transform the reading of an ionization chamber into the absorbed dose in the medium
in the absence of the chamber.

Nowadays, Monte Carlo simulation allows tallying the absorbed dose in finite volume
bins directly from the simulated particle histories at practically no cost; a result of
this easiness is that not all Monte Carlo users are familiar with the approximations
underlying the practical transformation from the fluence distribution to absorbed dose.
In the following we introduce intermediate quantities for the calculation of the absorbed
dose from the distribution of fluence with respect to energy, and describe the calculation
of these quantities by means of Monte Carlo simulation. These quantities are also useful
in some Monte Carlo simulations where the calculation of the fluence is more efficient
than the straight evaluation of the absorbed dose (see Section 5.2.3).

For simplicity, we assume that the radiation field contains only photons, electrons
and positrons, which will be indicated by the respective labels P = −, γ, and +. We
also consider that the only relevant interactions are those included in the penelope
simulation algorithm. The formulation may be readily generalized to other radiations
(neutrons, protons, etc.) and to include other interaction mechanisms (e.g., photonu-
clear interactions).

Usually, the distribution of fluence with respect to energy is known only for particles
P with radiant energies higher than a certain cutoff energy, ∆P . In calculations of the
absorbed dose, particles with sub-cutoff energies (i.e., with E < ∆P ) are assumed to
be absorbed on the spot. We point out that, when the fluence distribution is generated
by Monte Carlo simulation, the cutoffs ∆P do not need to be equal to the absorption
energies Eabs,P adopted in the simulation (see below). Let Φsr,P (r, E) denote the fluence
distribution with respect to energy of particles P from the radiation source (e.g., from
an external beam or from nuclear decays within the material system), which may extend
to energies E below ∆P . The total distribution of fluence of particles P is

ΦP (r, E) = Φsr,P (r, E) + Φsh,P (r, E) , (5.49)

where Φsh,P (r, E) is the contribution of particles P in the showers originated by the
source particles. We assume that Φsh,P (r, E) is known only for E > ∆P .

We recall that ΦP (r, E) dE is the path length of particles P with energies in the
interval (E,E + dE) per unit volume. Hence, ρ−1ΦP (r, E) dE is the path length of
these particles per unit mass. To obtain the absorbed dose, we only have to multiply
this quantity by the mean energy that is effectively absorbed (converted into atomic
excitations and sub-cutoff particles) per unit path length of particles P .
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It is thus natural to consider the linear energy absorption 2 (LEA) for particles P
of radiant energy E, A∆,P (E), defined as the average energy that is transferred to the
material per unit path length, and is not re-emitted as particles P ′ having radiant energy
higher than the corresponding cutoff ∆P ′ . The LEA can be given in units of eV/cm, or a
multiple of it. Although a similar quantity, the linear energy transfer or LET, is used only
for charged particles (ICRU, 1998), the concept is also applicable to uncharged particles.
With this generalization, the contribution to the absorbed dose D(r) of particles P with
energies in the interval (E,E + dE) is given by the product A∆,P (E) ρ

−1ΦP (r, E) dE.
Note that the LEA depends on the values of the cutoff energies ∆P ′ of all radiations P ′

that can be released following the interactions of particles P ; the subscript ∆ indicates
the set of cutoff energies. Except for a slight correction (the track-end term, Dend, see
below), the absorbed dose can now be expressed as

D(r) =
1

ρ(r)

∑
P

∫
A∆,P (E) ΦP (r, E) dE . (5.50)

Because the LEA is essentially proportional to the mass density of the medium, it is
convenient to consider the mass energy absorption (MEA), B∆,P (E), defined by

B∆,P (E) ≡
1

ρ(r)
A∆,P (E) , (5.51)

which is largely independent of ρ. Since the product of density and length is the mass
thickness (usually given in g·cm−2), the MEA is the mean energy absorbed per unit
mass thickness traversed by particles P of energy E. The MEA can be expressed in
units of eV·cm2/g or one of its multiples.

5.2.1 Monte Carlo calculation of the linear energy absorption

LEAs can be calculated from simple simulations with penelope, or with other Monte
Carlo codes, of showers induced by single interactions of parent particles P of energy E in
an infinite medium. In these simulations, the value of the absorption energy for electrons
should be small enough to ensure that electrons with E < Eabs,− radiate a negligible
fraction of their energy as bremsstrahlung photons or x rays with energies larger than
∆γ. We set Eabs,− by requiring that the radiative yield (see Section 3.3.2.1) of electrons
of that energy is less than 10−4. In penelope a positron that reaches the absorption
energy is assumed to deposit its kinetic energy on the spot and then annihilates as if
it were at rest. Because the energy distribution of annihilation photons depends on the
kinetic energy of the positron, we set Eabs,+ = min{10−4E, 1 keV, Eabs,−}, to minimize
the impact of that simplification in penelope. The absorption energy of photons,
Eabs,γ, is set equal to 50 eV, the lowest energy allowed by the program.

The energy transferred in each interaction of particles P with radiant energy E is

w = E − E ′ −Q , (5.52)

2With the ICRU conventions, the term linear means per unit length.
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where E ′ is the energy of the scattered particle, which is to be replaced by zero when
the particle is absorbed (i.e., when E ′ < ∆P ), and Q is the change in the rest energies of
the elementary particles involved in the interaction (including the nucleus if interactions
such as nuclear photoabsorption are considered). For instance, in the case of electron-
positron pair production by photons Q is positive (each event increases the rest energy
in 2mec

2). On the contrary, positron annihilation gives a negative Q (the rest energy
decreases in 2mec

2). When the interaction causes the emission of secondary particles
from the target atom, penelope stores them in the secondary stack (see Chapter 7).

5.2.1.1 LEA of photons

The inverse mean free path (or attenuation coefficient) for photons of energy E is

µγ(E) = Nσγ,T(E), (5.53)

where N is the number of atoms or molecules per unit volume, Eq. (1.102), and

σγ,T (E) = σRa(E) + σCo(E) + σph(E) + σpp(E) (5.54)

is the total cross section (see Chapter 2). We recall that µγ(E) is the interaction
probability (or the average number of interactions) per unit path length. Therefore, the
LEA of photons can be expressed as

A∆,γ(E) = Fγ(E)ENσγ,T(E), (5.55)

where Fγ(E) is the average fraction of the photon energy that is converted into atomic
excitation and sub-cutoff radiations in each interaction.

The quantity Fγ(E)E is well suited for calculation through Monte Carlo simulation.
To obtain it, we simulate showers that start with a single interaction of a parent photon
of energy E and score the energy Gi absorbed in each shower. After the interaction
of the i-th parent photon, we set Gi = w [see Eq. (5.52)], and proceed to follow the
particles P ′ that are left in the stack. If a particle has energy EP ′ higher than ∆P ′ , we
update the absorbed-energy counter (i.e., Gi is replaced by Gi−EP ′), and the simulation
of P ′ is discontinued to avoid double counting, because these particles are assumed to
contribute to the fluence distribution Φsh,P ′(r, E ′). However, if P ′ has sub-cutoff radiant
energy but it is able to release other particles P ′′ with energies above the corresponding
cutoff, ∆P ′′ , we have to track the particle P ′, and send to the stack all its descendants
P ′′ with energies higher than ∆P ′′ . After simulating a large number N of showers, the
average energy absorbed in interactions of the parent photons is obtained as

Fγ(E)E =
1

N

N∑
i=1

Gi . (5.56)
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5.2.1.2 LEA of electrons and positrons

Electrons and positrons (P = ±) lose energy by way of inelastic collisions (“in”) and
bremsstrahlung emission (“br”). The total energy-loss DCS is (see Chapter 3)

dσP,T(E)

dW
=

dσP
in(E)

dW
+

dσP
br(E)

dW
. (5.57)

The LEA for electrons and positrons (and other charged particles) can be expressed as

A∆,P (E) = SP (E)−
dErel

ds
, (5.58)

where

SP (E) = N
∫ E

0

W
dσP,T(E)

dW
dW (5.59)

is the total (collision plus radiative) stopping power, and dErel/ds is the average energy
released as particles P ′ with energies higher than ∆P ′ per unit path length. Since the
total cross section for bremsstrahlung emission is infinite (see Section 3.3.2), caution
must be exercised when computing A∆,P (E) by Monte Carlo simulation. The easiest
strategy is to separate the contribution of soft stopping interactions with energy transfers
less than the cutoff energy ∆P , which cause the divergence of the total cross section,
but give a finite contribution to the stopping power. We write

A∆,P (E) = N
∫ ∆−

0

W
dσP,T(E)

dW
dW + FP (E)E ρ

−1NσP,T (E) , (5.60)

where

σ−,T =

∫ E

∆−

dσ−,T(E)

dW
dW , (5.61a)

and

σ+,T =

∫ E

∆−

dσ+,T(E)

dW
dW + σan(E) , (5.61b)

for electrons and positrons, respectively. The integral on the right-hand sides of Eqs.
(5.61) is the total cross section for hard stopping interactions, which is finite, and σan(E)
is the cross section for positron annihilation. The quantity FP (E)E is the average energy
that is effectively absorbed (i.e., deposited in the form of atomic excitations and sub-
cutoff radiations) in a hard interaction.

The average energy absorbed in each interaction, FP (E)E, can be readily calculated
by simulation. As in the case of photons, we generate showers that start with a single
hard interaction of an electron or positron having kinetic energy E. After the interaction
of the i-th primary particle, we set Gi = w, and proceed to follow the particles P ′ in the
stack. When EP ′ > ∆P ′ , we replace Gi with Gi − EP ′ and discontinue the simulation
of P ′ to avoid double counting. When P ′ has sub-cutoff radiant energy but it is able to
release other particles P ′′ with energies larger than ∆P ′′ , we track P ′ and send to the
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stack all its descendants P ′′ with energies higher than ∆P ′′ . After simulating a large
number N of showers, we have

FP (E)E =
1

N

N∑
i=1

Gi . (5.62)

The program LEA.f calculates the LEA for photons, electrons, and positrons using
penelope and the simulation schemes described above. The quantity effectively calcu-
lated is the average deposited energy, FP (E)E, in an interaction (hard interaction in
the case of charged particles). For each energy E of the parent particle, the program
generates a number N of showers that is large enough to give the LEA value with a
statistical uncertainty less than the adopted tolerance, typically 0.1 % (1σ level). The
computer time needed to calculate the LEA increases with the radiant energy of the
particle; the calculation for photons of energies about 10 MeV takes a few minutes on
an Intel Core i7 processor.

For electrons and positrons, the program LEA.f calculates also the restricted stopping
power, defined by

S∆,P (E) ≡ N
∫ ∆P

0

W
dσP

in(E)

dW
dW +N

∫ ∆γ

0

W
dσP

br(E)

dW
dW , (5.63)

which gives the energy loss per unit path length due to inelastic collisions withW < ∆P

and to the emission of bremsstrahlung photons with W < ∆γ. The LEA is larger
than the restricted stopping power, because in S∆,P (E) we exclude the contribution of
interactions with energy losses in excess of ∆P , while in A∆,P (E) we exclude only the
energies of particles released with EP > ∆P (a part of the transferred energy remains on
the spot as atomic excitations and particles with sub-cutoff energies). Figure 5.2 displays
the MEA for electrons in water and copper, calculated with the cutoffs ∆± = 1 keV
and ∆γ = 0. For comparison, we have also plotted the restricted mass stopping power,
S∆,−(E)/ρ, and the mass stopping power, S−(E)/ρ. The ratio B∆,−/(S∆,−/ρ) equals
unity at low energies and increases monotonically with the energy E of the electron,
reaching a saturation value at energies that are larger than both the ionization energies
of the atoms and the cutoff energies ∆P . The saturation values are 1.015 for water and
1.025 for copper.

5.2.2 Absorbed dose

The absorbed dose can be expressed as

D(r) =
1

ρ(r)

∑
P

∫ ∞

∆P

A∆,P (E) ΦP (r, E) dE +Dend (5.64)

where Dend is the contribution of track ends, i.e., of particles with energies E higher
than ∆P that after an interaction emerge with radiant energy below the cutoff, and of
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Figure 5.2: Mass energy absorption, B∆,−(E), restricted mass stopping power, S∆,−(E)/ρ,

and mass stopping power, S−(E)/ρ, of electrons in water and copper, calculated with ∆− =

∆+ = 1 keV and ∆γ = 0. For projectiles with energies less than about 10 keV, the MEA

practically coincides with the restricted mass stopping power.

source particles with sub-cutoff energies. Since particles with E < ∆P are assumed to be
absorbed on the spot (i.e., at the first interaction), the contribution of source particles
with energies below the cutoff is

Dend, below =
1

ρ(r)

∑
P

∫ ∆P

0

ENσP,T(E) ΦP,sr(r, E) dE . (5.65)

Particles with energy E higher than the cutoff ∆P are absorbed after an interaction
in which the particle emerges with radiant energy E ′ = E −W below ∆P , where, as
usually, W is the energy lost in the interaction. Let dσP (E)/dW denote the energy-
loss DCS, differential only in W , of particles P with radiant energy E. For photons,
only Compton scattering needs to be considered, because all other interaction processes
either do not alter the photon energy (Rayleigh scattering) or imply the absorption of
the incident photon (photoelectric effect and pair production). That is,

dσγ(E)

dW
=

dσCo(E)

dE ′ . (5.66)

Since the energyW lost in the interaction where P is absorbed is already counted in the
first term of expression (5.64), only the remainder E −W contributes to the track-end
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term. Therefore, the track-end contribution of particles with energies above their cutoffs
is given by

Dend, above =
1

ρ(r)

∑
P

∫ ∞

∆P

{∫ E

E−∆P

(E −W )N dσP (E)

dW
dW

}
ΦP (r, E) dE . (5.67)

Note that particles P ′ that may be emitted with energies E > ∆P ′ as the result of an
interaction where P is absorbed, are also accounted for in the first term of (5.64).

In simulations where charged particles are tracked using mixed (class-II) algorithms,
soft interactions also cause the gradual absorption of particles with energies just above
the cutoff. To describe the absorption through soft interactions we can utilize the
CSDA, because the average effect of these interactions is appropriately represented by
the restricted stopping power, S∆,P (E) [Eq. (5.63)]. The CSDA can be regarded as the
limit of a discrete interaction process in which the particles lose a fixed energy, Ws, at
each interaction. The corresponding energy-loss DCS is assumed to be

dσs,P (E)

dW
= σs,P (E) δ(W −Ws,P ) , (5.68)

where the total cross section σs,P (E) is determined by requiring that the process gives
the correct stopping power, i.e.,

σs,P (E) =
S∆,P (E)

NWs,P

. (5.69)

The CSDA is obtained as the limit Ws,P = 0 of this interaction process. When only this
process is active, the track end contribution to the absorbed dose is [cf. Eq. (5.67)]

Dsoft
end, above =

1

ρ(r)

∑
P

∫ ∞

∆P

{∫ E

E−∆P

(E −W )N σs,P δ(W −Ws,P ) dW

}
ΦP (r, E) dE

=
1

ρ(r)

∑
P

∫ ∞

∆P

{
Nσs,P (E −Ws,P )

×Θ(Ws,P − E +∆P )Θ(E −Ws,P )
}
ΦP (r, E) dE

=
1

ρ(r)

∑
P

N σs,P

∫ ∆P+Ws,P

∆P

(E −Ws,P ) ΦP (r, E) dE , (5.70)

where the unit step functions Θ(x) (= 1 if x > 0, and 0 otherwise) mean that we have
non-vanishing contributions only when Ws,P lies in the interval (E −∆P , E). For small
values of Ws,P , we have

Dsoft
end, above ≃

1

ρ(r)

∑
P

Nσs,P ∆P ΦP (r,∆P )

∫ ∆P+Ws,P

∆P

dE

=
1

ρ(r)

∑
P

Nσs,PWs,P ∆P ΦP (r,∆P ) . (5.71)



210 Chapter 5. Radiation fields and dosimetry

In the limit Ws,P → 0, we obtain the exact CSDA result,

Dsoft
end, above =

1

ρ(r)

∑
P

∆P SP (∆P ) ΦP (r,∆P ) , (5.72)

where we have used the identity (5.69), and the fact that at E = ∆P the restricted
stopping power equals the total stopping power, S∆,P (∆P ) = SP (∆P ). The result (5.72)
implies that the product SP (∆P ) ΦP (r,∆P ) is the number of particles that reach the
energy value ∆P per unit volume as a result of soft interactions.

Summarizing, the contribution of track ends to the absorbed dose is

Dend = Dend, above +Dend, below +Dsoft
end, above , (5.73)

where the last term (end-track contribution of soft interactions) is to be included only
for charged particles and when soft interactions are described with the CSDA. Recalling
that N = NAρ/AM, the absorbed dose at r can be evaluated as

D(r) =
∑
P

∫ ∞

∆P

B∆,P (E) ΦP (r, E) dE

+
NA

AM

∑
P

∫ ∆P

0

E σP,T(E) ΦP,sr(r, E) dE

+
NA

AM

∑
P

∫ ∞

∆P

{∫ E

E−∆P

(E −W )
dσP,T(E)

dW
dW

}
ΦP (r, E) dE

+
NA

AM

∑
P

∆P SP (E) ΦP (r,∆P ) , (5.74)

where B∆,P (E) = A∆,P (E)/ρ(r) is the MEA. In calculations of the average absorbed
dose in finite volumes, the cutoff energies ∆P should be selected so that particles leaving
and entering the volume of interest with energies less than ∆P carry, on average, the
same total radiant energies. When this condition holds, we say that there is radiation
equilibrium for particles P with sub-cutoff energies. Only under these circumstances Eq.
(5.74) yields the correct absorbed dose. This is not the case, e.g., in the vicinity of a
material-vacuum interface, where there is a net flux of secondary electrons and photons
from material to vacuum.

5.2.3 Track length estimator of the absorbed dose

In penelope the absorbed dose is normally obtained by scoring the energy deposited by
the interactions within the volume V of interest. For high-energy photons, this method
may require very large simulation times to determine the absorbed dose in thin foils
or small volumes, where photon interactions are very rare. To increase the efficiency
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of the simulation, we may use the variance-reduction technique of interaction forcing
(see Section 1.6.1), which is easy to implement, and is nominally exact. An alternative
solution is provided by the so-called track length estimator, which essentially consists in
evaluating the distribution of particle fluence with respect to energy, and using Eq. (5.64)
to obtain the absorbed dose. Since every particle that enters the volume contributes to
the fluence, the track length estimator may be more efficient than the usual method of
scoring the energy deposited in individual interactions.

The track length estimator is implemented as follows. When a particle P of radiant
energy E travels a path length s within the volume V , we score the quantity B∆,P (E)s,
where B∆,P (E) = A∆,P (E)ρ

−1 is the MEA. The absorbed dose in V , obtained from the
simulation of N complete showers, is [cf. Eq. (5.64)]

D =
1

V N

N∑
i=1

(∑
j

B∆,P (Ej) sj

)
+Dend , (5.75)

where the first summation is over the generated showers, and the second one is over the
steps, j, of the particles of the i-th shower that intersect the volume V . The second
term on the right-hand side is the contribution of track ends,

Dend =
1

VN
∑
k

Ekρ
−1 , (5.76)

where the summation is over all particles k that reach energies Ek below the corre-
sponding absorption energy Eabs,P (i.e., particles that are effectively absorbed) within
V . Note that the MEA and the mass density in Eqs. (5.75) and (5.76) are local quan-
tities; the estimator (5.75) is applicable even when the volume V contains zones of
different compositions or densities.

A practical difficulty of the track length estimator is that it requires the calculation
of the MEA prior to the simulation run. To ensure consistency, the cutoffs ∆P used
to determine the MEA must be identical to the absorption energies adopted in the
simulation. It should be kept in mind that absorbed doses calculated with the track
length estimator are accurate only when there is complete equilibrium of particles with
sub-cutoff energies.

5.3 Dosimetry of photon fields

We will now introduce several quantities of practical interest in the dosimetry of photon
beams. We consider a photon field described by its distribution of fluence with respect
to energy, Φγ(r, E), and we wish to determine the absorbed dose D(r) from the fluence
distribution.

The energy-transfer coefficient, µtr(E), of photons of energy E is defined as the
average fraction of energy released in the form of kinetic energy of charged particles per
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unit path length of the photons. The charged particles that are set in motion by the
interactions of photons are photoelectrons, Compton electrons, electron-positron pairs
(and triplets), and Auger electrons. In photoelectric and Compton events (and also in
triplet production), the interaction causes the ionization of the target atom, which is
left with a vacancy in the active electron shell. A vacancy in an inner shell migrates
to outer shells through a cascade of radiative and non-radiative transitions (see Section
2.6). The total kinetic energy of the released charged particles is assumed to be the
difference between the transferred energy w, Eq. (5.52), and the energies of the x rays
emitted in the course of the relaxation cascade. Note that, in the case of pair and triplet
production, the rest energy of the produced particles, Q = 2mec

2, does not contribute
to µtr(E).

The quantities needed to calculate the energy-transfer coefficient are the average
total energy Xi of x rays emitted in the relaxation of an atom with a vacancy in the i-th
shell, and the average energy ⟨E ′⟩i of the scattered photon in Compton events involving
electrons of the i-th shell. The energy Xi released as characteristic x rays can be readily
evaluated from the atomic transition probabilities in the EADL (Perkins et al., 1991).
On the other hand,

⟨E ′⟩i =
1

σCo,i(E)

∫ E−Ui

0

E ′ dσCo,i(E)

dE ′ dE ′, (5.77)

where Ui is the ionization energy of the active shell (only energy transfers W = E −E ′

higher than Ui can cause ionization), and dσCo,i(E)/dE
′ is the DCS for Compton events

with electrons of the active shell, differential only in the energy of the scattered photon.
This DCS can be obtained by numerical integration of the DCS (2.28) over directions
of the scattered photon,

dσCo,i(E)

dE ′ =

∫
d2σCo,i(E)

dE ′ dΩ
dΩ . (5.78)

The energy-transfer coefficient is given by

µtr =
1

E

NAρ

AM

{∑
i

[
σph,i (E −Xi) + σCo,i (E − ⟨E ′⟩i −Xi)

+ σtriplet,i
(
E − 2mec

2 −Xi

)]
+ σpair

(
E − 2mec

2
)}

, (5.79)

where the summation runs over the shells of the target atom. The cross sections σph,i,
σCo,i, σtriplet,i, and σpair correspond, respectively, to photoelectric absorption and Comp-
ton scattering by electrons of the i-th shell, triplet production in the field of these
electrons, and nuclear-field pair production. It is convenient to express µtr in terms of
the partial attenuation coefficients (see Section 2.5),

µtr =
∑
i

[
fph,i µph,i + fCo,i µCo,i + ftriplet,i µtriplet,i

]
+ fpair µpair , (5.80)
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where

fph,i = 1− Xi

E
, fCo,i = 1− ⟨E

′⟩i +Xi

E
,

ftriplet,i = 1− 2mec
2 +Xi

E
, and fpair = 1− 2mec

2

E
(5.81)

are the average fractions of the photon energy E that are converted into kinetic energy
of charged particles released in the corresponding interactions. The weighted average f
of these quantities is defined by the equality

µtr = f µ , (5.82)

where µ is the total mass attenuation coefficient, µ = µph+µRa+µCo+µpp, including the
contribution from Rayleigh scattering, which has fRa = 0. The factor f gives the average
fraction of the photon energy that is released as kinetic energy of charged particles in
individual interactions of photons.

To remove the dependence on the density ρ of the material, it is customary to define
the mass energy-transfer coefficient as

µtr

ρ
= f

µ

ρ
, (5.83)

where µ/ρ is the total mass attenuation coefficient, Eq. (2.102). Usually, µtr and µtr/ρ
are given in units of cm−1 and cm2/g, respectively.

The definitions (5.79) to (5.83) apply to elemental materials, and involve only char-
acteristics of the target atom. In the case of homogeneous mixtures and compounds
we can adopt the usual additivity approximation. Let us consider a compound material
containing elements of atomic numbers Zj and atomic weights Aw(Zj), with correspond-
ing fractions by weight wj. If a “molecule” contains nj atoms of the element Zj, the
molar mass of the compound is AM =

∑
j njAw(Zj) and nj = wjAM/Aw(Zj). According

to the additivity approximation, the mass energy-transfer coefficient of the compound
is

µtr

ρ
=
NA

AM

∑
j

nj

{∑
i

[
σ
(j)
ph,i f

(j)
ph,i + σ

(j)
Co,i f

(j)
Co,i + σ

(j)
triplet,i f

(j)
triplet,i

]
+ σ

(j)
pair σ

(j)
pair

}
, (5.84)

where the superscript (j) refers to the element Zj. We can also write

µtr

ρ
=
∑
j

wj
µ
(j)
tr

ρ
=
∑
j

wjf
(j) µ

(j)

ρ
= f

µ

ρ
. (5.85)

The quantity kerma, K, is defined as (and the name is an acronym for) the sum of
the kinetic energies of all charged particles released by photons per unit mass (ICRU
Report 60, 1998). From the definition of the distribution of fluence with respect to
energy Φγ(r, E) [see Eqs. (5.35) and (5.38)], the kerma can be calculated as

K(r) =

∫ ∞

0

µtr(E)

ρ
E Φγ(r, E) dE =

∫ ∞

0

f
µ(E)

ρ
E Φγ(r, E) dE . (5.86)
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The kerma is a good approximation to the absorbed dose when there is complete charged-
particle equilibrium and the charged particles released by the photons deposit the to-
tality of their kinetic energies in the material. The last condition does not hold when a
part of the kinetic energy of charged particles is re-emitted in radiative events, i.e., as
bremsstrahlung photons and x rays. In this case, we need to account for the fact that
these radiations reduce the absorbed dose at r and increase the photon fluence (that is,
they contribute to the absorbed dose elsewhere).

To facilitate the direct calculation of the absorbed dose from the fluence distribution,
we introduce the mass energy-absorption coefficient, defined by

µen

ρ
= (1− gph)

∑
j

wj

∑
i

f
(j)
ph,i

µ
(j)
ph,i

ρ
+ (1− gCo)

∑
j

wj
∑
i

f
(j)
Co,i

µ
(j)
Co,i

ρ

+ (1− gtriplet)
∑
j

wj
∑
i

f
(j)
triplet,i

µ
(j)
triplet,i

ρ
+ (1− gpair)

∑
j

wjf
(j)
pair

µ
(j)
pair

ρ
. (5.87)

The quantities gph, gCo, gtriplet and gpair are, respectively, the average fractions of the
kinetic energy of primary charged particles released in photoelectric, Compton, triplet-
and pair-production interactions that are emitted as bremsstrahlung photons and x
rays during the slowing down of the charged particles. A weighted average g fraction is
defined by

µen

ρ
= (1− g) µtr

ρ
= (1− g)f µ

ρ
. (5.88)

Note that the product µenE is equal to the LEA, A∆,γ(E), calculated with the cutoffs
∆γ = 0 and ∆− = ∆+ =∞.

The absorbed dose at r can then be evaluated as

D(r) =

∫ ∞

0

µen(E)

ρ
E Φγ(r, E) dE =

∫ ∞

0

(1− g)f µ(E)
ρ

E Φγ(r, E) dE . (5.89)

This expression gives the correct absorbed dose provided only there is complete charged-
particle equilibrium. Because the g fractions depend on the slowing down of the primary
charged particles, as well as on the production of secondary delta rays, they cannot be
deduced from atomic characteristics and have to be evaluated for each material under
consideration.

The simplest method to estimate the g factors is to use the CSDA, which leads to
relatively simple expressions that can be evaluated by a single numerical quadrature.
As an example, let us consider the calculation of the factor gCo for Compton scattering.
The distribution of the kinetic energy Ee of Compton electrons released in interactions
of photons with electrons of the i-th shell is

PCo,i(Ee) =
1

σCo,i(E)

dσCo,i(E)

dE ′ , (5.90)
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where E ′ = E − Ee − Ui is the energy of the scattered photon. The bremsstrahlung
yield Ybr(Ee), Eq. (3.164),

Ybr(Ee) =
1

Ee

∫ Ee

0

Sbr(E
′
e)

dE ′
e

S(E ′
e)
, (5.91)

is the average fraction of the energy Ee of an electron that is emitted as bremsstrahlung
photons along the electron trajectory, i.e., from its start with energy Ee until it comes
to rest. In analogy to the bremsstrahlung yield, we introduce the x-ray yield, defined
as the average fractional energy emitted as x rays resulting from impact ionizations by
a charged particle in the course of its slowing down,

Ysi(Ee) =
1

Ee

∫ Ee

0

[
N
∑
j

nj

∑
i

σ
(j)
si,k(E

′
e) X

(j)
k

]
dE ′

e

S(E ′
e)

=
1

Ee

NAρ

∫ Ee

0

[∑
j

wj

Am(Zj)

∑
k

σ
(j)
si,k(E

′
e) X

(j)
k

]
dE ′

e

S(E ′
e)
, (5.92)

where σ
(j)
si,k(Ee) is the cross section for ionization of the k-th shell of the element Zj

by impact of electrons with kinetic energy Ee. The average fraction of the energy of
Compton electrons that is radiated can be expressed as

gCo =

∑
j wj

∑
i σ

(j)
Co,i

∫ E

0
P

(j)
Co,i(Ee)Ee Ytot(Ee) dEe∑

j wj

∑
i σ

(j)
Co,i

∫ E

0
P

(j)
Co,i(Ee)Ee dEe

, (5.93)

where
Ytot(Ee) = Ybr(Ee) + Ysi(Ee) (5.94)

is the total radiation yield, including bremsstrahlung and x-ray emission.

Seltzer (1993) employed an elaborate scheme to determine mass energy-absorption
coefficients including the effects of energy straggling and delta-ray production, which
were described using the results from Monte Carlo simulations. Tabulations of µ/ρ and
µen/ρ evaluated from Seltzer’s approach, for the elements from hydrogen to uranium
(Z = 1 to 92) and for a list of compounds and mixtures, for photon energies between
1 keV and 20 MeV, are available at http://www.nist.gov/pml/data/xraycoef/index
.cfm. A practical alternative is to obtain the mass energy-absorption coefficients from
simulations with penelope. Although Monte Carlo simulation requires substantial
computation times, it has the advantage of including consistently all interactions and
being applicable to any material.

The program LEA.f can be used to calculate the mass energy-absorption coefficient
with penelope. As indicated above, µen = A∆,γ(E)/E, when the cutoff energies are
∆γ = 0 and ∆± =∞. Comparing the definitions (5.55) and (5.88), we see that Fγ = (1−
g)f . However, the program LEA.F does not calculate the mass-energy transfer coefficient,
µtr, and the associated fraction f , Eq. (5.83). A similar program, named mutren.f, has
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Figure 5.3: Mass energy-absorption coefficients, µen(E)/ρ, and mass attenuation coefficients,

µ/ρ, of water, air, copper and lead as functions of the photon energy. The solid curves represent

values of µen(E) generated by the program mutren.f (i.e., from simulations with penelope)

with the cutoff energies ∆γ = 0 and ∆± = ∞. Crosses are values from the NIST database,

which were calculated with Seltzer’s (1993) method.
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Figure 5.4: Average fraction of energy transferred to charged particles, f , and average fraction

of energy absorbed, (1−g)f , in photon interactions, as functions of the photon energy. Curves

represent values obtained from simulations with penelope. Crosses are values of (1 − g)f

derived from the NIST database.

been written to calculate both µtr and µen. The calculation of µen is performed using
the same scheme as in LEA.f, and f is obtained as the average fraction of the photon
energy that is transferred to charged particles in an interaction, in accordance with Eq.
(5.88). Figure 5.3 displays mass energy-absorption coefficients and mass attenuation
coefficients for photons in liquid water, air, copper and lead calculated with mutren.f.
The average fractions (1− g)f and f for water and lead (as representatives of low- and
high-Z materials) are shown in Fig. 5.4.

The results obtained from our programs are found to differ slightly from those in the
NIST tables, because of the following differences between the underlying physical models
and assumptions. Firstly, penelope uses DCSs for Compton scattering obtained from
the impulse approximation, while the NIST calculations are based on DCSs calculated
from the Waller-Hartree theory, which are known to underestimate the energy transfer
for photons with energies less than about 100 keV (see Ribberfors, 1983, and Brusa et
al., 1996). Secondly, the NIST tables were evaluated by considering the totality of x
rays emitted through the whole atomic relaxation cascade (even those with very small
energies), while penelope only follows characteristic x rays emitted from vacancies in
K, L, M and N subshells with binding energies higher than 50 eV. Finally, penelope
disregards all photons emitted with energies less than the absorption energy Eabs,γ and,
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consequently, the results from mutren.f are slightly dependent on the value of Eabs,γ.
Notice, however, that Eq. (5.89) with the mass energy-absorption coefficients given
by mutren.f or LEA.f should reproduce the absorbed doses obtained from penelope
simulations with the absorption energies Eabs,P = ∆P , provided only that charged-
particle equilibrium is complete.

5.4 Dosimetry of charged-particle fields

Let us now consider the dosimetry of charged-particle fields, under the assumption that
radiative energy losses (bremsstrahlung emission and x-ray production) are negligible.
The analysis applies to electrons with moderate kinetic energies and to heavy charged
particles (protons, alphas, . . . ) but not to positrons, because these eventually annihilate
with emission of energetic photons. For the sake of concreteness, we assume an electron
field, described by its distribution of fluence with respect to energy, Φ−(r, E). We also
consider that there is complete equilibrium of electrons with kinetic energies below a
certain cutoff ∆ and, accordingly, Φ−(r, E) has to be specified only for E > ∆.

Inelastic interactions of a “primary” electron of energy E may release “secondary”
electrons with energies higher than ∆ (delta rays), which become part of the electron
field. That is, the energies of delta rays are not considered to be directly deposited into
the material. Following the recommendations in the ICRU Report 60, we consider the
linear energy transfer (LET) or restricted linear electronic stopping power, L∆, of the
material, which is defined as the mean energy loss per unit path length due to inelastic
collisions of an electron of energy E, excluding the kinetic energies of all the delta rays
released by the electron. That is

L∆(E) = Sin(E)−
dE∆

ds
, (5.95)

where Sin(E) = ⟨W ⟩Nσ−
in(E), Eq. (3.101), is the collision stopping power, and dE∆/ds

is the average sum of the kinetic energies of delta rays released per unit path length of the
electron. The cutoff ∆ is usually expressed in eV, and L∆ in eV/cm, or some convenient
multiple (e.g., MeV/cm). A related quantity is the restricted collision stopping power,
defined by

S∆(E) = N
∫ ∆

0

W
dσ−

in(E)

dW
dW , (5.96)

which excludes all energy losses in excess of ∆. Note that L∆(E) is larger than S∆(E),
because the sum of kinetic energies of delta rays is smaller than the energy W trans-
ferred in the interaction, which is partially spent to overcome the binding energy of
the electrons in the target atom (after the interaction, the atom remains in an excited
state). The difference between L∆(E) and S∆(E) is small for large values of ∆, but it
becomes significant when ∆ is comparable to the ionization energies of the atom. Note,
however, that L∆(∆) = Sin(∆), i.e., the two quantities coincide for E = ∆. As the
LET excludes the actual energies released as delta rays, it is more meaningful than the
restricted stopping power.
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The quantity cema, C, is defined as, and the name is an acronym for converted
energy per unit mass. A more practical quantity is the restricted cema, C∆, which is
the energy deposited by electrons per unit mass, excluding the kinetic energies of delta
rays. Since electrons with sub-cutoff energies are assumed to be absorbed on the spot,
the definition of restricted cema includes a track-end term (Kellerer et al., 1992),

C∆(r) =

∫ ∞

∆

L∆(E)

ρ
Φ−(r, E) dE + Cend . (5.97)

From arguments similar to those leading to Eq. (5.74), we have

Cend =
NA

AM

∫ ∞

∆

{∫ E

E−∆

(E −W )
dσ−

in(E)

dW
dW

}
Φ−(r, E) dE

+
NA

AM

∆Sin(∆)Φ−(r,∆) . (5.98)

This result is more general than the expression given by Kellerer et al., which was derived
from the CSDA.

In the limit ∆→∞, L∆(E)→ Sin(E) and the restricted cema reduces to the cema,
C∆ → C. The cema is thus given by

C(r) =

∫ ∞

0

Sin(E)

ρ
Φ−(r, E) dE . (5.99)

Both the cema and the restricted cema approach the absorbed dose from electron fields
when sub-cutoff electron equilibrium exists and radiative energy losses are negligible.
Equilibrium of sub-cutoff electrons is complete when their fluence is constant within
distances equal to the CSDA range of electrons with E = ∆. Evidently, the restricted
cema provides a better approximation.

In general, the LET differs from the LEA, because the LEA accounts for energies
released by secondary photons, which are not considered in the definition of the LET.
The two quantities coincide only when the total radiative yield (bremsstrahlung plus x
rays) is negligible. When this is the case, the LET for electrons can be calculated by
running the program LEA.f with ∆− = ∆ and ∆γ = ∆+ = 0.



220 Chapter 5. Radiation fields and dosimetry



Chapter 6

Constructive quadric geometry

Practical simulations of radiation transport in material systems involve two different
kinds of operations, namely physical (determination of the path length to the next
interaction, random sampling of the different interactions) and geometrical (space dis-
placements, interface crossings, etc.). In the case of material systems with complex ge-
ometries, geometrical operations can take a large fraction of the simulation time. These
operations are normally performed by dedicated subroutine packages, whose character-
istics depend on the kind of algorithm used to track transported particles. The material
system is assumed to consist of a number of homogeneous bodies limited by well-defined
surfaces. The evolution of particles within each homogeneous body is dictated by the
physical simulation routines, which operate as if particles were moving in an infinite
medium with a given composition. Normally, the physical routines can handle a number
of different media, whose interaction properties have been previously stored in memory.
The job of the geometry routines is to steer the simulation of particle histories in the
material system. They must determine the active medium, change it when the particle
crosses an interface (i.e., a surface that separates two different media) and, for certain
simulation algorithms, they must also keep control of the proximity of interfaces.

In this Chapter we describe the Fortran subroutine package pengeom, which is
suitable for detailed simulation algorithms (i.e., algorithms where all single interactions
in the history of a particle are simulated in chronological succession). Using these
algorithms, the description of interface crossing is very simple: when the particle reaches
an interface, its track is stopped just after entering a new material body and restarted
again in the new active medium. This method (stopping and restarting a track when it
crosses an interface) is applicable even when we have the same medium on both sides
of the surface. That is, detailed simulations with a single homogeneous body and with
the same body split into two parts by an arbitrary surface yield the same results, apart
from statistical uncertainties.

As we have seen, detailed simulation is feasible only for photon transport and low-
energy electron transport. For high-energy electrons and positrons, most Monte Carlo
codes [e.g., etran (Berger and Seltzer, 1988), its3 (Halbleib et al., 1992), egs4 (Nelson
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et al., 1985), egsnrc (Kawrakow and Rogers, 2001), egs5 (Hirayama et al., 2005),
geant3 (Brun et al., 1986), geant4 (Agostinelli et al., 2003; Allison et al., 2006),
fluka (Ferrari et al., 2005)] have recourse to condensed (class I) or mixed (class II)
simulation, where the global effect of multiple interactions along a path segment of a
given length is evaluated using available multiple-scattering theories. To avoid large
step lengths that could place the particle within a different medium, these condensed
procedures require the evaluation of the distance from the current position to the nearest
interface, an operation with a high computational cost (see, e.g., Bielajew, 1995). The
mixed procedure implemented in penelope is, at least computationally, analogous to
detailed simulation (it gives a “jump-and-knock” description of particle tracks). In fact,
the structure of penelope’s tracking algorithm was designed to minimise the influence
of the geometry on the transport physics. This algorithm operates independently of
interface proximity and only requires knowledge of the material at the current position
of the particle. As a consequence, the geometry package pengeom can be directly linked
to penelope. However, since pengeom does not evaluate the distance to the closest
interface, it cannot be used with condensed simulation codes, such as those referenced
above.

Let us mention in passing that in simulations of high-energy photon transport com-
plex geometries can be handled by means of relatively simple methods, which do not
require control of interface crossings (see, e.g., Snyder et al., 1969). Unfortunately, sim-
ilar techniques are not applicable to electron and positron transport, mainly because
these particles have much shorter track lengths and, hence, the transport process is
strongly influenced by inhomogeneities of the medium. With the analogue simulation
scheme adopted in penelope, it is necessary to determine when a particle track crosses
an interface, not only for electrons and positrons but also for photons.

With pengeom we can describe any material system consisting of homogeneous
bodies limited by quadric surfaces. To speed up the geometry operations, the bodies
of the material system can be grouped into modules (connected volumes, limited by
quadric surfaces, that contain one or several bodies); modules can, in turn, form part
of larger modules, and so on. This hierarchic modular structure allows a reduction of
the work of the geometry routines, which becomes more effective when the complexity
of the system increases. The present version 2011 of pengeom is able to simulate very
complex material systems, with up to 5,000 bodies and 10,000 limiting surfaces. These
large numbers of elements would be useless if one had to define the geometry manually,
element by element, by editing enormous definition files. However, pengeom includes
the option of cloning modules (and groups of modules), an operation which rapidly
increases the number of elements used.

Except for trivial cases, the correctness of the geometry definition is difficult to check
and, moreover, 3D geometrical structures with interpenetrating bodies are difficult to
visualise. A pair of programs, named gview2d and gview3d, have been written to
display the geometry on the computer screen. These programs use specific computer
graphics software and, therefore, they are not portable. The executable files included in
the penelope distribution package run on personal computers under Microsoft Win-
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dows; they are simple and effective tools for debugging the geometry definition file.

In what follows, and in the computer programs, lengths are assumed to be given
in cm. Notice however that pengeom operates with arbitrary units; the subroutines
perform correctly provided only that the input step lengths and the geometry parameters
are expressed in the same units. The position and direction of movement of a particle
are referred to the laboratory coordinate system, a right-handed Cartesian reference
frame which is defined by the position of its origin of coordinates and the unit vectors
x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1) along the directions of its axes.

6.1 Surfaces and their transformations

Given a function F (r), assumed to be continuous and differentiable, the equation F (r) =
0 defines a surface in implicit form. A surface divides the space into two exclusive
regions that are identified by the sign of F (r), the surface side pointer, SP. A point
with coordinates r = (x, y, z) is said to be inside the surface if F (r) ≤ 0 (SP = −1),
and outside it if F (r) > 0 (SP = +1). The surface itself [i.e., the set of points such
that F (r) = 0] is the boundary of the inside region. Note that the equation −F (r) = 0
defines the same surface, but with exchanged inside and outside. Consequently, one
must be careful with the global sign of the surface function F (r). Let r0 be a point on
the surface [i.e., F (r0) = 0]. The gradient of the function F (r) at r0,

∇F (r0) =
(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
r=r0

, (6.1)

is a vector perpendicular to the surface at r0 that points toward the outside.

To facilitate the definition of the material system and the tracking of particles we
will use simple surfaces, and occasionally transform them by means of scalings along
the directions of the coordinate axes, translations, and rotations. To describe these
transformations, we shall adopt the active point of view: the reference frame remains
fixed and only the space points (or their position vectors) are scaled, translated or
rotated.

A scaling transformation S(α), with scaling factors α = (αx, αy, αz), transforms the
vector r = (x, y, z) into a vector

r′ = S(α) r = (αxx, αyy, αzz) = (x′, y′, z′), (6.2)

or, in matrix form,  x′

y′

z′

 =

 αx 0 0

0 αy 0

0 0 αz


 x

y

z

 , (6.3)

where the vectors r and r′ are considered as one-column matrices. The inverse of this
transformation is the scaling with the reciprocal factors,

S−1(α) = S(1/αx, 1/αy, 1/αz). (6.4)



224 Chapter 6. Constructive quadric geometry

A translation T (t), defined by the displacement vector t = (tx, ty, tz), transforms
the vector r = (x, y, z) into

T (t) r = r+ t = (x+ tx, y + ty, z + tz). (6.5)

Evidently, the inverse translation T −1(t) corresponds to the displacement vector −t,
i.e., T −1(t) = T (−t).

A rotationR is defined through the Euler angles ω, θ, and ϕ, which specify a sequence
of rotations about the coordinate axes1: first there is a rotation of angle ω about the
z-axis, followed by a rotation of angle θ about the y-axis and, finally, a rotation of angle
ϕ about the z-axis. A positive rotation about a given axis would carry a right-handed
screw in the positive direction along that axis. Positive (negative) angles define positive
(negative) rotations. Although the definition of a rotation by means of the Euler angles
may seem awkward, this is the most direct and compact method to specify a rotation.
Figure 6.1 displays the effect of a rotation, defined by its Euler angles, on an asymmetric
object, an arrow pointing initially along the z axis with an arm in the direction of the
negative y-axis. The rotation angles θ and ϕ are the polar and azimuthal angles of
the final direction of the arrow, respectively. The first rotation, of angle ω, determines
the final orientation of the arm. It is clear that, by selecting appropriate values of the
Euler angles, we can set the object in any given orientation, that is, we can describe any
rotation. Since a rotation of angle 2π represents a complete turn, the rotation remains
the same when we add an integer multiple of 2π to either of the Euler angles. Hence,
different sets of Euler angles, all them differing by integer multiples of 2π, represent the
same transformation. In formal studies of the rotation group, it is common to associate
a rotation with a single set of Euler angles, whose values are restricted to their “natural”
intervals: ω ∈ (0, 2π), θ ∈ (0, π) and ϕ ∈ (0, 2π).

ω =  π/2

θ =  π/5

φ = π/4

θ

φ
x

y

z

Figure 6.1: Rotation of an asymmetric object, an arrow with a protuberance, as defined by

the Euler angles ω, θ, and ϕ. The orientation of the axes is the same in all the diagrams.

The rotation R(ω, θ, ϕ) transforms the vector r = (x, y, z) into a vector

r′ = R(ω, θ, ϕ) r = (x′, y′, z′), (6.6)

1This definition of the Euler angles is the one usually adopted in Quantum Mechanics (see, e.g.,
Edmonds, 1960).
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whose components are given by x′

y′

z′

 = R(ω, θ, ϕ)

 x

y

z

 , (6.7)

where

R(ω, θ, ϕ) =

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

 (6.8)

is the rotation matrix. To obtain its explicit form, we recall that the matrices for
rotations about the z- and y-axes are

R(ϕẑ) =

 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 and R(θŷ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , (6.9)

respectively. Hence,

R(ω, θ, ϕ) = R(ϕẑ)R(θŷ)R(ωẑ)

=

 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


 cosω − sinω 0

sinω cosω 0

0 0 1

 =

 cosϕ cos θ cosω − sinϕ sinω − cosϕ cos θ sinω − sinϕ cosω cosϕ sin θ

sinϕ cos θ cosω + cosϕ sinω − sinϕ cos θ sinω + cosϕ cosω sinϕ sin θ

− sin θ cosω sin θ sinω cos θ

 . (6.10)

The inverse of the rotation R(ω, θ, ϕ) is R(−ϕ,−θ,−ω) and, because rotation matrices
are orthogonal, its matrix is the transpose of R(ω, θ, ϕ), i.e.,

R−1(ω, θ, ϕ) = R(−ϕ,−θ,−ω) = R(−ωẑ)R(−θŷ)R(−ϕẑ) = RT(ω, θ, ϕ). (6.11)

Let us now consider transformations C = T (t)R(ω, θ, ϕ)S(α) that are products of
a scaling S(α), a rotation R(ω, θ, ϕ) and a translation T (t). C transforms a point r into

r′ = Cr = T (t)R(ω, θ, ϕ)S(α) r (6.12)

or, in matrix form, x′

y′

z′

 = R(ω, θ, ϕ)

 αx 0 0

0 αy 0

0 0 αz


 x

y

z

+

 tx

ty

tz

 . (6.13)
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Notice that the order of the factors does matter; the product of the same factors in re-
verse order D = S(α)R(ω, θ, ϕ) T (t) transforms r into a point r′′ = Dr with coordinates x′′

y′′

z′′

 =

 αx 0 0

0 αy 0

0 0 αz

R(ω, θ, ϕ)
 x+ tx

y + ty

z + tz

 . (6.14)

Evidently, in general, r′′ ̸= r′.

Given a surface F (r) = 0, we can generate a new surface by applying a scaling S(α)
followed by a rotation R(ω, θ, ϕ) and a translation T (t) (we shall always adopt this
order). The implicit equation of the transformed surface is

G(r) = F
[
S−1(α)R−1(ω, θ, ϕ) T −1(t) r

]
= 0, (6.15)

which simply expresses the fact that G(r) equals the value of the original function at the
point r′ = S−1(α)R−1(ω, θ, ϕ) T −1(t) r that transforms into r [i.e., r = T (t)R(ω, θ, ϕ)
S(α)r′]. As an example, Fig. 6.2 shows schematically the transformation of a sphere
into an asymmetric ellipsoid.

x

y

x

y

x

y

x

y

S(1.5,0.5,1) R(90◦,0,0) T(1,0,0)

Figure 6.2: Example of a surface transformation: a sphere, F (r) = x2 + y2 + z2 − 1 = 0,

is transformed into an ellipsoid. Note the order in which scaling, rotation and translation are

applied. Of course, the transformation that leads to the final surface is not unique: a scaling

S(0.5, 1.5, 1) followed by a translation T (1, 0, 0) would have the same effect.

6.2 Particle tracking and quadric surfaces

As already mentioned, the material systems considered in the simulations consist of a
number of homogeneous bodies defined by their composition (material) and limiting
surfaces. Figure 6.3 shows a simple geometry consisting of 3 bodies Bk (k = 1, 2, 3)
limited by four surfaces Si (i = 1 to 4). Each surface Si is specified by giving its
equation Fi(r) = 0, and each body Bk is defined by giving the side pointers SPi(Bk) of
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all the surfaces Si that limit it. We recall that the side pointer is the sign of the surface
function Fi(r) at the points r of the body. Thus body B1, which is limited by the
single surface 1 and is inside of it, is defined by the side pointer SP1(B1) = −1. Body
2 is limited by the surfaces 2, 3 and 4, with respective side pointers SP2(B2) = −1,
SP3(B2) = −1 and SP4(B2) = +1. Given a point r0, let SPi(r0) denote the side pointer
of the surface Si at r0. The point lies within body Bk if SPi(r0) = SPi(Bk) for all the
surfaces Si that limit Bk. Thus a point with SP1(r0) = −1 is in body 1, and a point
with SP2(r0) = −1, SP3(r0) = −1 and SP4(r0) = +1 is in body 2. Note that to identify
the body that contains a point we need to know only the SPs of the surfaces that limit
that body.

1 /

/

2/
3

/
4

3
1

2

Figure 6.3: Schematic representation of a simple geometry. The solid triangles indicate the

outside of the surfaces (side pointer = +1); numbers in squares indicate bodies.

A particle track is simulated as a sequence of connected straight free flights, each
of which ends with an interaction of the particle with the current medium. When the
particle reaches an interface (i.e., a surface limiting two bodies of different compositions),
the simulation has to be halted and restarted with the interaction cross sections of the
medium beyond the interface. The most basic geometry operation, which is to be
performed millions of times in the course of a single simulation, is the calculation of
intersections of particle track segments with limiting surfaces. Assume that a particle
starts a free flight of length s0 from a point r0 in the direction d̂. We wish to determine
whether the track segment intersects a surface F (r) = 0 that limits the body where
the particle is moving. The intersections of the ray r0 + sd̂ with the surface occur at
distances s from r0 that are solutions of the following equation

f(s) ≡ F (r0 + sd̂) = 0, (6.16)

where f(s) is value of the surface function along the ray. In the course of a free flight
of length s0, the particle will cross the surface only if this equation has a root s such
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that 0 < s ≤ s0. Note that the SP of a surface at the particle position changes when
the particle crosses the surface. By keeping track of the SPs of the surfaces at the
current position of the particle, the body where the particle is moving is identified
unambiguously. The “location” of a particle is defined by giving its position coordinates
and the body where the particle is moving.

To simplify the calculation of interface crossings, it is convenient to use surfaces
expressed by simple analytical functions. In the pengeom package, all limiting surfaces
are assumed to be quadrics given by the implicit equation

F (r) = Axxx
2 + Axyxy + Axzxz + Ayyy

2 + Ayzyz + Azzz
2

+ Axx+ Ayy + Azz + A0 = 0, (6.17)

which includes planes, spheres, cylinders, cones, ellipsoids, paraboloids, hyperboloids,
etc. It is useful to express the generic quadric equation (6.17) in matrix form,

F (r) = rTA r+ATr+ A0 = 0, (6.18)

where

A ≡


Axx

1
2
Axy

1
2
Axz

1
2
Axy Ayy

1
2
Ayz

1
2
Axz

1
2
Ayz Azz

 (6.19)

is a three-dimensional symmetric matrix. As usual, vectors such as r andA ≡ (Ax, Ay, Az)
are considered here as one-column matrices. rT is a one-row matrix, and ATr is the
familiar dot product A·r. The gradient of the quadric surface function is the vector

∇F (r) = 2Ar+A . (6.20)

The main advantage of using quadric surfaces is that the Eq. (6.16) for the ray
intersections is quadratic,

f(s) = as2 + bs+ c = 0 (6.21)

with

a = d̂TAd̂ , b = 2d̂TAr0 + d̂TA = d̂T∇F (r0) , c = F (r0) , (6.22)

and its roots are

s =
−b±

√
∆

2a
with ∆ ≡ b2 − 4ac. (6.23)

If the discriminant ∆ is positive, there are two real roots and the ray intersects the
surface twice; if ∆ = 0, there is a real root of multiplicity two and the ray grazes the
surface; finally, if ∆ is negative, there are no real roots and the ray misses the surface.
When A = 0, the surface is a plane and there is only one root, s = −c/b. Of course, we
need to consider only intersections ahead of the ray, which correspond to s > 0.
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An operation that needs to be performed frequently, at least once in each simulated
shower, is the location of the initial position of a particle, r0, in the geometrical structure.
That is, we need to determine what is the body that contains that point, by computing
the SPs at r0 of all the surfaces that limit the body. This seemingly simple operation
leads to numerical ambiguities when the point is very close to a surface. Because of the
limited accuracy of floating-point numbers in a computer, we may be unable to assert
with confidence whether the point is inside or outside the surface. To get rid of this kind
of ambiguity, we shall consider fuzzy surfaces, that is, a surface will swell or shrink very
slightly when the particle crosses it, so as to ensure that the particle is at the correct
side of the surface. Of course, our mathematical surfaces will not be altered; instead,
we will define the SP of a given surface at the particle position r0 by considering the
relative motion of the particle with respect to the surface. Notice that, to apply this
strategy, we must know the direction of motion d̂ of the particle.

For quadric surfaces, side ambiguities can be readily resolved by considering only
the parameters of the master equation (6.21) for the particle ray that starts at r0 in
the direction d̂ (see Fig. 6.4). On the one hand, the coefficient c is the value of the
surface function at r0 and, in principle, its sign gives the side pointer: SP = sign(c),
where sign(c) = +1 if c ≥ 0, and = −1 if c < 0. Ambiguities may occur only when
|c| is smaller than a certain small value ϵ, the “fuzziness” level, which will be specified
below. On the other hand, the coefficient b is the projection of the gradient of F (r) at r0
along the direction of flight, i.e., the directional derivative of F (r). Hence, if b > 0 the
particle is “leaving” the surface (moving from inside to outside). Conversely, if b < 0
the particle “enters” the surface (moves from outside to inside). The surface is made
fuzzy by simply defining the SP at an ambiguous point r0 (i.e., such that |c| < ϵ) to
be the same as the SP at a position slightly advanced along the ray, where the sign of
F (r) is unambiguous. That is, we set SP = −1 (inside) if b < 0 and SP = +1 (outside)
if b > 0. Summarizing, the side pointer of a fuzzy quadric surface at a point r0 is given
by the following simple algorithm,

if |c| > ϵ, then

SP = sign(c)

else

SP = sign(b)

end if . (6.24)

Once we have determined the current body, which contains the point r0 where the
particle is, we can sample the length s0 of the free flight to the next interaction by
using the cross sections of the material in the current body. A call to the tracking
subroutine will then simulate a “jump” of the particle to a new position, which will be
either the end of the step (r0 + s0d̂) or the intersection with one of the surfaces that
limit the current body, whichever occurs first. That is, the tracking subroutine must
calculate the distances s to the intersections with the limiting surfaces, by solving the
corresponding master equation (6.21), and compare them with the free-flight length s0.



230 Chapter 6. Constructive quadric geometry

DC Br
0

g
1 g

2

d̂

/

/

r
0

1

2

A d̂

Figure 6.4: Intersections of rays r0 + sd̂ with two quadric surfaces, which for simplicity

are represented as spheres, The solid triangles indicate the outside of the surfaces (SP = +1).

The two surfaces differ only in their orientation (i.e., their defining functions differ by a

global negative factor) and, consequently, their gradient vectors gi = ∇Fi(r) are in opposite

directions. The SP of a surface at r0 may be ambiguous when |F (r0)| < ϵ, i.e., when the point

lies close to the surface. The ray segments where this occurs have been indicated by solid

blocks, not to scale.

Note that there is no need of storing the SPs of the limiting surfaces in memory, because
the SP of a surface at r0 is simply the sign of the c coefficient of its master equation
(6.21), which has to be re-evaluated each time the tracking routine is invoked. Moreover,
we can use the calculated c values to verify that the particle effectively is in the declared
body, and apply suitable corrections when this is not the case.

After each surface crossing, the tracking subroutine has to identify the new body
by computing the SPs of its limiting surfaces at the particle position r0. Although the
particle has just crossed one of these surfaces, because of round-off errors, its numerical
position coordinates may be at either side of the mathematical surface, and even at
a distance such that |c| > ϵ (see Fig. 6.4). When r0 is ambiguous with respect to
the surface (i.e., when |c| < ϵ), (6.24) gives the correct SP. The difficulty arises when
r0 is not ambiguous, in which case the numerical position may be either before the
mathematical surface (undershot) or beyond it (overshot). In the case of an overshot, c
has the correct sign, and the program will give the correct SP. On the contrary, when
there is an undershot, the wrong SP will be assigned. While a slight error in the position
coordinates is tolerable, altering the SP implies changing the body and material were the
particle moves. With mathematical surfaces, wrong SPs have to be corrected by keeping
track of the surfaces that are crossed by the particle, which complicates the tracking
algorithm. An advantage of using fuzzy surfaces is that, in the case of an undershot,
the program usually corrects itself, because one additional jump, of negligible length,
places the particle at an ambiguous position where the correct SP will be assigned.

As indicated above, the tracking routine also has to determine the distances s from
the initial position r0 of the particle to the intersections of the ray r0 + sd̂ with the
limiting surfaces of the current body. Very often, non-trivial situations arise just after
the crossing of a limiting surface, because the position r0 of the particle may be ambigu-
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Figure 6.5: The intersections of a ray r0 + sd̂ with a fuzzy quadric surface, described in

terms of the variation of the master function, f(s) = as2+ bs+ c, Eq. (6.21). The path length

s increases to the right. The roots s1 and s2 of the equation f(s) = 0 are the distances at

which the ray intersects the surface, sorted in increasing order (s1 < s2). The solid blocks

(labelled A, B, C and D) indicate ray segments about the intersections with the surface where

|f(s)| < ϵ. When the initial point r0 lies in one of these segments, the sign of f(s), that is,

the SP of the surface at r0, may be ambiguous because of floating-point round-off errors. The

ambiguity can be resolved by considering the sign of b [i.e., of the derivative of f(s) at s = 0],

and the existence of a second crossing ahead can be recognized from the sign of a, as described

in the text.

ous with respect to the surface. In such situations, the tracking routine has to evaluate
the SP of the surface and also discriminate whether the surface is going to be crossed
again or not. If the surface is a plane (a = 0), there is only one intersection; the SP
is determined by the signs of c and b, and after verifying it we can proceed as if the
particle had effectively passed the surface. For non-planar quadric surfaces, we need to
consider only the case in which the ray effectively crosses the surface (i.e., when the
discriminant ∆ = b2− 4ac is strictly positive). We can therefore assume that Eq. (6.21)
has two different roots, s1 and s2, sorted in increasing order (s1 < s2). Note that for
an ambiguous point either s1 or s2 is close to zero. When s1 ∼ 0 and s2 is positive,
the ray crosses again the surface at s2; when s2 is near zero, there are no intersections
ahead. Unfortunately, round-off errors may still lead to ambiguities when both |s1| and
|s2| are small, e.g., when the ray is almost tangent to the surface (and when the ray
crosses a cone near its tip). Therefore, to reveal the existence of a second intersection
ahead, it is preferable to consider some global property of the master function f(s) that
is less sensitive to round-off errors. Figure 6.5 shows that we may have four different
situations, which are characterised by the signs of b and a:

A) b > 0 and a < 0: SP = +1, second crossing at s2.
B) b ≥ 0 and a > 0: SP = +1, no more crossings.
C) b ≤ 0 and a < 0: SP = −1, no more crossings.
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D) b < 0 and a > 0: SP = −1, second crossing at s2.

When the product ab is negative or zero (cases A and D), s1 ∼ 0 and the second root
is positive, that is, the ray does intersect again the surface at a certain distance from
the initial point r0, even if the numerical value of s2 turns out to be negative due to
round-off errors. In the latter case, we can simply consider that the intersection is at
s = 0, because the surface is fuzzy. On the other hand, when ab > 0 (cases B and C),
s2 ∼ 0 and the first root is negative, so that there are no intersections beyond r0.

To complete the description of the tracking algorithm, we only have to specify the
value of the fuzziness level ϵ, so as to make sure that all points r0 such that |F (r0)| > ϵ
are assigned the correct SP. There is a subtlety here, because the width of the interval
about an intersection where the sign of F (r) may be ambiguous depends on the steepness
of the master function f(s). To soften this dependency, we note that the largest absolute
value of |f(s)| in the interval (s1, s2) occurs at its midpoint (see Fig. 6.5)

sh =
1

2
(s1 + s2) = −

b

2a
, (6.25)

and is given by

|f(sh)| =
∣∣as2h + bsh + c

∣∣ = − ∆

4|a|
. (6.26)

It is then to be expected that uncertainties in the value of F (r0) at points near an
intersection will be larger when |f(sh)| is larger. From numerical experiments, using
double-precision arithmetic, we have found that the SP is assigned correctly to points
r0 that satisfy the condition

c > ϵ ≡ 10−12 ∆

|a|
. (6.27a)

Since the derivative of the master function at an intersection is f ′(si) = 2asi + b = ±∆,
the ambigous points lie in an interval about the intersection that has a half length of
about ϵ/|f ′(si)| = 10−12/|a|. That is, the fuzzy surface will swell or shrink a distance of
about 10−12/|a| along the direction of the ray. In the case of planes, a = 0, the fuzziness
level is assumed to be a constant, i.e.,

ϵ ≡ 10−12 . (6.27b)

so that the interval of ambiguous points has a half-length equal to ϵ/|f ′(si)| = 10−12/|b|,
which increases when the angle between the ray and the normal to the plane increases.
Note that when b = 0 (and a = 0) the ray is parallel to the plane and does not intersect
it. The precise value of the numerical constant 10−12 is not critical; when it is increased,
say by a factor of 100, the ambiguity interval widens by approximately that factor (i.e.,
surfaces become fuzzier), but we have not observed any harmful consequences.

The complete tracking algorithm is described in Table 6.1. This algorithm is robust,
in the sense that it consistently assigns a SP to ambiguous points r0 and determines
the distance of the next crossing, if there is one. Note, however, that two fuzzy surfaces
may not be correctly resolved when they are too close to each other. As a measure
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Table 6.1: Algorithm for computing the intersections of a ray, r0 + sd̂, with a fuzzy quadric

surface. It solves the master equation f(s) = as2 + bs + c = 0 and gives the number n of

intersections ahead of the ray. If there is any, the algorithm also provides the corresponding

distances sk (k = 1 if n = 1; k = 1, 2 if n = 2) sorted in increasing order. Planes are treated

separately to avoid unnecessary calculations.

n = 0

if |a| < 10−36, then [the surface is a plane]

if |b| > 0, then

ϵ = 10−12

if |c| < ϵ, then [the point r0 is ambiguous]

SP = sign(b)

else

SP = sign(c)

t = −c/b
if t > 0, set n = 1, s1 = t

end if

else [ray parallel to the plane]

SP = sign(c)

end if

else [the surface is not a plane]

∆ = b2 − 4ac, ϵ = 10−12∆/|a|
if |c| < ϵ, then [the point r0 is ambiguous]

ambig = 1, SP = sign(b)

else

ambig = 0, SP = sign(c)

end if

if ∆ < 10−36, exit [no “true” intersections]

t1 =
−b
2a
−
√
∆

2|a|
, t2 =

−b
2a

+

√
∆

2|a|
if ambig = 0, then

if t1 > 0, set n = 1, s1 = t1

if t2 > 0, set n = n+ 1, sn = t2

else

if ab < 0, set n = 1, s1 = max{t2, 0}
end if

end if
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of the accuracy of the algorithm we may use the resolution, defined as the minimal
distance between two surfaces that are neatly resolved. The resolution is determined by
the fuzziness level and by the accumulated numerical round-off errors from the surface
coefficients and from the calculation of distances to interfaces. In general, the resolution
worsens when the distance to the origin of coordinates increases. That is, a small
geometrical structure, which is correctly resolved when placed near the origin, may
become distorted or invisible when it is translated to a farther position. With the
adopted value of the fuzziness parameter, 10−12, our algorithm is capable of resolving a
sphere of unit radius located at a distance of 107 length units from the origin.

6.3 Definition of quadric surfaces

Although Eq. (6.17) contains 10 parameters, a translation to central position, followed
by a rotation to standard orientation and a scaling to “normalize” the remaining pa-
rameters, transform a real surface into one of 10 possible “reduced” forms. These are
given by the expression

Fr(r) = I1x
2 + I2y

2 + I3z
2 + I4z + I5 = 0, (6.28)

where the coefficients (indices) I1 to I5 can only take the values −1, 0 or 1. Notice
that reduced quadrics have central symmetry about the z-axis, i.e., Fr(−x,−y, z) =
Fr(x, y, z). The real reduced quadrics are given in Table 6.2 and displayed in Fig. 6.6.
We do not consider imaginary surfaces (e.g., the imaginary ellipsoid x2+y2+z2+1 = 0),
which are of no interest here. Also, we have omitted quadrics that represent planes in
various orientations (such as crossing planes x2 − y2 = 0, parallel planes z2 − 1 = 0,
and double planes z2 = 0), because they are more conveniently defined by using simple
planes, which do not require taking square roots to calculate ray crossings.

In practice, limiting surfaces are frequently described in “geometrical” form and
it may be inconvenient to obtain the corresponding quadric parameters. Try with a
simple example: obtain the parameters of a circular cylinder of radius R such that
its symmetry axis goes through the origin and is parallel to the vector u = (1, 1, 1).
To facilitate the definition of the geometry, each quadric surface can be specified either
through its implicit equation or by means of its reduced form, which defines the “shape”
of the surface (see Fig. 6.6), and the set of geometrical transformations that produce the
desired surface. Starting from the corresponding reduced form, a quadric is obtained by
applying the following transformations (in the quoted order).

(i) A scaling along the directions of the axes, defined by the scaling factors2 X-SCALE=
αx, Y-SCALE= αy and Z-SCALE= αz. The equation of the scaled quadric is

Fs(r) = I1

(
x

αx

)2

+ I2

(
y

αy

)2

+ I3

(
z

αz

)2

+ I4
z

αz

+ I5 = 0. (6.29)

2Keywords used to denote the various parameters in the geometry definition file are written in
typewriter font, e.g., X-SCALE). See Section 6.4.
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For instance, this transforms the reduced sphere into an ellipsoid with semiaxes
equal to the scaling factors.

(ii) A rotation, R(ω, θ, ϕ), defined through the Euler angles OMEGA= ω, THETA= θ and
PHI= ϕ. Notice that the rotation R(ω, θ, ϕ) transforms a plane perpendicular to
the z-axis into a plane perpendicular to the direction with polar and azimuthal
angles THETA and PHI, respectively. The first Euler angle, ω has no effect when
the initial (scaled) quadric is symmetric about the z-axis.

(iii) A translation, defined by the components of the displacement vector t (X-SHIFT=
tx, Y-SHIFT= ty, Z-SHIFT= tz).

Thus, a general quadric surface is completely specified by giving the set of indices (I1,
I2, I3, I4, I5), the scale factors (X-SCALE, Y-SCALE, Z-SCALE), the Euler angles (OMEGA,
THETA, PHI) and the displacement vector (X-SHIFT, Y-SHIFT, Z-SHIFT). Any real quadric
surface can be expressed in this way. The cylinder mentioned in the above example is
defined by

I1 = 1, I2 = 1, I3 = 0, I4 = 0, I5 = −1,
X-SCALE = Y-SCALE = R, Z-SCALE = 1,

OMEGA = 0, THETA = arccos(1/
√
3) = 54.73 deg, PHI = arccos(1/

√
2) = 45 deg,

X-SHIFT = Y-SHIFT = Z-SHIFT = 0,

where the rotation angles θ and ϕ are determined from the relations cos θ = ẑ·u/|u| and
cosϕ sin θ = x̂·u/|u| with u = (1, 1, 1).

The implicit equation of the quadric is obtained as follows. The equation (6.28) of
the scaled quadric can be written in matrix form [cf. Eq. (6.18)],

rTA r+ATr+ A0 = 0, (6.30)

with

A =


I1/α

2
x 0 0

0 I2/α
2
x 0

0 0 I3/α
2
z

 A = (0, 0, I4/αz) , A0 = I5 . (6.31)

The equation for the rotated and shifted quadric is [see Eq. (6.15)]

(r− t)TRART (r− t) + (RA)T(r− t) + A0 = 0, (6.32)

which can be written in the generic form (6.18)

rTA′ r+A′Tr+ A′
0 = 0 (6.33)

with

A′ = RART, A′ = RA− 2A′t, A′
0 = A0 + tT(A′t−RA). (6.34)
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Figure 6.6: Non-planar reduced quadric surfaces and their indices [see Eq. (6.28)]. In all

cases, the perspective is the same as for the sphere.
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Table 6.2: Reduced quadrics.

Reduced form Indices Quadric

z − 1 = 0 0 0 0 1 −1 plane

z2 − 1 = 0 0 0 1 0 −1 pair of parallel planes

x2 + y2 + z2 − 1 = 0 1 1 1 0 −1 sphere

x2 + y2 − 1 = 0 1 1 0 0 −1 cylinder

x2 − y2 − 1 = 0 1 −1 0 0 −1 hyperbolic cylinder

x2 + y2 − z2 = 0 1 1 −1 0 0 cone

x2 + y2 − z2 − 1 = 0 1 1 −1 0 −1 one sheet hyperboloid

x2 + y2 − z2 + 1 = 0 1 1 −1 0 1 two sheet hyperboloid

x2 + y2 − z = 0 1 1 0 −1 0 paraboloid

x2 − z = 0 1 0 0 −1 0 parabolic cylinder

x2 − y2 − z = 0 1 −1 0 −1 0 hyperbolic paraboloid

. . . and permutations of x and y.

From these relations, the parameters of the implicit equation (6.17) are easily obtained.
Note that the transformation (scaling, rotation and translation) of a surface leaves its
SPs unaltered, i.e., points that are inside (outside) the surface transform into points
inside (outside) the transformed surface.

6.4 Constructive quadric geometry

A complex geometrical structure is defined as a set of bodies. To define each body we
have to specify its limiting quadric surfaces F (r) = 0, with corresponding SPs (+1 or
−1), and its composition (i.e., the material that fills the body). In penelope, an in
other simulation codes, each material is identified with an integer label; empty spaces
can be defined as bodies “filled” with a vacuum (a special material with null atomic
density, N = 0). It is considered that bodies are defined in “ascending”, exclusive order
so that previously defined bodies effectively delimit the new ones; overlaps between
different bodies are not permitted. This is convenient, for instance, to describe bodies
with inclusions. The work of the geometry routines is much easier when bodies are
completely defined by their limiting surfaces, but this is not always possible or convenient
for the user. The example in Section 6.7 describes an arrow inside a sphere (Fig. 6.7);
the arrow should be defined first so that it automatically limits the volume filled by the
material inside the sphere. It is impossible to define the hollow sphere as a single body
by means of only its limiting quadric surfaces, because the surfaces of bodies 1 and 2
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(the arrow) do not limit body 3 (the hollow sphere) in all their extensions.

1

2
4

5

3 6

3

2

1

Figure 6.7: Example of simple quadric geometry; an arrow within a sphere (the corre-

sponding definition file is given in Section 6.7). The solid triangles indicate the outside of the

surfaces (side pointer SP = +1). Numbers in squares indicate bodies.

The subroutine package pengeom contains a subroutine, named LOCATE, that “lo-
cates” a point r, i.e., determines the body that contains it, if any. The obvious method
is to compute the side pointers [i.e., the sign of F (r)] for all surfaces and, then, explore
the bodies in ascending order looking for the first one that fits the given side pointers.
This brute-force procedure was used in older versions of pengeom; it has the advantage
of being robust, and easy to program, but becomes too slow for complex geometries (see
below). A second subroutine, named STEP, “moves” the particle from a given position
r0 within a body B a given distance (step length) s0 in a given direction d̂. STEP also
checks if the particle leaves the active medium and, when this occurs, stops the particle
just after entering the new material. To do this, pengeom determines the intersections
of the particle ray r0 + sd̂ (0 < s ≤ s0) with all the surfaces that limit the body B
(including those that limit other bodies that limit B), and checks whether the final po-
sition r0+ sd̂ remains in B or not. Subroutines LOCATE and STEP determine the surface
side pointers and calculate the intersections of the particle ray with the body surfaces
by using the methods described in Section 6.2. When the particle enters a void volume
(perfect vacuum), subroutine STEP moves it freely along the ray until it enters a material
body or leaves the system.

Notice that bodies can be concave, i.e., the straight segment joining any two points
in a body may not be wholly contained in the body. Hence, even when the final position
of the particle lies within the initial body, we must analyse all the intersections of the
particle ray with the limiting surfaces of B and check if the particle has left the body after
any of the intersections. When the particle leaves the initial body, say after travelling
a distance s′ (< s0), we have to locate the point r′ = r0 + s′d̂. As indicated above, the
easiest method consists of computing the side pointers of all surfaces of the system at
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r′, and determining the body B′ that contains r′ by analysing the side pointers of the
different bodies in ascending order. It is clear that, for complex geometries, this may
be a very slow process. We can speed it up by simply disregarding those elements of
the geometry that cannot be reached in a single step (e.g., bodies that are “screened”
by other bodies). Unfortunately, as a body can be limited by all the other bodies that
have been defined previously, the algorithm can be improved only at the expense of
providing it with additional information. We shall adopt a simple strategy that consists
of lumping groups of bodies together to form modules.

A module is defined as a connected volume, limited only by quadric surfaces, that
contains one or several bodies. A space volume is said to be connected when any two
points in the volume can be joined by an arc of curve that is completely contained
within the volume. A module can contain other modules, which will be referred to as
submodules of the first. The volume of a module is filled with a homogeneous material,
which automatically fills the cavities of the module (i.e., volumes that do not correspond
to a body or to a submodule); these filled cavities are considered as a single new body.
A body that is connected and limited only by surfaces can be declared either as a body
or as a module. For the sake of simplicity, modules are required to satisfy the following
conditions: 1) the bodies and submodules of a module must be completely contained
within the parent module (i.e., it is not allowed to have portions of bodies or submodules
that lie outside the module) and 2) a submodule of a module cannot overlap with other
submodules and bodies of the same module (this is necessary to make sure that a particle
can only enter or leave a module through its limiting surfaces). Notice however, that
the bodies of a module are still assumed to be defined in ascending order, i.e., a body
is limited by its surfaces and by the previously defined bodies of the same module, so
that inclusions and interpenetrating bodies can be easily defined.

A module (with its possible submodules) can represent a rigid part (e.g., a radioac-
tive source, an accelerator head, a detector, a phantom, etc.) of a more complex material
system. To facilitate the definition of the geometry, it is useful to allow free translations
and rotations of the individual modules. The definition of a module (see below) includes
the parameters of a rotation R(ω, θ, ϕ) and a translation T (t), which are optional and
serve to modify the position and orientation of the module (and its bodies and submod-
ules) with respect to the laboratory reference frame. As before, the rotation is applied
first. All submodules and bodies of the same module are rotated and shifted together.

In practical simulations with finite geometries, the tracking of a particle should be
discontinued when it leaves the material system. In pengeom this is done automatically
by assuming that the complete system is contained within a single convex module, the
enclosure, which comprises the whole system. A space volume is convex if the straight
segment joining any two points in the volume is wholly contained within the volume. It
is also convenient (but not necessary) to require that the enclosure has a finite volume,
so that all rays starting from any point within the volume of the enclosure do intersect
one of its limiting surfaces at a finite distance. When an enclosure is not defined by the
user (i.e., when the geometry consists of several separate modules and/or bodies that
are not inside a module), pengeom defines the enclosure as a large sphere of 107 cm
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radius, centred at the origin of coordinates. It is assumed that there is a perfect vacuum
outside the enclosure, and in any inner volume that is not a body or a filled module.
If the geometry definition contains bodies that extend beyond the enclosure, they are
truncated and only the parts inside the enclosure are retained. Hence, particles that
leave the enclosure will never return to the material system.
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Figure 6.8: Planar cut of a geometry example, showing modules (number labels in circles)

and bodies (number labels in squares), and the associated genealogical tree. Notice that a

module can always be defined as a body limited by their submodules and daughter bodies,

but this affects the structure of the genealogical tree and, therefore, the efficiency (speed) of

the geometry operations.

For programming purposes, it is useful to imagine each module as the mother of its
bodies and submodules, and as the daughter of the module that contains it. We thus
have a kind of genealogical tree with various generations of modules and bodies (see Fig.
6.8). The first generation reduces to the enclosure (which is the only motherless module).
The members of the second generation are bodies and modules that are daughters of
the enclosure. The n-th generation consists of modules and bodies whose mothers
belong to the (n − 1)-th generation. Each module is defined by its limiting surfaces
(which determine the border with the external world) and those of their descendants
(which determine the module’s internal structure); this is not true for bodies (childless
members of the tree), which can be limited either by surfaces, by other sister bodies or
by a combination of both. A body that is limited only by surfaces can be defined as
a module. While bodies cannot be modified, modules can be rotated, translated and
cloned (see below).

Although modules may in general be concave, the enclosure module must be convex.
Consider, for instance, the case of a simple geometry consisting of a single hollow cylin-
der in vacuum, Fig. 6.9, which can be defined either as a body or as a module. Since
the hollow cylinder is concave, it must be defined as a body. If it were defined as a mod-
ule, it would be considered as the enclosure and pengeom would malfunction, because
particles that enter the hollow coming from the wall would be assumed to enter the
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“external” vacuum, and would not stop at the opposite wall. Note that the pengeom
routines are unable to check whether the root module is convex or concave. The in-
consistency becomes apparent when the geometry is analysed with the two-dimensional
viewer gview2d (see Section 6.6); the three-dimensional viewer gview3d, however, will
generate correct images even when the hollow cylinder is defined as a module (because
the light rays in gview3d do not penetrate material bodies).
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B

C

D

A

B

Figure 6.9: Tracking error caused by defining an enclosure that is concave. The example

corresponds to a simple geometry consisting of a hollow cylinder in vacuum. The left diagram

shows the correct tracking of a particle that crosses the material structure without interacting.

When the hollow cylinder is defined as a body, the particle crosses the first wall (A–B), enters

the hollow, moves freely to point C, and then crosses the second wall (C–D). If the hollow

cylinder is defined as a module, pengeom identifies it with the enclosure and the program

malfunctions: the particle crosses the first wall (A–B), enters the hollow at B and, because it

is in the vacuum, flies freely to infinity, failing to “see” the second wall.

6.5 Geometry-definition file

The geometry is defined from an input file (UNIT=IRD). In principle, this permits the
simulation of different geometries by using the same main program. The input file
consists of a series of data sets, which define the different elements (surfaces, bodies
and modules). A data set consists of a number of strictly formatted text lines; it starts
and ends with a separation line filled with zeros. The first line after each separation
line must start with one of the defining 8-character strings “SURFACE-”, “SURFACE*”,
“BODY----”, “MODULE--”, CLONE---”, “INCLUDE-”, “INCLUDE*” or “END-----” (here,
blank characters are denoted by “-”; they are essential!). Informative text (as many
lines as desired) can be written at the beginning of the file, before the first separation
line. A line starting with the string “END-----” after a separation line discontinues
the reading of geometry data. Each element is identified by its type (surface, body or
module) and a four-digit integer label. Although the element label can be given an
arbitrary value (from −999 to 9,999) in the input file, pengeom redefines it so that
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elements of a given kind are numbered consecutively, according to their input order (see
below). Notice that bodies and modules are considered as elements of the same kind
(i.e., assigning the same label to a body and to a module will cause an error of the
reading routine).

In the input file, numerical quantities must be written within the parentheses in the
specified format. Lengths are in arbitrary units; angles can be given in either degrees
(DEG) or radians (RAD). When angles are in degrees, it is not necessary to specify the
unit. The parameters in each data set can be entered in any order. They can even be
defined several times, in which case, only the last input value is accepted. This is useful,
e.g., to study variations caused by changing these parameters without duplicating the
input file. Comments can be written at the end of the first line of each element, after
the closing parenthesis of the numerical field. These comments are inherited by cloned
elements, and are useful for understanding and modifying large geometry definition
files. Furthermore, comment lines, starting with “C-” or “c-” (as in Fortran, but with
a blank in the second column), can be introduced anywhere in the geometry file. The
information in comment lines, however, is not transferred to cloned elements.

The I4 value following each numerical parameter must be set equal to zero (or
negative) to make the parameter value effective. When this field contains a positive
integer IP, the parameter is set equal to the value stored in the IP-th component of the
array PARINP, an input argument of subroutine GEOMIN (see Section 6.5). This permits
the user to modify the geometry parameters from the main program.

• The format of the data set of a surface defined in reduced form is the following,

0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( I4) Text describing the surface ...
INDICES=(I2,I2,I2,I2,I2)
X-SCALE=( E22.15 , I4) (DEFAULT=1.0)
Y-SCALE=( E22.15 , I4) (DEFAULT=1.0)
Z-SCALE=( E22.15 , I4) (DEFAULT=1.0)

OMEGA=( E22.15 , I4) DEG (DEFAULT=0.0)
THETA=( E22.15 , I4) DEG (DEFAULT=0.0)

PHI=( E22.15 , I4) RAD (DEFAULT=0.0)
X-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
Y-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
Z-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000

◦ Surface parameters are optional and can be entered in any order. The default
values indicated above are assigned to parameters not defined in the input file.
Thus, to define an elliptic cylinder centred on the z-axis, only the parameters
X-SCALE and Y-SCALE are required. Notice that scale parameters must be greater
than zero.
◦ The keyword SURFACE* serves to define “fixed” surfaces, which will not be af-
fected by possible translations or rotations in subsequent stages of the geometry
definition. These surfaces are useful, e.g., to define aligned modules (see below).
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N.B.: The use of double planes (e.g., z2 − 1 = 0) should be avoided, because
pairs of single planes (z + 1 = 0 and z − 1 = 0) are easier to handle and may
allow unveiling possible surface redundancies (see Section 6.6).

• Limiting surfaces can be defined in implicit form. When a quadric surface is
defined in this way, the indices must be set to zero; this switches the reading
subroutine GEOMIN to implicit mode. The format of an implicit surface data set is

0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( I4) Text describing the surface ...
INDICES=( 0, 0, 0, 0, 0)

AXX=( E22.15 , I4) (DEFAULT=0.0)
AXY=( E22.15 , I4) (DEFAULT=0.0)
AXZ=( E22.15 , I4) (DEFAULT=0.0)
AYY=( E22.15 , I4) (DEFAULT=0.0)
AYZ=( E22.15 , I4) (DEFAULT=0.0)
AZZ=( E22.15 , I4) (DEFAULT=0.0)
AX=( E22.15 , I4) (DEFAULT=0.0)
AY=( E22.15 , I4) (DEFAULT=0.0)
AZ=( E22.15 , I4) (DEFAULT=0.0)
A0=( E22.15 , I4) (DEFAULT=0.0)

1111111111111111111111111111111111111111111111111111111111111111
OMEGA=( E22.15 , I4) DEG (DEFAULT=0.0)
THETA=( E22.15 , I4) DEG (DEFAULT=0.0)

PHI=( E22.15 , I4) RAD (DEFAULT=0.0)
X-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
Y-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
Z-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000

◦ Surface parameters are optional and can be entered in any order. The default
value 0.0 is assigned to parameters not defined in the input file.
◦ The rotation and the translation are optional. The line filled with 1’s ends the
definition of coefficients and starts that of transformation parameters (it can be
skipped if no transformation parameters are entered).
◦ Starred surfaces, declared with the keyword SURFACE*, can also be defined in
implicit form. These surfaces are fixed, i.e., they cannot be modified by subsequent
translations or rotations.

• Bodies are delimited by previously defined surfaces, bodies and modules. The
format of a body data set is

0000000000000000000000000000000000000000000000000000000000000000
BODY ( I4) Text describing the body ...
MATERIAL( I4)
SURFACE ( I4), SIDE POINTER=(I2)
SURFACE ( I4), SIDE POINTER=(I2) ...
BODY ( I4)
BODY ( I4) ...
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MODULE ( I4)
MODULE ( I4) ...
0000000000000000000000000000000000000000000000000000000000000000

◦ The indicator of each material (2nd line) must agree with the convention adopted
in penelope (the material number is determined by the ordering of the materials
in the input list). Void inner volumes can be described as material bodies with
MATERIAL set equal to 0 (or a negative number).
◦ A line is required to define each limiting surface, with its side pointer, and each
limiting body or module. Limiting surfaces, bodies and modules can be entered
in any order.
◦ Bodies are assumed to be defined in ascending order so that, in principle, it
would not be necessary to declare the limiting bodies and modules. However,
to speed up the calculations3, it is required to declare explicitly all the elements
(surfaces, bodies and modules) that actually limit the body that is being defined.
Omission of a limiting body will cause inconsistencies unless the materials in the
limiting and the limited bodies are the same.

• The format for the definition of a module is the following:

0000000000000000000000000000000000000000000000000000000000000000
MODULE ( I4) Text describing the module ...
MATERIAL( I4)
SURFACE ( I4), SIDE POINTER=(I2)
SURFACE ( I4), SIDE POINTER=(I2) ...
BODY ( I4)
BODY ( I4) ...
MODULE ( I4)
MODULE ( I4) ...
1111111111111111111111111111111111111111111111111111111111111111

OMEGA=( E22.15 , I4) DEG (DEFAULT=0.0)
THETA=( E22.15 , I4) DEG (DEFAULT=0.0)

PHI=( E22.15 , I4) RAD (DEFAULT=0.0)
X-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
Y-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
Z-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000

◦ The material (which must be explicitly declared) fills the cavities of the module.
As in the case of bodies, MATERIAL = 0 corresponds to vacuum. The filled cavi-
ties are considered as a single new body, which is assigned the same label as the
module.
◦ The limiting surfaces must define a connected volume. All inner bodies and
modules (submodules) must be declared. Notice that these cannot extend outside

3If we had chosen the alternative of not declaring all limiting elements, at each free flight of the
transported particle we would have to calculate the intersections of the particle ray with all the surfaces
of the sister bodies and modules, even those that do not limit the body where the particle is moving.
For complex geometries this may be too costly.
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the module’s volume and that a submodule cannot overlap with the other sub-
modules and bodies.
◦ Limiting surfaces, inner bodies and submodules can be entered in any order.
◦ The rotation and the translation are optional and apply to all elements of the
module. The line filled with 1’s ends the definition of elements and starts that of
transformation parameters; it can be omitted if no transformation parameters are
entered.

A single surface can be used to define several bodies and/or submodules in the same
module; unnecessary duplication of a surface reduces the calculation speed. Notice, how-
ever, that rotation or translation of a module modifies all the surfaces of its descendants
and, therefore, a transformed surface must be redefined if it is to be used again. Thus, if
the system contains two identical modules in different positions (e.g., two detectors in a
coincidence experiment), each of them must be defined explicitly. In principle, this does
not require too much editing work; after generating the first of the two modules, we can
just duplicate its definition data sets and assign new values to their labels. A simpler
and more versatile method is to use the CLONE operation, which automatically clones
a module (with its submodules and inner bodies) and changes the position and orien-
tation of the cloned module. This operation is helpful to define systems with repeated
structures, such as array detectors and multi-leaf collimators.

• The format of a CLONE block is

0000000000000000000000000000000000000000000000000000000000000000
CLONE ( I4) Copies one module and moves it
MODULE ( I4) original module
1111111111111111111111111111111111111111111111111111111111111111

OMEGA=( E22.15 , I4) DEG (DEFAULT=0.0)
THETA=( E22.15 , I4) DEG (DEFAULT=0.0)

PHI=( E22.15 , I4) RAD (DEFAULT=0.0)
X-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
Y-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
Z-SHIFT=( E22.15 , I4) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000

◦ The rotation and the translation apply to all elements of the module. The line
filled with 1’s starts the definition of transformation parameters. Notice that it is
necessary to apply a translation or a rotation (or both), to avoid overlaps between
the original and cloned modules (which would make the geometry definition in-
consistent).
◦ Bodies cannot be cloned. To clone a body that is limited only by surfaces, define
it as a module.
◦ All the surfaces that define the original module (and its descendants) are cloned
and transformed collectively with the module. In certain cases, however, it may
be convenient to keep some surfaces unaltered (e.g., those that limit both the
original and cloned modules). We can do this by using the keyword SURFACE* in
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the definition of the surface; starred surfaces behave as normal surfaces, except
for the fact that their coefficients are not affected by the translation/rotation of
the cloned module.
◦ When we run one of the geometry viewers (see below), pengeom generates an
output file, named geometry.rep, that strictly defines the same geometry as the
input file. However, in geometry.rep the elements of all the cloned modules are
defined explicitly (and labelled consecutively). We can edit, and rename, this file
to modify the elements of cloned modules.

The INCLUDE option allows a predefined structure to be inserted (e.g., a scintillation
detector, an encapsulated nuclear source, . . . ) within the geometry file. The inserted
structure is defined by a complete definition file (i.e., ending with an “END-----” line).

• The format of an INCLUDE block is the following,

0000000000000000000000000000000000000000000000000000000000000000
INCLUDE

FILE=(filename.ext)
0000000000000000000000000000000000000000000000000000000000000000

◦ The name of the included file must be written between the parentheses. It may
be up to twelve characters long; if it is shorter, the blanks must be left at the right
end of the field. Only one-level INCLUDE’s are allowed, i.e., an included file cannot
contain any INCLUDE blocks.
◦ The labels of an included file do not need to be different from those used in the
main file or in other included files.
◦ pengeom does not allow use of the elements of an included file to define new
bodies or modules. In particular, the modules of an included file cannot be cloned
in the main file. Conversely, the elements defined in the main file, before an
INCLUDE block, are not usable in the included file.
◦ When we run one of the geometry viewers (see below), pengeom generates the
output file geometry.rep, which defines the same geometry as the input file. In
geometry.rep, the elements of all the included structures are defined explicitly,
and are labelled consecutively. We can rename this file to have the geometry
defined in a single file.
◦ If the included structure is defined as a module, we can include it repeatedly with
different global translation and rotation parameters. After including the structure
for the first time, we can run one of the geometry viewers, and edit and rename
the file output file geometry.rep. We can then once again include the structure
in the new file, with different translation and rotation parameters, and repeat
the process as many times as needed. The result is similar to that of the CLONE

operation.
◦ A file can also be included by using the keyword INCLUDE*. In this case, the
included file is considered as if it were part of the main file. That is, the labels
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of the elements in the included file must be different from those in the main file.
Moreover, the elements of the included file can be referenced in the main file to
define new bodies or modules.

The definition of the geometry may seem somewhat more laborious than with com-
binatorial methods, where the system is described by combining basic bodies of several
simple shapes [see Jenkins et al. (1988) and references therein]. In practice, however,
defining the various surfaces that limit a body may be more convenient, and intuitive,
than considering all the parameters needed to specify that body. The example of a right
elliptical cylinder, which needs 9 parameters, is quite illustrative. With our method, this
body can be defined as a module by means of two planes perpendicular to the z-axis
(only one parameter if the base is the z = 0 plane) and a scaled cylinder (2 parame-
ters); the rotation (3 parameters) of the module gives the required orientation and the
translation (3 parameters) puts it in the required position. The definition as a proper
body requires defining the three surfaces that limit the cylinder in its actual position,
which is a bit more inconvenient. In any case, the important issue is not how to define
the geometry, but the amount of computation needed to follow a particle through the
material system.

6.6 The subroutine package pengeom

The package pengeom consists of the following subroutines;

• SUBROUTINE GEOMIN(PARINP,NPINP,NMAT,NBOD,IRD,IWR)

Reads geometry data from the input file and initialises the geometry package.

◦ Input arguments:
PARINP: Array containing optional parameters, which may replace the ones entered
from the input file. This array must be declared in the main program, even when
NPINP is equal to zero.
NPINP: Number of parameters defined in PARINP (positive).
IRD: Input file unit (opened in the main program).
IWR: Output file unit (opened in the main program).

◦ Output arguments:
NMAT: Number of different materials in full bodies (excluding void regions).
NBOD: Number of defined bodies and modules.

Subroutine GEOMIN labels elements of the various kinds (surfaces, bodies and mod-
ules) in strictly increasing order; it may also redefine some of the geometry param-
eters, whose actual values are entered through the array PARINP. A copy of the
geometry definition file, with the effective parameter values and with the element
labels assigned by pengeom, is printed on the output file (UNIT IWR). This part
of the output file describes the actual geometry used in the simulation.
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N.B.: During the simulation, geometry elements are identified by the internal
labels assigned by pengeom, which are written in the output file. These labels
may be different from those in the geometry definition file.

• SUBROUTINE LOCATE

Determines the body that contains the point with coordinates (X, Y, Z).

◦ Input values (through COMMON/TRACK/)4 :
X, Y, Z: Particle position coordinates.
U, V, W: Direction cosines of the direction of movement.
◦ Output values (through COMMON/TRACK/):
IBODY: Body where the particle moves.
MAT: Material in IBODY. The output MAT = 0 indicates that the particle is in a void
region.

• SUBROUTINE STEP(DS,DSEF,NCROSS)

Used in conjunction with penelope, this subroutine performs the geometrical part
of the track simulation. The particle starts from the point (X,Y,Z) and proceeds
to travel a length DS in the direction (U,V,W) within the material where it moves.
STEP displaces the particle and stops it at the end of the step, or just after entering
a new material (particles are not halted at “interfaces” between bodies of the
same material). The output value DSEF is the distance travelled within the initial
material. If the particle enters a void region, STEP continues the particle track, as
a straight segment, until it penetrates a material body or leaves the system (the
path length through inner void regions is not included in DSEF). When the particle
arrives from a void region (MAT = 0), it is stopped after entering the first material
body. The output value MAT = 0 indicates that the particle has escaped from the
system.

◦ Input-output values (through COMMON/TRACK/):
X, Y, Z: Input: coordinates of the initial position.

Output: coordinates of the final position.
U, V, W: Direction cosines of the displacement. They are kept unaltered.
IBODY Input: initial body, i.e., the one that contains the initial position.

Output: final body.

MAT: Material in body IBODY (automatically changed when the particle crosses an
interface).

◦ Input argument:
DS: Distance to travel (unaltered).

◦ Output arguments:
DSEF: Travelled path length before leaving the initial material or completing the
jump (less than DS if the track crosses an interface).

4Most of the input/output of the geometry routines is through COMMON/TRACK/, which is the common
block used by penelope to transfer particle state variables (see Section 6.1.2).
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NCROSS: Number of interface crossings (=0 if the particle does not leave the ini-
tial material, greater than 0 if the particle enters a new material or leaves the
enclosure).

For the handling and storage of geometric information we take advantage of the
structure of the genealogical tree. The geometry enclosure (see Section 6.3) is the
only common ancestor for all bodies and modules. To understand the operation of
the geometry routines, it is convenient to define a matrix FLAG(KB,KS) as follows (the
indices KS and KB indicate the label of a surface and a body or module, respectively),
FLAG(KB,KS) = 1, if KS is a limiting surface of KB and KB is inside KS (i.e., side

pointer = −1).
= 2, if KS is a limiting surface of KB and KB is outside KS (i.e., side

pointer = +1).
= 3, if KB is a body and KS does not directly limit KB, but appears

in the definition of a body that limits KB.
= 4, if KB is a module and KS limits one of its daughters (bodies and

submodules), but does not appear in the definition of KB.
= 5, otherwise.

To locate a point we call subroutine LOCATE, where we proceed upwards in the
genealogical tree of modules. If the point is outside the enclosure, we set MAT = 0 and
return to the main program. Otherwise, we look for a module or body of the second
generation that contains the point. If it exists, we continue analysing its descendants
(if any) and so on. The process ends when we have determined the body IBODY that
contains the point, or as soon as we conclude that the point is outside the material
bodies of the system (i.e., in a void region). Notice that, when we have found that a
module KB does contain the point, to do the next step we only need to consider the
surfaces KS such that FLAG(KB, KS) = 1, 2 or 4.

After the body IBODY that contains the initial position of the particle has been iden-
tified, we can call subroutine STEP to move the particle a certain distance DS, dictated
by penelope, along the direction (U,V,W). We start by checking whether the track seg-
ment crosses any of the surfaces that limit IBODY. If after travelling the distance DS the
particle remains within the same body, DSEF is set equal to DS and control is returned
to the main program. It is worth noting that the surfaces KS that define the initial body
are those with FLAG(IBODY,KS)=1 and 2 (proper limiting surfaces) or =3 (limiting sur-
faces of limiting bodies). Although it may happen that a surface with FLAG=3 does not
directly limit the body, subroutine STEP cannot know this from the information at hand
and, consequently, all surfaces with FLAG=3 are analysed after each move. It is clear
that, to reduce the number of surfaces to be considered, we should minimise the number
of bodies used to delimit other bodies.

When the particle leaves IBODY and enters a new material, STEP stops it just after
crossing the interface and determines the new body and material (in this case, the output
values of IBODY and MAT are different from the input ones). To do this, the limiting
surfaces of the parent module and of all the sisters of the initial body must be analysed (if
they exist). If the new position is outside the parent module, we must analyse all surfaces
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that limit the parent’s sisters and go downward in the genealogical tree to determine
the module that contains the point and, if necessary, go upwards again to find out what
the new body is. If the new material is the same as in the initial body, the particle is
allowed to move the remaining distance. Void regions (strict vacuum) are crossed freely
(i.e., the distance travelled within these regions is not counted). Furthermore, when
the particle starts from outside the enclosure, it is allowed to propagate freely until it
reaches a material body. The particle is stopped when it penetrates a different material
(the output value of NCROSS is then larger than zero) or when it leaves the system (i.e.,
when, after leaving a material body, its straight trajectory does not intersect a non-void
body; in this case, the value MAT=0 is returned).

Evidently, the speed of the geometry subroutines depends greatly on the structure
of the modules’ genealogical tree. The responsibility of optimising it rests with the
user. Subroutine GEOMIN issues a geometry report containing the genealogical tree,
information on redundant surfaces and an indication of the adequacy of the geometry
simulation (based on the number of elements used to define the bodies and modules of
the structure). This report is written on the output file geometry.rep, following the
listing of the geometry definition. It is recommended inspecting this part of the output
file and checking whether the modular tree is sufficiently ramified.

In the case of tangent surfaces (e.g., a sphere inside a cylinder of the same radius), the
limited accuracy of double precision in Fortran may produce distortions of the geometry
when a particle crosses the touching surfaces, because the program may be unable to
identify which of the two surfaces should be crossed first. An example of this kind of
conflict is shown in Fig. 6.10a. The left diagram represents a sphere, B1, lying on the
flat surface of a block, B2. Because of round-off errors, the numerical surfaces are such
that the sphere slightly penetrates the block. In this case a ray, r0 + sd̂, that starts
from the block body will enter the sphere before leaving the block. As this eventuality
is not contemplated, the behaviour of the tracking routines is essentially unpredictable.
The user should make sure that such situations do not occur, by altering slightly the
conflicting surfaces.

Similar problems may occur when a mathematical surface is defined more than once
(e.g., to limit two adjacent bodies, or a body and its mother module). A mathematical
surface can be either defined directly or obtained through rotation and translation of
a module that involves it. In the latter case, accumulated round-off errors from these
transformations may yield a slightly different surface. Fig. 6.10b shows an example of
adjacent bodies, a cube (B1) on a lager block (B2), where the common surface, a plane,
is defined once for each body. Because of assumed round-off errors, the two surfaces are
slightly different and the bodies overlap a little. A particle coming from the block B2

can then reach the cube B1 before leaving the block, and then the tracking algorithm
may become inconsistent. Subroutine GEOMIN removes redundant surfaces to prevent
such situations, and to avoid unnecessary calculations. Two surfaces are identified as
redundant when their respective coefficients differ by a constant factor, with a relative
tolerance of 10−14. Note, however, that accumulated round-off errors can impede the
identification of redundant surfaces. The use of double planes is discouraged, because
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they may hide possible surface redundancies. For instance, if our geometry contains the
plane z − 1 = 0 and the double plane z2 − 1 = 0, GEOMIN will not take any action. If,
instead, we replace the double plane by the equivalent pair of planes z + 1 = 0 and
z − 1 = 0, the latter will be identified as redundant and will be removed, thus avoiding
conflicts caused by round-off errors. Moreover, the calculation of trajectory intersections
with two planes is easier than with a double plane.

B2 B2

B1 B1

r0

d̂

r0

d̂

a) b)

Figure 6.10: Possible inconsistencies caused by round-off errors, largely magnified. a) A

sphere lying on a block. In reality the sphere (dashed) is tangent to the block plane surface,

while the numerical sphere (solid) intersects the block surface. b) A cube on top of a block. The

lower surface of the cube and the upper side of the block are the same mathematical surface.

When they are defined as different surfaces, round-off errors may cause small variations and,

occasionally, the interpenetration of the two bodies.

pengeom admits up to 10,000 surfaces and 5,000 bodies and modules. When the
input file contains a larger number of elements, the program stops and a corresponding
error message is printed. To describe such complex material systems, it is necessary to
edit the source file pengeom.f and increase the values of the parameters NS (maximum
number of surfaces) and NB (maximum number of bodies) in all subroutines. It is
assumed that the number of bodies in a module is less than NX = 250, which is also the
upper limit for the number of surfaces that can be used to define a body or a module
(those with FLAG < 5). When this value of NX is insufficient, the module that causes
the trouble should be decomposed into several submodules. Although it is possible to
increase the parameter NX, this would waste a lot of memory. Moreover, simulation of a
geometry with a module or body defined by such a large number of elements would be
extremely slow.

6.6.1 Impact detectors

To extract information about particle fluxes within the geometrical structure, the user
can define impact detectors. Each impact detector consists of a set of active bodies,
which should have been defined as parts of the geometry. The definition of impact
detectors is through the common block



252 Chapter 6. Constructive quadric geometry

COMMON/QKDET/KDET(NB)

After the call to subroutine GEOMIN, a body KB is made part of impact detector number
IDET by setting KDET(KB)=IDET. The action of subroutine STEP for impact detectors is
the following: when a transported particle enters the active body KB from vacuum or
from another body that is not part of detector IDET, the particle is halted at the surface
of the active body, and control is returned to the main program.

Each body can only be part of one impact detector. Active bodies cannot be void,
because the geometry routines would not stop particles at their limiting surfaces. In
case you need to define detectors outside the material system, fill their volume with an
arbitrary material of very small density to avoid perturbing the transport process.

In its normal operation mode, STEP does not stop particles at surfaces that limit
adjacent bodies of the same material, because this would slow down the simulation un-
necessarily. Therefore, these surfaces are “invisible” from the main program. However,
if two adjacent bodies of the same material are part of different impact detectors, their
common limiting surface becomes visible. Thus, by assigning each body to a different
impact detector, we can keep track of all the bodies that are entered by a particle.
This feature is used in the geometry viewer gview2d (see below) to display the various
bodies intersected by the screen plane in different colours.

In practical simulations of radiation transport, impact detectors can be used to tally
the energy spectrum and the angular distribution of “detected” particles (i.e., particles
that enter an active body) or, more specifically, to generate a phase-space file, where the
state variables of particles at the detector entrance are recorded. Notice that a detected
particle can leave the detector volume and re-enter it afterwards. Consequently, particles
can be “counted” several times. To avoid multiple counting, special action must be taken
in the main program.

Impact detectors may also be employed to calculate the average distribution of flu-
ence with respect to energy in the volume of the detector, Φ(E) [see Eq. (5.38)]. The
distribution that can be evaluated from the simulation is the following

V Φ(E) =

∫
V
drΦ(r, E), (6.35)

where V is the volume of the impact detector (which is not calculated by the geometry
routines) and Φ(r, E) is the distribution of fluence with respect to energy at the point
r. Usually, V Φ(E) is calculated separately for each kind of particle. The quantity
V Φ(E)∆E is the total path length travelled within the detector volume by particles of
the considered kind that have energies in the interval (E,E +∆E). It is worth noting
that V ΦE has dimensions of length/energy. When the flux density is nearly constant
over the volume of an impact detector, ΦE approximates the distribution of fluence with
respect to energy at points inside the detector.

The distribution of fluence with respect to energy, Eq. (6.35), can be used to obtain
various global quantities of interest in dosimetry (see Chapter 5) and spectroscopy. For
instance, in the case of electrons, the number of ionizations of the K-shell of atoms of
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the element Zi within the volume V of the detector is given by

nK,i =

∫ [
V ΦE

]
Nxiσsi,K(E) dE, (6.36a)

where σsi,K(E) is the atomic cross section for K-shell ionization of the element Zi (see
Section 3.2.6), N is the number of molecules per unit volume, Eq. (1.102), and xi is the
number of atoms of the element Zi in a molecule. Note that λ−1

si,K = Nxiσsi, K is the
average number of ionizations per unit path length. If the detector is a very thin foil,
the probability that an electron that enters the foil causes an ionization is very small
and, therefore, the value of nK,i evaluated by counting ionizations may be affected by
considerable statistical uncertainties. On the contrary, all electrons that cross the foil
contribute to the fluence, and the average number of ionizations derived from Eq. (6.36)
will usually be more accurate.

Instead of evaluating the distribution of fluence with respect to energy, it may be
advantageous to compute the number nK,i of ionizations by using the following track
length estimator, which is similar to the one described in Section 5.2.3 for the calculation
of the absorbed dose. During the simulation of the i-th shower, we consider the path
lengths si,j traveled by electrons of energy Ej within the volume V of the detector, and
score the products si,j λ

−1
si,K(Ej) (mean number of ionizations along the segment). After

generating N showers, we have the estimator

nK,i =
1

N

∑
i

(∑
j

si,j λ
−1
si,K(Ej)

)
, (6.36b)

where the first summation is over individual showers, and the second one is over electron
track segments in V . An advantage of using track length estimators is that they allow
the straight evaluation of statistical uncertainties using the general method of Section
1.5.

6.7 Debugging and viewing the geometry

A pair of computer programs named gview2d and gview3d have been written to
visualise the geometry and to help the user to debug the definition file. These codes
generate two- and three-dimensional 24-bit colour images of the system using specific
graphics routines. The executable codes included in the distribution package run on
personal computers under Microsoft Windows.

The most characteristic (and useful) feature of gview2d is that displayed pictures
are generated by using the pengeom package and, therefore, errors and inconsistencies
in the geometry definition file that would affect the results of actual simulations are
readily identified. The method to generate the image consists of following a particle
that moves on a plane perpendicular to an axis of the reference frame, which is mapped
on the window. The particle starts from a position that corresponds to the left-most
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pixel of each row and moves along a straight trajectory to the right of the window. To
do this, subroutine STEP is called repeatedly, maintaining the direction of movement and
with a large value of DS (such that each body is crossed in a single step). A colour code is
assigned to each material or body, and pixels are lit up with the active colour when they
are crossed by the particle trajectory. The active colour is changed when the particle
enters a new material or body. The final picture is a map of the bodies or materials
intersected by the window plane. The orientation of the window plane, as well as the
position and size of the window view, may be changed interactively by entering one
of the one-character commands shown in Table 6.3, directly from the graphics window
(upper- and lower-case letters may work differently). With gview2d we can inspect
the internal structure of the system with arbitrary magnification, limited only by the
intrinsic resolution of the pengeom routines.

Table 6.3: One-character commands of the gview2d geometry viewer.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ x --> change window orientation, x-axis, +
+ y --> change window orientation, y-axis, +
+ z --> change window orientation, z-axis, +
+ s --> change the window scale (zoom level), +
+ p --> change the coordinates of the screen center, +
+ c,m --> change view mode (bodies <-> materials), +
+ r,right --> shift right, l,left --> shift left, +
+ u,up --> shift up, d,down --> shift down, +
+ f,pgup --> shift front, b,pgdn --> shift back, +
+ i,+ --> zoom in, o,- --> zoom out, +
+ 1 --> actual size, h,? --> help, +
+ blank, enter --> repeat last command, q --> quit. +
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

When running the gview2d program, you will be asked to give the path+name of
the geometry definition file, the coordinates (XC,YC,ZC) of the centre of the window
(relative to the laboratory frame, in cm) and the display mode (materials or bodies).
The window may appear black (the colour for void regions) if no material bodies are
intersected. In this case, use the one-character viewer commands to reach the bodies
or, more conveniently, change the coordinates of the window centre to place it near or
within a filled body. Notice that, in the body display mode, the body labels shown on
the screen are the ones used internally by penelope. These internal labels, which may
be different from the labels in the user definition file, are needed for activating variance-
reduction methods locally, for defining impact detectors, and for scoring purposes (e.g.,
to determine the distribution of energy deposited within a particular body). The ma-
terial and the body label shown in the lower right corner of the window correspond to
the central body (the one at the intersection of the axes).

gview3d generates three-dimensional pictures of the geometry by using a simple ray-
tracing algorithm, with the source light and the camera at the same position. Bodies
are displayed with the same colour code used by gview2d (in the material display
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mode) and the intensity of each pixel is determined by the angle between the vision
line and the normal to the limiting surface. This method does not produce shadows
and disregards light diffusion, but makes fairly realistic three-dimensional images. The
camera is assumed to be outside the system (placing the camera inside a body would stop
the program). To reveal the inner structure of the system, the program can eliminate
a wedge (limited by two vertical planes that intersect in the z-axis). The position and
size of the system can be modified by means of one-character commands entered from
the graphics window. The command keys and actions are similar to those of gview2d.
It is worth noting that gview3d generates the image pixel by pixel, whereas gview2d
does it by drawing straight lines on the window; as a result, gview2d is much faster.

It should be mentioned that the use of fuzzy quadric surfaces in the current version
of pengeom gives a dramatic improvement in resolution over previous versions of the
package, which used static surfaces and a rough protection against round-off errors.
The viewers gview2d and gview3d now render correctly very small objects (e.g., a
spherical shell with inner radius of 10−9 units and a thickness of 5 × 10−11 units) as
well as large structures with small details (e.g., a spherical shell of 106 radius and 10−5

thickness), which could not be displayed with the old versions of the codes.

gview2d and gview3d produce an output file named geometry.rep (which is
generated by subroutine GEOMIN) in the working directory. The programs are stopped
either when an input format is incorrect (reading error) or when a clear inconsistency in
the definition file is found (e.g., when the element that is being defined and the furnished
information do not match). The wrong datum appears in the last printed lines of the
geometry.rep file, usually in the last one. Error messages are also written on that file,
so that the identification of inconsistencies is normally very easy. When the structure of
the input file is correct, the codes do not stop and the geometry is displayed for further
analysis.

Most of the possible errors in the input file can only be revealed by direct inspection
of the images generated by gview2d and gview3d. Very frequently, errors are caused
by the omission of a limiting element in the definition of a body or module. Numerical
round-off errors can also cause inconsistencies in the geometry, which may be difficult
to detect. Typically, these errors occur when two bodies, defined by different surfaces,
are in contact; round-off errors in the surface coefficients may cause a small overlap of
the two bodies, which can seriously damage the geometry.

When the operations CLONE and INCLUDE are not used, the output file geometry.rep
is a duplicate of the input definition file. The only differences between the two files are
the labels assigned to the different surfaces, bodies and modules; in geometry.rep, these
elements are numbered in strictly increasing order. It is important to bear in mind that
pengeom uses this sequential labelling internally to identify bodies and surfaces. When
the input definition file contains CLONE or INCLUDE blocks, the output file geometry.rep
provides a complete definition of the geometry, with the elements of cloned and included
structures inserted and numbered sequentially with the internal labels. This file can be
renamed and used as the definition file (the name geometry.rep cannot be used for a
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geometry definition file, because subroutine GEOMIN assigns it to an output file); then,
the definition files of the included structures are no longer needed.

6.8 A short tutorial

The geometry-definition file can be written with any simple text editor, using fixed-
width fonts keep the prescribed line formats. To prepare a new geometry definition
file, it is useful to start from a file that contains a model of each data set with default
values of their parameters. Placing the end-line at the beginning of the model group
discontinues the geometry reading, so that the model group can be kept in the geometry
file, even when this one is operative. The starting file should look like this

END 0000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( ) reduced form
INDICES=( 1, 1, 1, 1, 1)
X-SCALE=(+1.000000000000000E+00, 0) (DEFAULT=1.0)
Y-SCALE=(+1.000000000000000E+00, 0) (DEFAULT=1.0)
Z-SCALE=(+1.000000000000000E+00, 0) (DEFAULT=1.0)

OMEGA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)
THETA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)

PHI=(+0.000000000000000E+00, 0) RAD (DEFAULT=0.0)
X-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Y-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Z-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( ) implicit form
INDICES=( 0, 0, 0, 0, 0)

AXX=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AXY=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AXZ=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AYY=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AYZ=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AZZ=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AX=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AY=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
AZ=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
A0=(+0.000000000000000E+00, 0) (DEFAULT=0.0)

1111111111111111111111111111111111111111111111111111111111111111
OMEGA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)
THETA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)

PHI=(+0.000000000000000E+00, 0) RAD (DEFAULT=0.0)
X-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Y-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Z-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000
BODY ( ) text
MATERIAL( )
SURFACE ( ), SIDE POINTER=( 1)
BODY ( )
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MODULE ( )
0000000000000000000000000000000000000000000000000000000000000000
MODULE ( ) text
MATERIAL( )
SURFACE ( ), SIDE POINTER=( 1)
BODY ( )
MODULE ( )
1111111111111111111111111111111111111111111111111111111111111111

OMEGA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)
THETA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)

PHI=(+0.000000000000000E+00, 0) RAD (DEFAULT=0.0)
X-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Y-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Z-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000
CLONE ( ) copies one module and moves it
MODULE ( ) original module
1111111111111111111111111111111111111111111111111111111111111111

OMEGA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)
THETA=(+0.000000000000000E+00, 0) DEG (DEFAULT=0.0)

PHI=(+0.000000000000000E+00, 0) RAD (DEFAULT=0.0)
X-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Y-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
Z-SHIFT=(+0.000000000000000E+00, 0) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000
INCLUDE

FILE=(filename.ext)
0000000000000000000000000000000000000000000000000000000000000000

To generate a new element, we just duplicate the corresponding data set, modify the
parameter values and eliminate the lines that are unnecessary (i.e., those of parameters
that take their default values). Of course, the defining data set must be placed before
the end-line. The progressing geometry can be visualised with gview2d as soon as
the first complete body or module has been defined. If gview2d stops before entering
the graphics mode, the geometry definition is incorrect and we should have a look at
the geometry.rep file to identify the problem. Normally, the conflicting parameter or
element appears in the last line of this file, together with an error message issued by the
program.

The basic elements of the geometry definition are quadric surfaces. These can be
visualised by using the following file, which defines the inner volume of a reduced quadric
as a single body,

----------------------------------------------------------------
Visualisation of reduced quadric surfaces.

Define the desired quadric (surface 1) by entering its indices.
The region with side pointer -1 (inside the quadric) corresponds
to MATERIAL=1.
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 1) Reduced quadric
INDICES=( 1, 1,-1, 0, 1)
0000000000000000000000000000000000000000000000000000000000000000
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BODY ( 1) The interior of the quadric
MATERIAL( 1)
SURFACE ( 1), SIDE POINTER=(-1)
0000000000000000000000000000000000000000000000000000000000000000
END 0000000000000000000000000000000000000000000000000000000

The following example illustrates the definition of a simple geometry. It describes a
sphere with an inner arrow (Fig. 6.7):

----------------------------------------------------------------
Sphere of 5 cm radius with an arrow.

0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 1) PLANE Z=4.25
INDICES=( 0, 0, 0, 1,-1)
Z-SCALE=( 4.250000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 2) PLANE Z=1.5
INDICES=( 0, 0, 0, 1,-1)
Z-SCALE=( 1.500000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 3) PLANE Z=-4.0
INDICES=( 0, 0, 0, 1, 1)
Z-SCALE=( 4.000000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 4) CONE
INDICES=( 1, 1,-1, 0, 0)
X-SCALE=( 5.000000000000000E-01, 0)
Y-SCALE=( 5.000000000000000E-01, 0)
Z-SHIFT=( 4.250000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 5) CYLINDER
INDICES=( 1, 1, 0, 0,-1)
X-SCALE=( 7.250000000000000E-01, 0)
Y-SCALE=( 7.250000000000000E-01, 0)
0000000000000000000000000000000000000000000000000000000000000000
BODY ( 1) ARROW HEAD
MATERIAL( 2)
SURFACE ( 1), SIDE POINTER=(-1)
SURFACE ( 2), SIDE POINTER=( 1)
SURFACE ( 4), SIDE POINTER=(-1)
0000000000000000000000000000000000000000000000000000000000000000
BODY ( 2) ARROW STICK
MATERIAL( 2)
SURFACE ( 5), SIDE POINTER=(-1)
SURFACE ( 2), SIDE POINTER=(-1)
SURFACE ( 3), SIDE POINTER=( 1)
0000000000000000000000000000000000000000000000000000000000000000
SURFACE ( 6) SPHERE. R=5
INDICES=( 1, 1, 1, 0,-1)
X-SCALE=( 5.000000000000000E+00, 0)
Y-SCALE=( 5.000000000000000E+00, 0)
Z-SCALE=( 5.000000000000000E+00, 0)
0000000000000000000000000000000000000000000000000000000000000000
MODULE ( 3) SPHERE WITH INNER ARROW
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MATERIAL( 1)
SURFACE ( 6), SIDE POINTER=(-1)
BODY ( 1)
BODY ( 2)
1111111111111111111111111111111111111111111111111111111111111111

OMEGA=( 0.000000000000000E+00, 0) DEG
THETA=( 0.000000000000000E+00, 0) DEG

PHI=( 0.000000000000000E+00, 0) DEG
X-SHIFT=( 0.000000000000000E+00, 0) (DEFAULT=0.0)
Y-SHIFT=( 0.000000000000000E+00, 0) (DEFAULT=0.0)
Z-SHIFT=( 0.000000000000000E+00, 0) (DEFAULT=0.0)
0000000000000000000000000000000000000000000000000000000000000000
END 0000000000000000000000000000000000000000000000000000000

We have defined the entire system as a single module, so that you may rotate and/or
displace it arbitrarily, by editing the definition file. Notice that the initial arrow points
in the positive direction of the z-axis. It is instructive to try various rotations and
use gview2d, or gview3d with a wedge excluded to make the inner arrow visible, for
visualising the rotated system.

Writing a geometry file is nothing more than routine work. After a little practice,
you can define quite complex systems by using only surfaces and bodies. You will soon
realise that the visualisation programs (as well as the actual simulations!) slow down
when the number of elements in the geometry increases. The only way of speeding up
the programs is to group the bodies into modules. The best strategy for improving the
calculation speed is to build relatively simple modules and combine them into larger
parent modules to obtain a genealogical tree where the number of daughters of each
module is small.

You may save a lot of time by defining each body separately (and checking it care-
fully) and then inserting it into the progressing module that, once finished, will be added
to the file. Notice that the input element labels are arbitrary (as long as they are not
repeated for elements of the same kind) and that we can insert new elements anywhere
in the file, either manually or using the INCLUDE operation. Once the geometry defini-
tion file is complete, we can obtain an equivalent file, with elements labelled according
to the internal sequential order, by running one of the viewer programs and re-naming
the geometry.rep file.

The previous examples of geometry files (quadric and arrow) together with several
other files of more complex geometries are included in the distribution package. They
can be directly visualised by running gview2d and gview3d. The files glass (a glass
of champagne) and chair (a chair) show that common objects can be described quite
precisely with only quadric surfaces; in simple cases, such as glass, we do not need
to use use modules, which are useful only to accelerate the calculations, or to allow
cloning. The file well defines a scintillation well detector with much detail; we have
defined the system as a module, so that you can rotate the entire detector by editing
the definition file. Notice that, when the detector is tilted, it is very difficult to get an
idea of its geometry from the images generated by gview2d; this is the reason why
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the two-dimensional viewer displays only sections of the geometry on planes that are
perpendicular to the coordinate axes. The file saturne describes the head of a medical
accelerator, quite a complicated geometry with 96 surfaces and 44 bodies. The structure
male, which corresponds to a mathematical anthropomorphic phantom, consists of 175
surfaces and 110 bodies and modules. The files arrow2, chair2, and chair32 illustrate
the use of the CLONE operation. The file axes defines three cylinders along the axes of
the reference frame. This file can be visualised with gview3d to study the effect of
rotations; notice that the first image generated by gview3d displays the position and
orientation of the reference frame. The file onion defines a set of concentric spherical
shells with radii ranging from 10−9 to 10; this file is useful to demonstrate the robustness
and the high spatial resolution of our tracking algorithm.

1 clone group clone

group 7

1 2 4 5

3 6

7

...

31 2 1 2

64 5

31 2

64 5

31 2

Figure 6.11: Schematic representation of the construction of an array of cells by progressively

cloning and grouping modules obtained from a primary cell module. The labels of the modules

are the internal labels assigned by pengeom. Notice the evolution of the modular tree at each

step.

In certain applications (e.g., radiation imaging systems), we need to generate large
geometrical systems with many identical elements. The CLONE function was devised to
simplify the definition of these systems. To illustrate the use of CLONE, let us consider
the simple case shown in Fig. 6.11. The system to be described consists of an array of
identical cells, each of them defined as a module (which may have a complex internal
structure). We start by defining the first cell (1). We clone this cell to produce a twin
cell (2); and we group the two of them into a two-cell module (3). To build this module,
we only need to specify its limiting surfaces. Then the two-cell module is cloned (6) and
the resulting two modules are grouped together to produce a four-cell module (7). The
process can be repeated as many times as required to generate a large array. At each
step, the size (number of cells) of the array is doubled, with only a small amount of
editing work. It is interesting to analyse the structure of the modular tree resulting from
this construction. As shown in Fig. 6.11, each time we clone a module, the tree of the
original module is duplicated; when we group the original module and its clone, their
trees are joined and rooted into the new mother module, which has only two daughters.
Therefore, the final tree is optimally ramified. The file chair32 in the distribution
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package, which describes a small auditorium with 32 chairs, provides an example of
optimally ramified tree.

We cannot finish without a word of caution about the use of pengeom, and other
general-purpose geometry packages. For simple geometries, they tend to waste a lot of
time. It is always advisable to consider the possibility of handling geometric aspects
directly; this may enable substantial reduction of the number of operations by taking
full advantage of the peculiarities of the material system.
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Chapter 7

Structure and operation of the code
system

In this Chapter we describe the structure of the penelope code system and its oper-
ation. The kernel of the system is the Fortran subroutine package penelope, which
performs “analogue” simulation of electron-photon showers (i.e., the simulated showers
are intended to be replicas of actual showers) in infinite (unbounded) media of various
compositions. Photon histories are generated by using the detailed simulation method
(see Section 1.4), i.e., all interaction events are simulated in chronological succession.
The generation of electron and positron tracks is performed by using the mixed proce-
dure described in Chapter 4. Secondary particles emitted with initial energy larger than
the absorption energy –see below– are stored, and simulated after completion of each pri-
mary track. Secondary particles are produced in direct interactions (hard inelastic col-
lisions, hard bremsstrahlung emission, positron annihilation, photoelectric absorption,
Compton scattering and pair production) and as fluorescent radiation (characteristic x
rays and Auger electrons). penelope simulates fluorescent radiation that results from
vacancies produced in inner shells1 by photoelectric absorption and Compton scatter-
ing of photons, by triplet production and by electron/positron impact ionization. The
relaxation of these vacancies is followed until all inner shells are filled up, i.e., until the
vacancies have migrated to outer shells.

Being a subroutine package, penelope cannot operate by itself. The user must
provide a steering main program for his particular problem. Nevertheless, this main
program is normally fairly simple because it only has to control the evolution of the
tracks generated by penelope and keep score of relevant quantities. penelope has
been devised to do the largest part of the simulation work. It allows the user to write
his own simulation program, with arbitrary geometry and scoring, without previous
knowledge of the intricate theoretical aspects of scattering and transport theories. In
the case of material systems with quadric geometries, the geometrical operations can be

1Inner shells are K, L, M and N shells that have ionization energies larger than the cutoff energy Ec

given by Eq. (2.111). Shells with ionization energies less than Ec are considered as outer shells.
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done automatically by using the package pengeom (see Chapter 6). The distribution
package also includes examples of main programs for cylindrical geometries and for
general quadric geometries. Although these main programs are mostly intended to
illustrate the use of the simulation routines, they do allow the study of many cases of
practical interest. The complete program system is written in Fortran 77 format, but
uses a few extensions to the ANSI/ISO standard Fortran 77, which are supported by
most compilers. Therefore, the programs should run on any platform with a Fortran
77 or Fortran 90 compiler. For a readable programmer’s guide to Fortran 77, see Page
(1988).

7.1 penelope

penelope simulates coupled electron-photon transport in arbitrary material systems
consisting of a number of homogeneous regions (bodies) limited by sharp (and passive)
interfaces. Initially, it was devised to simulate the PENetration and Energy LOss of
Positrons and Electrons in matter; photons were introduced later. The adopted inter-
action models (Chapters 2 to 4), and the associated databases, allow the simulation of
electron/positron and photon transport in the energy range from 50 eV to 1 GeV.

It should be borne in mind that our approximate interaction models become less
accurate when the energy of the transported radiation decreases. Actually, for energies
below ∼ 1 keV, the DCSs are not well known, mostly because they are strongly affected
by the state of aggregation (i.e., by the environment of the target atom). On the
other hand, for electrons and positrons, the trajectory picture ceases to be applicable
(because coherent scattering from multiple centres becomes appreciable) when the de
Broglie wavelength, λB = (150 eV/E)1/2 Å, is similar to or greater than the interatomic
spacing (∼ 2 Å). Therefore, results from simulations with penelope (or with any other
Monte Carlo trajectory code) for energies below 1 keV or so, should be considered to
have only a qualitative (or, at most, semi-quantitative) value. We recall also that, for
elements with intermediate and high atomic numbers, secondary characteristic photons
with energies less than the cutoff energy Ec, Eq. (2.111), are not simulated by penelope.
This sets a lower limit to the energy range for which the simulation is faithful.

The source file penelope.f (about 11,500 lines of Fortran source code) consists of
four blocks of subprograms, namely, preparatory calculations and I/O routines, interac-
tion simulation procedures, numerical routines and transport routines. Only the latter
are invoked from the main program. The interaction simulation routines implement the
theory and algorithms described in Chapters 2 and 3. Although the interaction routines
are not called from the main program, there are good reasons to have them properly
identified. Firstly, these are the code pieces to be modified to incorporate better physics
(when available) and, secondly, some of these subroutines deliver numerical values of
the DCSs (which can be useful to apply certain variance-reduction techniques). To have
these routines organised, we have named them according to the following convention:
• The first letter indicates the particle (E for electrons, P for positrons, G for photons).
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• The second and third letters denote the interaction mechanism (EL for elastic, IN for
inelastic, BR for bremsstrahlung, AN for annihilation, PH for photoelectric absorption, RA
for Rayleigh, CO for Compton, and PP for pair production).
• The fourth (lowercase) letter indicates the theoretical model used to describe the in-
teractions. This serves to distinguish the default model (denoted by the letter “a”) from
alternative models.
• The random sampling routines have four-letter names. Auxiliary routines, which
perform specific calculations, have longer names, with the fifth and subsequent letters
and/or numbers indicating the kind of calculation (T for total cross section, D for DCS)
or action (W for write data on a file, R for read data from a file, I for initialisation of
simulation algorithm).
Thus, for instance, subroutine EELa simulates elastic collisions of electrons while subrou-
tine EINaT computes total (integrated) cross sections for inelastic scattering of electrons.
Subroutine EELd describes electron elastic collisions by using the numerical DCSs from
the elsepa database (see Chapter 3).

7.1.1 Database and input material data file

penelope reads the required physical information about each material (which includes
tables of physical properties, interaction cross sections, relaxation data, etc.) from an
input material data file. The material data file is created by means of the auxiliary
program material, which extracts atomic interaction data from the database. This
program runs interactively and is self-explanatory. Basic information about the con-
sidered material is supplied by the user from the keyboard, in response to prompts
from the program. The required information is: 1) chemical composition (i.e., elements
present and stoichiometric index, or weight fraction, of each element), 2) mass density,
3) mean excitation energy and 4) energy and oscillator strength of plasmon excitations.
Alternatively, for a set of 280 prepared materials, the program material can read data
directly from the pdcompos.p08 file (see below).

For compounds and mixtures, the additivity approximation is adopted to define the
material cross sections, i.e., the corresponding “molecular” cross section is set equal to
the sum of atomic cross sections weighted with the stoichiometric index of the element.
Alloys and mixtures are treated as compounds, with stoichiometric indices equal or
proportional to the percent number of atoms of the elements.

The penelope database consists of the following 995 ASCII files,

pdatconf.p08 . . . Atomic ground-state configurations, ionisation energies (Carlson,
1975) and central values, Ji(pz = 0), of the one-electron shell Compton profiles
(Biggs et al., 1975) for the elements, from hydrogen to einstenium (Z = 1− 99).

pdcompos.p08 . . . This file contains composition data, mass densities and mean
excitation energies for 280 materials, adapted from the database of the estar
program of Berger (1992). The list of these materials is given in Table 7.1.1. The
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Table 7.1: List of the 280 pre-defined materials included in the pdcompos.p08 file, with their

identifying numbers (adapted from Berger, 1992).

*** ELEMENTS (id. number = atomic number):
1 Hydrogen 34 Selenium 67 Holmium
2 Helium 35 Bromine 68 Erbium
3 Lithium 36 Krypton 69 Thulium
4 Beryllium 37 Rubidium 70 Ytterbium
5 Boron 38 Strontium 71 Lutetium
6 Amorphous carbon 39 Yttrium 72 Hafnium
7 Nitrogen 40 Zirconium 73 Tantalum
8 Oxygen 41 Niobium 74 Tungsten
9 Fluorine 42 Molybdenum 75 Rhenium

10 Neon 43 Technetium 76 Osmium
11 Sodium 44 Ruthenium 77 Iridium
12 Magnesium 45 Rhodium 78 Platinum
13 Aluminum 46 Palladium 79 Gold
14 Silicon 47 Silver 80 Mercury
15 Phosphorus 48 Cadmium 81 Thallium
16 Sulfur 49 Indium 82 Lead
17 Chlorine 50 Tin 83 Bismuth
18 Argon 51 Antimony 84 Polonium
19 Potassium 52 Tellurium 85 Astatine
20 Calcium 53 Iodine 86 Radon
21 Scandium 54 Xenon 87 Francium
22 Titanium 55 Cesium 88 Radium
23 Vanadium 56 Barium 89 Actinium
24 Chromium 57 Lanthanum 90 Thorium
25 Manganese 58 Cerium 91 Protactinium
26 Iron 59 Praseodymium 92 Uranium
27 Cobalt 60 Neodymium 93 Neptunium
28 Nickel 61 Promethium 94 Plutonium
29 Copper 62 Samarium 95 Americium
30 Zinc 63 Europium 96 Curium
31 Gallium 64 Gadolinium 97 Berkelium
32 Germanium 65 Terbium 98 Californium
33 Arsenic 66 Dysprosium 99 Einsteinium

*** COMPOUNDS AND MIXTURES (in alphabetical order):
100 Acetone
101 Acetylene
102 Adenine
103 Adipose tissue (ICRP)
104 Air, dry (near sea level)
105 Alanine
106 Aluminum oxide
107 Amber
108 Ammonia
109 Aniline
110 Anthracene
111 B-100 bone-equivalent plastic
112 Bakelite
113 Barium fluoride
114 Barium sulfate
115 Benzene
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116 Beryllium oxide
117 Bismuth germanium oxide
118 Blood (ICRP)
119 Bone, compact (ICRU)
120 Bone, cortical (ICRP)
121 Boron carbide
122 Boron oxide
123 Brain (ICRP)
124 Butane
125 N-butyl alcohol
126 C-552 air-equivalent plastic
127 Cadmium telluride
128 Cadmium tungstate
129 Calcium carbonate
130 Calcium fluoride
131 Calcium oxide
132 Calcium sulfate
133 Calcium tungstate
134 Carbon dioxide
135 Carbon tetrachloride
136 Cellulose acetate, cellophane
137 Cellulose acetate butyrate
138 Cellulose nitrate
139 Ceric sulfate dosimeter solution
140 Cesium fluoride
141 Cesium iodide
142 Chlorobenzene
143 Chloroform
144 Concrete, portland
145 Cyclohexane
146 1,2-dichlorobenzene
147 Dichlorodiethyl ether
148 1,2-dichloroethane
149 Diethyl ether
150 N,n-dimethyl formamide
151 Dimethyl sulfoxide
152 Ethane
153 Ethyl alcohol
154 Ethyl cellulose
155 Ethylene
156 Eye lens (ICRP)
157 Ferric oxide
158 Ferroboride
159 Ferrous oxide
160 Ferrous sulfate dosimeter solution
161 Freon-12
162 Freon-12b2
163 Freon-13
164 Freon-13b1
165 Freon-13i1
166 Gadolinium oxysulfide
167 Gallium arsenide
168 Gel in photographic emulsion
169 Pyrex glass
170 Glass, lead
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171 Glass, plate
172 Glucose
173 Glutamine
174 Glycerol
175 Graphite
176 Guanine
177 Gypsum, plaster of Paris
178 N-heptane
179 N-hexane
180 Kapton polyimide film
181 Lanthanum oxybromide
182 Lanthanum oxysulfide
183 Lead oxide
184 Lithium amide
185 Lithium carbonate
186 Lithium fluoride
187 Lithium hydride
188 Lithium iodide
189 Lithium oxide
190 Lithium tetraborate
191 Lung (ICRP)
192 M3 wax
193 Magnesium carbonate
194 Magnesium fluoride
195 Magnesium oxide
196 Magnesium tetraborate
197 Mercuric iodide
198 Methane
199 Methanol
200 Mixed wax
201 Ms20 tissue substitute
202 Muscle, skeletal (ICRP)
203 Muscle, striated (ICRU)
204 Muscle-equivalent liquid, with sucrose
205 Muscle-equivalent liquid, without sucrose
206 Naphthalene
207 Nitrobenzene
208 Nitrous oxide
209 Nylon, du Pont elvamide 8062
210 Nylon, type 6 and type 6/6
211 Nylon, type 6/10
212 Nylon, type 11 (rilsan)
213 Octane, liquid
214 Paraffin wax
215 N-pentane
216 Photographic emulsion
217 Plastic scintillator (vinyltoluene based)
218 Plutonium dioxide
219 Polyacrylonitrile
220 Polycarbonate (makrolon, lexan)
221 Polychlorostyrene
222 Polyethylene
223 Polyethylene terephthalate (mylar)
224 Polymethyl methacrilate (lucite, perspex, plexiglass)
225 Polyoxymethylene



7.1. penelope 269

226 Polypropylene
227 Polystyrene
228 Polytetrafluoroethylene (teflon)
229 Polytrifluorochloroethylene
230 Polyvinyl acetate
231 Polyvinyl alcohol
232 Polyvinyl butyral
233 Polyvinyl chloride
234 Polyvinylidene chloride (saran)
235 Polyvinylidene fluoride
236 Polyvinyl pyrrolidone
237 Potassium iodide
238 Potassium oxide
239 Propane
240 Propane, liquid
241 N-propyl alcohol
242 Pyridine
243 Rubber, butyl
244 Rubber, natural
245 Rubber, neoprene
246 Silicon dioxide
247 Silver bromide
248 Silver chloride
249 Silver halides in photographic emulsion
250 Silver iodide
251 Skin (ICRP)
252 Sodium carbonate
253 Sodium iodide
254 Sodium monoxide
255 Sodium nitrate
256 Stilbene
257 Sucrose
258 Terphenyl
259 Testes (ICRP)
260 Tetrachloroethylene
261 Thallium chloride
262 Tissue, soft (ICRP)
263 Tissue, soft (ICRU four-component)
264 Tissue-equivalent gas (methane based)
265 Tissue-equivalent gas (propane based)
266 Tissue-equivalent plastic (A-150)
267 Titanium dioxide
268 Toluene
269 Trichloroethylene
270 Triethyl phosphate
271 Tungsten hexafluoride
272 Uranium dicarbide
273 Uranium monocarbide
274 Uranium oxide
275 Urea
276 Valine
277 Viton fluoroelastomer
278 Water, liquid
279 Water vapor
280 Xylene
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first 99 entries are the elements Z = 1− 99, ordered by atomic number Z. Mate-
rials 100 to 280 are compounds and mixtures, in alphabetical order. Notice that
penelope does not work for elements with atomic number Z > 99. Gases are
characterised assuming a pressure of 1 atm and a temperature of 20 ◦C.

pdeflist.p08 . . . List of materials predefined in file pdcompos.p08, with their
identification numbers (same information as in Table 7.1.1).

pdrelax.p11 . . . Relaxation data for singly-ionised atoms with a vacancy in a K, L,
M, or N shell. Each line in this file describes an atomic transition. The quantities
listed are the atomic number of the element, the numerical labels of the active
electron shells (see Table 7.2), the transition probability and the energy of the
emitted x ray or electron, respectively. Transition probabilities and energies were
extracted from the LLNL Evaluated Atomic Data Library (Perkins et al., 1991).
As the energies given in this database are roughly approximate, they were replaced
by more accurate values, when available. Energies of x rays from K- and L-
shell transitions were taken from the recent compilation of Deslattes et al. (2003).
The energies of characteristic M lines are from Bearden’s (1967) review. Other
transition energies are calculated from the energy eigenvalues of the Dirac-Hartree-
Fock-Slater equations for neutral atoms (Perkins et al., 1991).

Table 7.2: Numerical labels used to designate atomic electron shells. In the case of non-

radiative transitions, the label 30 indicates outer shells with small ionization energies.

label shell label shell label shell

1 K (1s1/2) 11 N2 (4p1/2) 21 O5 (5d5/2)

2 L1 (2s1/2) 12 N3 (4p3/2) 22 O6 (5f5/2)

3 L2 (2p1/2) 13 N4 (4d3/2) 23 O7 (5f7/2)

4 L3 (2p3/2) 14 N5 (4d5/2) 24 P1 (6s1/2)

5 M1 (3s1/2) 15 N6 (4f5/2) 25 P2 (6p1/2)

6 M2 (3p1/2) 16 N7 (4f7/2) 26 P3 (6p3/2)

7 M3 (3p3/2) 17 O1 (5s1/2) 27 P4 (6d3/2)

8 M4 (3d3/2) 18 O2 (5p1/2) 28 P5 (6d5/2)

9 M5 (3d5/2) 19 O3 (5p3/2) 29 Q1 (7s1/2)

10 N1 (4s1/2) 20 O4 (5d3/2) 30 outer shells

99 files named pdeelZZ.p08 with ZZ=atomic number (01–99). These files contain
integrated cross sections for elastic scattering of electrons and positrons by neu-
tral atoms, calculated by using the partial-wave methods described in Section 3.1
(Salvat et al., 2005). The first line in each file gives the atomic number ZZ; each
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subsequent line has 7 columns with the following data:
1st column: kinetic energy (eV), in increasing order.
2nd column: total cross section for electrons.
3rd column: first transport cross section for electrons.
4th column: second transport cross section for electrons.
5th column: total cross section for positrons.
6th column: first transport cross section for positrons.
7th column: second transport cross section for positrons.
The grid of energies is approximately logarithmic, with 15 points per decade, and
is the same for all elements. All cross sections are in cm2.

99 files named eeldxZZZ.p08 with ZZZ=atomic number (001–099). Tables of differ-
ential cross sections, and integrated cross sections, for elastic scattering of electrons
by free neutral atoms. These files are part of the elsepa database (see Section
3.1) which covers the energy interval from 50 eV to 100 MeV. All cross sections
are in cm2.

99 files named peldxZZZ.p08 with ZZZ=atomic number (001–099). Tables of dif-
ferential cross sections, and integrated cross sections, for elastic scattering of
positrons by free neutral atoms. These files are part of the elsepa database
(see Section 3.1), and they cover the energy interval from 50 eV to 100 MeV. All
cross sections are in cm2.
The elsepa database is distributed with the ICRU Report 77 (2007).

99 files named pdebrZZ.p08 with ZZ=atomic number (01–99). They contain the
atomic bremsstrahlung scaled cross sections (energy-loss spectra) and total inte-
grated radiative cross sections of electrons, for a grid of electron kinetic energies E
and reduced photon energies W/E that is dense enough to allow the use of cubic
spline log-log interpolation in E and linear interpolation in W/E. The data in
these files is from a database, with 32 reduced photon energies, which was pro-
vided to the authors by Steve Seltzer (a brief description of the methods used to
compute the database and a reduced tabulation is given in Seltzer and Berger,
1986). The format of the bremsstrahlung database files is the following,
1) The first line contains the atomic number ZZ.
2) Each four-line block contains the electron kinetic energy E, the scaled energy-
loss differential cross section at the 32 fixed reduced photon energies and the value
of the integrated radiative cross section.
Energies are in eV and the values of the scaled energy-loss cross section are in
millibarn (10−27 cm2).

pdbrang.p08 . . . Gives the parameters of the analytical shape function (angular
distribution) of bremsstrahlung photons, which is expressed as a statistical mix-
ture of two Lorentz-boosted dipole distributions, Eq. (3.172). The distribution
parameters were obtained by fitting the benchmark partial-wave shapes tabulated
by Kissel et al. (1983).
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99 files named pdaffZZ.p08 with ZZ=atomic number (01–99). They contain tables
of atomic form factors and incoherent scattering functions of neutral free atoms,
generated from the LLNL Evaluated Photon Data Library, EPDL (Cullen et al.,
1997). The first line of each file contains the atomic number ZZ and the number
of data lines; each subsequent line gives
1st column: momentum transfer q, in units of mec. The same q grid for all ele-
ments.
2nd and 3rd columns: atomic form factor F (q, Z) and incoherent scattering func-
tion S(q, Z), respectively.

99 files named pdgraZZ.p08 with ZZ=atomic number (01–99). Tables of anoma-
lous scattering factors and total cross sections for Rayleigh scattering of photons
by free neutral atoms, generated from the EPDL (Cullen et al., 1997). The first
line of each file contains the atomic number ZZ and the number of data lines; each
subsequent line gives
1st column: energy E of the photon in eV.
2nd and 3rd columns: real and imaginary parts of the anomalous scattering factor,
respectively.
4th column: atomic cross section for Rayleigh scattering, in cm2.

99 files named pdgppZZ.p11 with ZZ=atomic number (01–99). Total cross sections
for electron-positron pair and triplet production by photons with energies up to
100 GeV in the field of neutral atoms. The data were generated by means of the
xcom program of Berger and Hubbell (1987). The first line of each file contains
the atomic number ZZ; each subsequent line gives
1st column: photon energy, in eV. The same energy grid for all elements.
2nd and 3rd columns: total cross sections for pair production and for triplet
production, respectively, in barn (10−24 cm2).

99 files named pdgphZZ.p11 with ZZ=atomic number (01–99), containing photo-
electric total atomic cross sections and partial cross sections for photoionisation
of inner shells (K shell and L, M, and N subshells) for the elements and photon
energies in the range from 50 eV to 1 TeV. The data were extracted from the
EPDL (Cullen et al., 1997). The format is the following,
1) The first line contains the atomic number ZZ, the number of grid energies NGE,
and the number NS of shells for which the partial cross sections are tabulated.
2) The second and third lines list the shell number codes and the ionization ener-
gies (in eV), respectively.
3) Each of the following lines contains a value of the photon energy (in eV) and
the corresponding total cross section and partial cross sections of the shells K, L1
to L3, M1 to M5, and N1 to N7 respectively (all cross sections in barn). For low-Z
elements, L , M and N subshells are empty and, therefore, they do not appear in
the table.
The grid of energies for each element was obtained by merging a generic grid (the
same for all elements, covering the energy range from 50 eV to 1 TeV) with the grid
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of absorption edges of the element, and adding additional points (where needed)
to ensure that linear log-log interpolation will never introduce relative errors larger
than 0.001.

99 files named pdesiZZ.p11 with ZZ=atomic number (01–99), containing total (in-
tegrated) cross sections for ionisation of inner shells (K shell, L, M and N sub-
shells) by impact of electrons with kinetic energies in the range from 50 eV to
1 GeV. These cross sections were calculated numerically using a combination of
the distorted-wave and plane-wave Born approximations (Bote and Salvat, 2008).
The format of the files is the following:
1) The first line gives the atomic number ZZ, the number of grid energies NGE, and
the number NS of shells for which the partial cross sections are tabulated.
2) The second and third lines list the shell number codes and the ionization ener-
gies (in eV), respectively.
3) Each of the following lines contains a value of the kinetic energy of the projec-
tile (in eV) and the corresponding ionisation cross sections (in cm2) of the shells
K, L1 to L3, M1 to M5, and N1 to N7, respectively (all cross sections in barn).
For low-Z elements, L, M and N subshells are empty and, therefore, they do not
appear in the table.

99 files named pdpsiZZ.p11 with ZZ=atomic number (01–99), containing total (in-
tegrated) cross sections for ionisation of inner shells (K shell, L, M and N subshells)
by impact of positrons with kinetic energies in the range from 50 eV to 1 GeV.
These cross sections were calculated numerically by Bote and Salvat (2008) using
a combination of the distorted-wave and plane-wave Born approximations. The
format of the files is the same as that of the pdesiZZ.p11 files.

Atomic cross sections for incoherent scattering of photons, inelastic scattering of elec-
trons and positrons, and positron annihilation are evaluated directly from the analytical
DCSs described in Chapters 2 and 3.

In the material definition file generated by the program material, mean free paths,
transport mean free paths and stopping powers of electrons and positrons are given
in mass-thickness units (1 mtu ≡ 1 g/cm2) and eV/mtu, respectively. Photon mass
attenuation coefficients are expressed in cm2/g. These quantities are practically inde-
pendent of the material density; the only exception is the collision stopping power for
electrons and positrons with kinetic energies larger than about 0.5 MeV, for which the
density-effect correction may be appreciable.

The energy-dependent quantities tabulated in the input material data file determine
the most relevant characteristics of the scattering model. For instance, the modified
Wentzel DCS for electron and positron elastic scattering is completely defined by the
mean free paths and transport mean free paths (see Section 3.1.2). Collision and ra-
diative stopping powers read from the input file are used to renormalise the built-in
analytical differential cross sections, i.e., these are multiplied by an energy-dependent
factor such that the input stopping powers are exactly reproduced. The mean free
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paths used in the simulation of photon transport are directly obtained from the input
total cross sections. Natural cubic spline log-log interpolation is used to interpolate
the tabulated energy-dependent quantities, except for the photoelectric and Rayleigh
attenuation coefficients, which are obtained by simple linear log-log interpolation.

To simulate geometrical structures with several materials, the names of the cor-
responding material data files generated by the program material are declared as
elements of the array PMFILE. penelope labels the M-th material in this array with
the index MAT=M, which is used during the simulation to identify the material where
the particle moves. The maximum number of different materials that penelope can
handle simultaneously is fixed by the parameter MAXMAT, which in the present version
is set equal to 10. The required memory storage is roughly proportional to the value
of this parameter. The user can increase MAXMAT by editing the program source files.
Notice that the value of MAXMAT must be the same in all subprograms.

The user can access the most relevant information in a material data file by using the
program tables.f, which reads material files and generates tables of interaction data
(cross sections, mean free paths, stopping powers, ranges, ...) as functions of energy.
These tables can be plotted on the screen by running the gnuplot script tables.gnu.
The program tables.f runs interactively; after generating the output tables, it can
be used to obtain interpolated values of different quantities at energies specified by the
user. The quantities that are made accessible in this way are the mean free paths for
the various interaction mechanisms (and the corresponding total cross sections), and
the particle ranges.

7.1.2 Structure of the main program

As mentioned above, penelope must be complemented with a steering main program,
which controls the geometry and the evolution of tracks, keeps score of the relevant
quantities and performs the required averages at the end of the simulation.

The connection of penelope and the main program is done via the named common
block

→ COMMON/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)

that contains the following particle state variables:

KPAR . . . kind of particle (1: electron, 2: photon, 3: positron).

E . . . current particle energy (eV) (kinetic energy for electrons and positrons).

X, Y, Z . . . position coordinates (cm).

U, V, W . . . direction cosines of the direction of movement.

WGHT . . . this is a dummy variable in analogue simulations. When using variance-
reduction methods, the particle weight can be stored here.

IBODY . . . this auxiliary flag serves to identify different bodies in complex material
structures.
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MAT . . . material where the particle moves (i.e., the one in the body labelled IBODY).

ILB(5) . . . an auxiliary array of 5 labels that describe the origin of secondary par-
ticles (see below). It is useful, e.g., to study partial contributions from particles
originated by a given process.

The position coordinates r =(X,Y,Z) and the direction cosines d̂ =(U,V,W) of the direc-
tion of movement are referred to a fixed rectangular coordinate system, the “laboratory”
system, which can be arbitrarily defined.

N.B.: During the simulation, all energies and lengths are expressed in eV and cm,
respectively.

The label KPAR identifies the kind of particle: KPAR=1, electron; KPAR=2, photon;
KPAR=3, positron. A particle that moves in material M is assumed to be absorbed when its
energy becomes less than a value EABS(KPAR,M) (in eV) specified by the user. Positrons
are assumed to annihilate, by emission of two photons, when absorbed. In absorbed
dose calculations, EABS(KPAR,M) should be determined so that the residual range of
particles with this energy is smaller than the dimensions of the volume bins used to
tally the spatial dose distribution. As the interaction database is limited to energies
above 50 eV, absorption energies EABS(KPAR,M) must be larger than this value.

The transport algorithm for electrons and positrons in each material M is controlled
by the following simulation parameters,

C1(M) . . . Average angular deflection, C1 ≃ 1 − ⟨cos θ⟩ [Eq. (4.11)], produced by
multiple elastic scattering along a path length equal to the mean free path between
consecutive hard elastic events. A value of about 0.05 is usually adequate. The
maximum allowed value of C1(M) is 0.2.

C2(M) . . . Maximum average fractional energy loss, C2 [Eq. (4.85)], between consecu-
tive hard elastic events. Usually, a value of about 0.05 is adequate. The maximum
allowed value of C2(M) is 0.2.

WCC(M) . . . Cutoff energy loss, Wcc (in eV), for hard inelastic collisions.

WCR(M) . . . Cutoff energy loss, Wcr (in eV), for hard bremsstrahlung emission.

These parameters determine the accuracy and speed of the simulation. To ensure accu-
racy, C1(M) and C2(M) should have small values (∼ 0.01). With larger values of C1(M)
and C2(M) the simulation becomes faster, at the expense of a certain loss in accuracy.
The cutoff energies WCC(M) and WCR(M) mainly influence the simulated energy distribu-
tions. The simulation speeds up by using larger cutoff energies, but if these are too large,
the simulated energy distributions may be somewhat distorted. In practice, simulated
energy distributions are found to be insensitive to the adopted values of WCC(M) and
WCR(M) when these are less than the bin width used to tally the energy distributions.
Thus, the desired energy resolution determines the maximum allowed cutoff energies.
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The reliability of the whole simulation rests on a single condition: the number of steps
(or random hinges) per primary track must be “statistically sufficient”, i.e., larger than
10 or so.

The simulation package is initialised from the main program with the statement

→ CALL PEINIT(EPMAX,NMAT,IWR,INFO,PMFILE)

Subroutine PEINIT reads the data files of the different materials, evaluates relevant
scattering properties and prepares look-up tables of energy-dependent quantities that
are used during the simulation. Its input arguments are:

EPMAX . . . Maximum energy (in eV) of the simulated particles. Notice that if the
primary particles are positrons with initial kinetic energy EP, the maximum energy
of annihilation photons may be close to (but less than) EPMAX = 1.21(EP+mec

2);
in this special case, the maximum energy is larger than the initial kinetic energy.

NMAT . . . Number of different materials (less than or equal to MAXMAT).

IWR . . . Output unit.

INFO . . . Determines the amount of information that is written on the output unit.
Minimal for INFO=0 and increasingly detailed for INFO=1, 2, etc.

PMFILE . . . Array of 20-character strings and dimension MAXMAT. The first NMAT ele-
ments are the names of the material-data files. The file with the name PMFILE(M)
defines the material number M (the order of filenames in PMFILE is important!).

For the preliminary computations, PEINIT needs to know the absorption energies
EABS(KPAR,M) and the simulation parameters C1(M), C2(M), WCC(M) and WCR(M). This
information is introduced through the named common block

→ COMMON/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT)
that has to be loaded before invoking subroutine PEINIT. Notice that we can employ
different values of the simulation parameters for different materials. This possibility can
be used to speed up the simulation in regions of lesser interest.

The scattering of polarised photons is simulated by using the conventions defined
in Appendix C and the theory presented in Section 2.7. Arbitrary partial polarisa-
tions are described in terms of the Stokes parameters relative to the “natural” basis of
linear-polarisation states [see Eqs. (C.6)]. The method allows tracking primary photons
with arbitrary partial polarisation. In principle, it can also be used to track secondary
photons (i.e., bremsstrahlung quanta and x rays). However, this requires specifying the
initial polarisation of secondary photons, because penelope does not define it. In the
example programs pencyl and penmain, we assume that secondary photons are initially
unpolarised. The simulation of polarised photons is controlled through the variables in
the named common block

→ COMMON/STOKES/SP1,SP2,SP3,IPOL

The quantities SP1, SP2 and SP3 are the Stokes parameters of the photon. These param-
eters must be defined before starting the simulation of each photon; they are modified
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internally by the penelope subroutines. The simulation of photon polarisation effects
is activated by setting IPOL=1.

penelope has been structured in such a way that a particle track is generated as
a sequence of track segments (free flights or “jumps”); at the end of each segment,
the particle suffers an interaction with the medium (a “knock”) where it loses energy,
changes its direction of movement and, in certain cases, produces secondary particles.
Electron-photon showers are simulated by successively calling the following subroutines:

SUBROUTINE CLEANS . . . Initiates the secondary stack, where initial states of sec-
ondary particles are stored.

SUBROUTINE START . . . For electrons and positrons, this subroutine forces the follow-
ing interaction event to be a soft artificial one. It must be called before starting a
new –primary or secondary– track and also when a track crosses an interface.
Calling START is strictly necessary only for electrons and positrons; for photons
this subroutine has no physical effect. However, it is advisable to call START for
any kind of particle because it checks whether the energy is within the expected
range, and can thus help to detect bugs in the main program.

SUBROUTINE JUMP(DSMAX,DS) . . . Determines the length DS of the track segment to
the following interaction event.
The input parameter DSMAX defines the maximum allowed step length for elec-
trons/positrons; for photons, it has no effect. As mentioned above, to limit the
step length, penelope places delta interactions along the particle track. These
are fictitious interactions that do not alter the physical state of the particle. Their
only effect is to interrupt the sequence of simulation operations (which requires
altering the values of inner control variables to permit resuming the simulation in
a consistent way). The combined effect of the soft interactions that occur along
the step preceding the delta interaction is simulated by the usual random-hinge
method.
To ensure the reliability of the mixed simulation algorithm, the number of arti-
ficial soft events per particle track in each body should be larger than, say, 10.
For relatively thick bodies (say, thicker than 10 times the mean free path between
hard interactions), this condition is automatically satisfied. In this case we can
switch off the step-length control by setting DSMAX=1.0D35 (or any other very
large value). On the other hand, when the particle moves in a thin body, DSMAX
should be given a value of the order of one tenth of the “thickness” of that body.
Limiting the step length is also necessary to simulate particle transport in external
electromagnetic fields.

SUBROUTINE KNOCK(DE,ICOL) . . . Simulates an interaction event, computes new en-
ergy and direction of movement, and stores the initial states of the generated
secondary particles, if any. On output, the arguments are:
DE . . . deposited energy in the course of the event (including the energies of gen-
erated secondary particles),
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ICOL . . . kind of event that has been simulated, according to the convention shown
in Table 7.3.
Delta interactions (ICOL=7) occur not only for electrons and positrons, but also
for photons (because of the trick adopted to avoid interpolating the photoelectric
inverse mean free path, see Section 2.5). The value ICOL=8 is used for the “auxil-
iary” interactions (an additional mechanism that may be defined by the user, e.g.,
to simulate photonuclear interactions, see the source file penelope.f).

Table 7.3: Code number (ICOL) for the various interaction events.

ICOL electrons (KPAR=1) photons (KPAR=2) positrons (KPAR=3)

1 artificial soft event coherent (Rayleigh) artificial soft event
(random hinge) scattering (random hinge)

2 hard elastic incoherent (Compton) hard elastic
collision scattering collision

3 hard inelastic photoelectric hard inelastic
collision absorption collision

4 hard bremsstrahlung electron-positron hard bremsstrahlung
emission pair production emission

5 inner-shell impact inner-shell impact
ionisation ionisation

6 annihilation

7 delta interaction delta interaction delta interaction

8 auxiliary interaction auxiliary interaction auxiliary interaction

SUBROUTINE SECPAR(LEFT) . . . Sets the initial state of a secondary particle and re-
moves it from the secondary stack. The output value LEFT is the number of
secondary particles that remained in the stack at the calling time.

SUBROUTINE STORES(E,X,Y,Z,U,V,W,WGHT,KPAR,ILB,IPOL) . . . Stores a particle
in the secondary stack. Arguments have the same meaning as in COMMON/TRACK/,
but refer to the particle that is being stored. The variables IBODY and MAT are set
equal to the current values in COMMON/TRACK/.
Calling STORES from the main program is useful, e.g., to store particles produced
by splitting, a variance-reduction method (see Section 1.6.2).

The sequence of calls to generate a random track is independent of the kind of
particle that is being simulated. The generation of random showers proceeds as follows
(see Fig. 7.1):

(i) Set the initial state of the primary particle, i.e., assign values to the state variables:
kind of particle KPAR, energy E, position coordinates r =(X,Y,Z) and direction of
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movement d̂ =(U,V,W). Specify the body and material where the particle moves
by defining the values of IBODY and MAT, respectively. Set WGHT=1 and ILB(1)=1.
When the primary particle is a photon and the simulation of polarised photons is
activated (IPOL=1), specify the Stokes parameters SP1, SP2 and SP3.

(ii) CALL CLEANS to initialise the secondary stack.

(iii) CALL START to initiate the simulation of the track.

(iv) CALL JUMP(DSMAX,DS) to determine the length DS of the next track segment (for
electrons and positrons, DS will never exceed the input value DSMAX).

(v) Compute the position of the following event:

• If the track has crossed an interface, stop the particle at the position where
the track intersects the interface, and shorten the step length DS accordingly.
Change to the new material (the one behind the interface) by redefining the
variables IBODY and MAT.
When the particle escapes from the system, the simulation of the track has
been finished; increment counters and go to step (vii).
Go to step (iii).

(vi) CALL KNOCK(DE,ICOL) to simulate the following event.

• If the energy of the particle is less than EABS(KPAR,MAT), end the track,
increment counters and go to step (vii).

• Go to step (iv).

(vii) CALL SECPAR(LEFT) to start the track of a particle in the secondary stack (this
particle is then automatically removed from the stack).

• If LEFT>0, go to step (iii). The initial state of a secondary particle has already
been set.

• If LEFT=0, the simulation of the shower produced by the primary particle has
been completed. Go to step (i) to generate a new primary particle (or leave
the simulation loop after simulating a sufficiently large number of showers).

Quantities of interest must be tallied by the main program, immediately after the oc-
currence of the relevant events. The required information is delivered by the simulation
routines, either as output arguments or through the variables in common TRACK.

Notice that subroutines JUMP and KNOCK keep the position coordinates unaltered;
the positions of successive events have to be followed by the main program (simply
by performing a displacement of length DS along the direction of movement after each
call to JUMP). The energy of the particle is automatically reduced by subroutine KNOCK,
after generating the energy loss from the relevant probability distribution. KNOCK also
modifies the direction of movement according to the scattering angles of the simulated
event. Thus, at the output of KNOCK, the values of the energy E, the position r =(X,Y,Z)
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CALL PEINIT (···)
          N=0

N=N+1 Start a new shower
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KPAR, E, r = (X,Y,Z), d = (U,V,W)
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Initialise PENELOPE
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Figure 7.1: Flow diagram of the main program for simulating electron-photon showers with

penelope.
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 CALL PEINIT (···)
CALL GEOMIN(...)
          N=0

N=N+1 Start a new shower

Initial state

CALL CLEANS

CALL START

CALL JUMP(DSMAX,DS)

CALL KNOCK(DE,ICOL)

E<EABS?

CALL SECPAR(LEFT)
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N<NTOT?

END
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Initialise PENELOPE
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NCROSS>0?

KPAR, E, r = (X,Y,Z), d = (U,V,W),^

 WGHT, ILB

MAT=0?
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Figure 7.2: Flow diagram of the main program for simulating electron-photon showers in

quadric geometries with penelope and pengeom.
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and the direction of movement d̂ =(U,V,W) define the particle state immediately after
the interaction event.

The subroutine package pengeom (see Chapter 6) can be used to handle arbitrary
quadric geometries. The flow diagram of a main program for penelope and pengeom
is shown in Fig. 7.2. As pengeom performs all geometrical operations automatically,
the structure of the main program is relatively simple (cf. Figs. 7.1 and 7.2).

In order to avoid problems arising from possible overflows of the secondary stack,
when a secondary particle is produced its energy is temporarily assumed as locally de-
posited. Hence, the energy E of a secondary must be subtracted from the corresponding
dose counter when the secondary track is started. Occasional overflows of the secondary
stack are remedied by eliminating the less energetic secondary electron or photon in the
stack (positrons are not eliminated since they will eventually produce quite energetic
annihilation radiation). As the main effect of secondary particles is to spread out the
energy deposited by the primary particle, the elimination of the less energetic secondary
electrons and photons should not invalidate local dose calculations.

It is the responsibility of the user to avoid calling subroutines JUMP and KNOCK with
energies outside the interval (EABS(KPAR,M),EPMAX). This could cause improper interpo-
lation of the cross sections. The simulation is aborted (and an error message is printed
in unit 26) if the conditions EABS(KPAR)<E<EPMAX are not satisfied when a primary or
secondary track is started (whenever subroutine START is called at the beginning of the
track).

Pseudo-random numbers uniformly distributed in the interval (0,1) are supplied by
function RAND(DUMMY), which implements a 32-bit generator due to L’Ecuyer (see Table
1.1). The seeds of the generator (two integers) are transferred from the main program
through the named common block RSEED (see below). The random-number generator
can be changed by merely replacing that FUNCTION subprogram (the new one has to have
a single dummy argument). Some compilers incorporate an intrinsic random-number
generator with the same name (but with different argument lists). To avoid conflict,
RAND should be declared as an external function in all subprograms that call it.

Notice that

(1) In the simulation routines, real and integer variables are declared as DOUBLE

PRECISION and INTEGER*4, respectively. To prevent type mismatches, the state-
ment

→ IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)

is used in all penelope routines and in the example main programs.

(2) The main program must include the following three common blocks:

→ COMMON/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)

→ COMMON/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT) ! Simulation parameters.
→ COMMON/RSEED/ISEED1,ISEED2 ! Random-number generator seeds.
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To allow the simulation of polarised photons, the main program must also contain
the common block:

→ COMMON/STOKES/SP1,SP2,SP3,IPOL

(3) The subroutines in penelope and pengeom may print warning and error mes-
sages in the unit 26, which is also the default output unit in the example main
programs pencyl and penmain described in Section 7.2.

As mentioned above, ILB(5) is an array of labels that describe the origin of sec-
ondary particles. It is assumed that the user has set ILB(1) equal to 1 (one) when
a primary (source) particle history is initiated. penelope then assigns the following
labels to each particle in a shower;

ILB(1): generation of the particle; 1 for primary particles, 2 for their direct descen-
dants, etc.

ILB(2): kind KPAR of parent particle, only if ILB(1)>1 (secondary particles).

ILB(3): interaction mechanism ICOL (see Table 7.3) that originated the particle, only
when ILB(1)>1.

ILB(4): a non-zero value identifies particles emitted from atomic relaxation events
and describes the atomic transition where the particle was released. The numerical
value is = Z · 106 + IS1 · 104 + IS2 · 100 + IS3, where Z is the atomic number of
the parent atom and IS1, IS2 and IS3 are the labels of the active atomic electron
shells (see Table 7.2).

ILB(5): this label can be defined by the user; it is transferred to all descendants of
the particle.

The ILB label values are delivered by subroutine SECPAR, through common TRACK, and
remain unaltered during the simulation of the track.

Owing to the long execution time, the code will usually be run in batch mode. It is
advisable to limit the simulation time rather than the number of tracks to be simulated,
because the time required to follow each track is difficult to predict. To this end, one can
link a clock routine to the simulation code and stop the computation after exhausting the
allotted time; an example of a clock routine (which runs with any Fortran 95 compiler)
is included in the penelope distribution package.

7.1.3 Layout of a generic main program

The following Fortran 77 listing illustrates the structure of a main program for simulation
with quadric geometries (similar to the example program penmain.f described in Section
7.2.2). It follows the flux diagram of Fig. 7.2. The simulation of interaction events is
controlled by sequential calls to subroutines START, JUMP and KNOCK. The simplicity of
the geometry operations is worth noting: all operations are performed internally, and
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the control from the main program reduces to successive calls to subroutines LOCATE

and STEP. The comment lines beginning with “cu” indicate parts of the program that
are specific to each experiment and have to be coded by the user. These include the
definition of the source characteristics (i.e., the specification of the initial states of
primary particles) and the scoring of relevant quantities and distributions.

C...+....1....+....2....+....3....+....4....+....5....+....6....+....7..

PROGRAM MAIN

IMPLICIT DOUBLE PRECISION (A-H,O-Z), INTEGER*4 (I-N)

C ************ Main-PENELOPE commons.

COMMON/TRACK/E,X,Y,Z,U,V,W,WGHT,KPAR,IBODY,MAT,ILB(5)

PARAMETER (MAXMAT=10)

COMMON/CSIMPA/EABS(3,MAXMAT),C1(MAXMAT),C2(MAXMAT),WCC(MAXMAT),

1 WCR(MAXMAT)

COMMON/STOKES/SP1,SP2,SP3,IPOL

CHARACTER PMFILE(MAXMAT)*20 ! Material data files

COMMON/RSEED/ISEED1,ISEED2 ! Seeds of the random number generator

C **** Geometry.

DIMENSION PARINP(20),DSMAX(5000)

cu << Define counter arrays and initialize them to zero

cu Set NTOT (total number of showers to be simulated) >>

C ************ Initialization of PENELOPE.

cu << Set the values of the parameters in the common blocks CSIMPA

cu (simulation parameters) and RSEED (seeds of the random number

cu generator) >>

cu << Define EPMAX (largest energy in the simulation) and NMAT (number

cu of materials in the geometrical structure) >>

PMFILE(1)=material_1.mat ! Material data files (input)

PMFILE(2)=material_2.mat ! etc.

INFO=4 ! Print detailed information on the transport models

OPEN (UNI=16) ! Output file

CALL PEINIT(EPMAX,NMAT,16,INFO,PMFILE) ! Initializes PENELOPE

CLOSE(UNIT=16)

C ************ Geometry definition.

NPINP=0 ! All geometry parameters are defined from the input file

OPEN(17,FILE=’my-geometry.geo’) ! Geometry definition file

OPEN(18,FILE=geometry.rep) ! Geometry report

CALL GEOMIN(PARINP,NPINP,NMATG,NBOD,17,18) ! Initializes PENGEOM

CLOSE(UNIT=17)

CLOSE(UNIT=18)

IF(NMATG.GT.NMAT) STOP ! The geometry contains too many materials
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cu << Define DSMAX(IBODY) for all bodies >>

C ************ Simulation.

cu << Initialize global counters >>

N=0

10 N=N+1 ! New shower

C ++++++++++++++++++++++++ Generate a new shower

cu << Set the initial state variables of the primary particle, possibly

cu by random sampling from the source distribution. Define _ALL_ the

cu parameters in COMMON/TRACK/, and COMMON/STOKES/ if applicable >>

C **** Check if the trajectory intersects the material system

CALL LOCATE ! Determines the body where the particle moves

IF(MAT.EQ.0) THEN ! The particle is outside all material bodies

CALL STEP(1.0D30,DSEF,NCROSS) ! Move the particle ahead

IF(MAT.EQ.0) THEN ! The particle does not enter the system

GOTO 10 ! Exit

ENDIF

ENDIF

CALL CLEANS ! Cleans the secondary stack

C

C ------------------------ Simulation of a new track

20 CALL START ! Starts simulation in current medium

30 CALL JUMP(DSMAX(IBODY),DS) ! Determines the step length

CALL STEP(DS,DSEF,NCROSS) ! Moves particle to end of step

IF(MAT.EQ.0) THEN ! The particle left the material system

GOTO 40 ! Exit

ENDIF

IF(NCROSS.GT.0) GO TO 20 ! The particle crossed an interface

CALL KNOCK(DE,ICOL) ! Simulates the interaction event

cu << Score relevant quantities >>

IF(E.LT.EABS(KPAR,MAT)) THEN ! The particle has been absorbed

GOTO 40 ! Exit

ENDIF

GOTO 30

C ------------------------ The simulation of the track ends here

C

40 CONTINUE

cu << Score relevant quantities >>

C **** Any secondary left?

CALL SECPAR(LEFT)

IF(LEFT.GT.0) THEN

cu << The secondary particle extracts energy from the site; modify

cu deposited energy counters accordingly >>

GOTO 20
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ENDIF

C ++++++++++++++++++++++++ The simulation of the shower ends here

IF(N.LT.NTOT) GOTO 10

cu << Calculate final averages and write results in output files >>

END

C...+....1....+....2....+....3....+....4....+....5....+....6....+....7..

7.1.4 Variance reduction

The subroutine package penelope.f is intended to perform analogue simulation and,
therefore, does not include any variance-reduction methods. The source file penvared.f
contains subroutines to automatically perform particle splitting, Russian roulette, and
interaction forcing. Splitting and Russian roulette (see Section 1.6.2) do not require
changes in penelope; the necessary manipulations on the numbers and statistical
weights WGHT of particles could be done directly in the main program. Particles result-
ing from splitting can be stored in the secondary stack by calling subroutine STORES.
Interaction forcing (Section 1.6.1) implies changing the mean free paths of the forced
interactions and, at the same time, redefining the weights of the generated secondary
particles. In principle, it is possible to apply interaction forcing from the main program
by manipulating the interaction probabilities, which are made available through the
named common block CJUMP0, but the process is by no means obvious.

The package penvared.f consists of the following subroutines;

SUBROUTINE VSPLIT(NSPLIT)

Splits the current particle into NSPLIT (> 1) identical particles, defines their
weights appropriately, and stores NSPLIT − 1 of them into the secondary stack.
The current particle continues with a reduced statistical weight.

SUBROUTINE VKILL(PKILL)

Applies the Russian roulette technique. The particle is killed with probability
PKILL (0 < PKILL < 1); if it survives, its weight is increased by a factor 1/(1 −
PKILL).

SUBROUTINE JUMPF(DSMAX,DS) and SUBROUTINE KNOCKF(DEF,ICOL)

These two subroutines perform interaction forcing. Their action is to artificially in-
sert “forced” interactions of selected kinds randomly along the particle trajectory.
This is accomplished by replacing the cross section σICOL of the desired interaction
by a larger value FORCE(.)×σICOL. The forcing factors FORCE(IBODY,KPAR,ICOL)
[for all the bodies in the material structure, for the three types of particles, and
for the various kinds of interactions (see Table 7.3)] have to be specified by the
user in the main program and transferred through the common block
COMMON/CFORCE/FORCE(NB,3,8) with NB = 5,000.

Forcing factors must be larger than, or equal to, unity; obviously, the value
FORCE(.) = 1 means “no forcing”. To keep the simulation unbiased, interactions
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are allowed to affect the state of the projectile only with probability WFORCE(.) =
1/FORCE(.), and, at the same time, secondary particles generated in the inter-
actions are assigned a weight smaller than that of the projectile by a factor
= WFORCE(.).

To apply interaction forcing, the main program must call subroutines JUMPF and
KNOCKF instead of the usual subroutines JUMP and KNOCK. Moreover, subroutine
START must be called before starting a track and after each interface crossing,
even for photons. The output argument DEF of subroutine KNOCKF is the effective
deposited energy (i.e., the deposited energy multiplied by WFORCE(.)).

Usually, the variance-reduction parameters [i.e., the splitting number NSPLIT, the
killing probability PKILL, and the forcing factors FORCE(.)] are assumed to be indepen-
dent of the particle energy. Although this scheme is flexible enough for many practical
uses, the parameter values can also be varied during the simulation. NSPLIT and PKILL

can be modified at any time during the simulation of a particle. The values of the forcing
factors FORCE(.) can be changed only immediately after a call to subroutine START.

Although these variance-reduction routines operate automatically and are robust,
they should be invoked with care. Their effect on the efficiency of the simulation is not
always easy to predict. It is therefore advisable to perform tentative runs with different
values of the variance-reduction parameters to check the efficiency gain (or loss!). In
general, particle weights must be prevented from reaching very large or very small values.
In the first case, a very “heavy” particle can completely hide the information collected
from many lighter particles. Conversely, it is not convenient to spend time simulating
particles with very small weights, which contribute insignificant amounts to the scores.
Therefore, these variance-reduction techniques should be applied only when the particle
weight WGHT is within a limited range (weight window), e.g., between 0.05 and 20.

Notice also that repeated splitting and interaction forcing may easily lead to satura-
tion of the secondary stack. The stack size in the original files is NMS = 1,000 particles,
and is large enough for most applications. However, it may be insufficient when using
heavy splitting and/or interaction forcing. The user should make sure that the sec-
ondary stack does not overflow; when the stack gets full, a warning message is printed
in unit 26, but the simulation is not aborted (because occasional stack overflows may
not have an appreciable effect on the results). Saturation of the stack can be avoided
by increasing the lower limit of the weight window. It is also recommended to apply
interaction forcing only to primary particles. In case of need, the size of the stack can
be increased by editing the files penelope.f and penvared.f and changing the value
of the parameter NMS.

It should be mentioned that, when interaction forcing is applied, energy is conserved
only on average because the energy deposited into the medium is, in general, different
from the energy lost by the projectile. This implies that the spectrum of deposited
energy (of interest, e.g., to simulate the response of scintillation detectors) is distorted.
Nevertheless, interaction forcing does increase the efficiency of calculations of dose dis-
tributions and secondary radiation emission. Splitting and Russian roulette leave the
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simulation results unbiased. In particular, Russian roulette is the alternative of choice in
front of range rejection and similar ad hoc techniques, which may easily bias the results.

Range rejection should never be used with photons. In the case of charged particles,
it may be applied automatically by considering the absorption energies EABS(KPAR) as
local variables. Since the simulation routines work properly when they are passed an
increased value of EABS(KPAR) (i.e., they discontinue the simulation of particles with
energy below that value), we may use this parameter to absorb charged particles that
move in bodies that are too far from the detector to yield any appreciable contribution.
The example main programs pencyl and penmain implement this strategy to reduce
the simulation work in regions of lesser interest.

7.2 Examples of main programs

The distribution package of penelope includes two examples of main programs: pencyl
(which simulates electron-photon transport in cylindrical geometries) and penmain (for
generic quadric geometries). In these example programs, we assume that a single kind
of particles is emitted from the radiation source. The programs can be easily generalised
to the case of multi-particle sources with continuous (or discrete) energy spectra. They
provide fairly detailed information, but their scoring capabilities are limited. It should
be borne in mind that these example main programs are just this, examples. While it is
feasible to design simulation algorithms to faithfully implement the adopted interaction
models (i.e., the physics) and to describe accurately certain types of geometries (e.g.,
quadric geometries), it is virtually impossible to develop a generic main program that is
able to compute all conceivable information about any practical problem (with arbitrary
radiation sources). If the example programs included in the penelope distribution
package cannot accommodate your problem, you should consider writing your own main
program.

The two example main programs operate in a similar way. They both read data from
a corresponding input file and output the results in a number of files with fixed names2.
The input files of pencyl and penmain have similar structures and formats; they are
described in detail in the following Sections3. Each line in the input data file consists of a
6-character keyword (columns 1–6) and a blank (column 7), followed either by numerical
data (in free format) or by a character string, which start at the 8-th column. Keywords
are explicitly used/verified by the programs (which are case sensitive!). Notice also that
the order of the data lines is important. The keyword “------” (6 blanks, which we
have denoted by “-”) indicates comment lines and can be placed anywhere in the file
(except within the geometry definition block of pencyl). The programs ignore any text
following the first blank after the last numerical datum, or after the character string, in

2Warning: The programs overwrite older output files that are left in the working directory. You
should save all result files on a separate directory before rerunning a program.

3Although the input files of the two programs are similar, they will be described separately. Users
interested in one of the programs, will find all the relevant information in the corresponding Section.
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each line. Thus, in the input file layouts given below, the comments in square brackets
are ignored. Lines with certain keywords (e.g., “SPECTR”) can appear an arbitrary
number of times, limited only by the allocated amount of memory. The programs assign
default values to many input variables; lines that declare default values may be removed
from the input file. The execution of a program is aborted when an incorrect input
datum is found. The conflicting quantity usually appears in the last line of the output
file. If the trouble is with arrays having dimensions smaller than required, the program
indicates how the problem can be solved (this may require editing the source file, be
careful).

The main programs pencyl and penmain generate an output file with generic in-
formation, such as number of simulated showers, simulation speed, average numbers
of generated secondary particles, average deposited energies, etc. The programs also
generate a number of continuous distributions (depending on the options selected in the
input file). Each simulated distribution is written in a separate file (as a histogram),
with a heading describing its content and in a format ready for visualisation with a
plotting program. The programs compute and deliver the statistical uncertainties (3σ)
of all evaluated quantities and distributions. Many authors quote these uncertainties
as one standard deviation, which means that the probability for the actual value to lie
outside the error bar is 0.317. We prefer to be more conservative and stay at the 3σ
level, for which the probability of “missing the real value” is only 0.003.

Optionally, at the end of a run, pencyl and penmain can write the contents of all
counters to a dump file; using this option, a simulation with poor statistics can be
resumed from exactly the same point where it was stopped (without losing the work
done in the previous run). In addition, the programs can generate the output and dump
files at specified intervals of time; this option allows the user to inspect the results
as they are being computed, and to stop the simulation when the required statistical
accuracy has been reached. In this last case, make sure that execution is not stopped
while the output files are being written to the hard disc; otherwise, the results will be
lost.

The programs pencyl and penmain have been intensively used to analyse the reli-
ability of penelope. They have been applied to a variety of experimental situations,
covering a wide energy range. Benchmark comparisons with experimental data have
been published elsewhere (Baró et al., 1995; Sempau et al., 1997; Sempau et al., 2003).

7.2.1 Program pencyl

The program pencyl simulates electron and photon transport in multilayered cylindrical
structures. The material system consists of one or several layers of given thicknesses.
Each layer contains a number of concentric homogeneous rings of given compositions and
radii (and thickness equal to that of the layer). The layers are perpendicular to the z-axis
and the centre of the rings in each layer is specified by giving its x and y coordinates.
When all the centres are on the z-axis, the geometrical structure is symmetrical under



290 Chapter 7. Structure and operation of the code system

rotations about the z-axis (see Fig. 7.3).
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Figure 7.3: An example of cylindrical geometry, a thick-walled cavity (C) with a point

off-axis source (conical beam). In this case, the material structure is symmetrical about the

z-axis, but the radiation flux and other three-dimensional quantities (e.g., absorbed dose and

deposited charge distributions) depend on the azimuthal angle ϕ.

Primary particles of a given kind, KPARP, are emitted from the active volume of the
source, either with fixed energy SE0 or with a specified (histogram-like) energy spectrum.
The initial direction of the primary particles is sampled uniformly within a circle of the
unit sphere (conical beam), or within a “rectangular” window (pyramidal beam).

The program can simulate two different types of sources:
a) An external source with uniform activity over a cylindrical volume, which is defined
separately from the geometry of the material system.
b) A set of internal sources spread over specified bodies (cylinders or rings), each one with
uniform activity density (=number of emissions per unit volume). The original position
of the primary particle is sampled uniformly within the volume of the active body.
In case there are several active bodies, they are selected randomly with probabilities
proportional to the corresponding total activities.

In the distributed form of the program, we assume that both the source and the
material structure are symmetrical about the z-axis, because this eliminates the depen-
dence on the azimuthal angle ϕ. The program takes advantage of this symmetry to
tally 3D dose distributions. It is possible to consider geometries that are not axially
symmetrical, but then the program only delivers values averaged over ϕ.

The source file pencyl.f includes a (self-contained) set of geometry routines for
tracking particles through multilayered cylindrical structures. These routines can be
used for simulation even when the source is off-axis. Cylindrical geometries can be
viewed with the program gviewc, which is similar to gview2d (see Section 5.6) and
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runs under Microsoft Windows. This program reads the geometry definition list from
the input file and displays a two-dimensional map of the materials intersected by the
window plane. It is useful for debugging the geometry definition.

The program pencyl delivers detailed information on the transport and energy depo-
sition, which includes energy and angular distributions of emerging particles, depth-dose
distribution, depth-distribution of deposited charge, distributions of deposited energy
in selected materials and 2D (depth-radius) dose and deposited charge distributions in
selected bodies (cylinders). To generate more specific information, the user can define
energy-deposition detectors. Each detector consists of a set of active (non-void) bodies,
which must have been defined as parts of the geometry. The output spectrum of an
energy-deposition detector is the distribution of absorbed energy (per shower) in the
active bodies.

A report on the global simulation, which contains relevant input data as well as
some partial results, is written in a file named pencyl.dat. The calculated continuous
distributions (histograms) are written in separate files, whose names have the extension
“.dat”. These files are in a format suited for direct visualisation with gnuplot (version
4.2). pencyl can be readily used to study radiation transport in a wide variety of
practical systems, e.g., planar ionisation chambers, cylindrical scintillation detectors,
solid-state detectors and multilayered structures.

7.2.1.1 Structure of the input file

The structure of the pencyl input file is the following (the 72-column rulers are just for
visual aid, they do not form part of the input file).

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

TITLE Title of the job, up to 65 characters.

. (the dot prevents editors from removing trailing blanks)

GSTART >>>>>>>> Beginning of the geometry definition list.

LAYER ZLOW,ZHIG [Z_lower and Z_higher]

CENTRE XCEN,YCEN [X_centre and Y_centre]

CYLIND M,RIN,ROUT [Material, R_inner and R_outer]

GEND <<<<<<<< End of the geometry definition list.

The labels KL,KC indicate the K-th cylinder in the L-th layer.

.

>>>>>>>> Source definition.

SKPAR KPARP [Primary particles: 1=electron, 2=photon, 3=positron]

SENERG SE0 [Initial energy (monoenergetic sources only)]

SPECTR Ei,Pi [E bin: lower-end and total probability]

SGPOL SP1,SP2,SP3 [Stokes parameters for polarised photons]

SEXTND KL,KC,RELAC [Extended source in KL,KC, rel. activity dens.]

STHICK STHICK [Source height]

SRADII SRIN,SROUT [Source inner and outer radii]
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SPOSIT SX0,SY0,SZ0 [Coordinates of the source centre]

SCONE THETA,PHI,ALPHA [Conical beam; angles in deg]

SPYRAM THETAL,THETAU,PHIL,PHIU [Rectangular beam; angles in deg]

.

>>>>>>>> Material data and simulation parameters.

Up to MAXMAT materials; 2 lines for each material.

MFNAME mat-filename.ext [Material file, up to 20 chars]

MSIMPA EABS(1:3),C1,C2,WCC,WCR [EABS(1:3),C1,C2,WCC,WCR]

.

>>>>>>>> Local maximum step lengths and absorption energies.

DSMAX KL,KC,DSMAX(KL,KC) [Mmaximum step length in body KL,KC]

EABSB KL,KC,EABSB(1:3,KL,KC) [Local EABSB(1:3) in body KL,KC]

.

>>>>>>>> Interaction forcing.

IFORCE KL,KC,KPAR,ICOL,FORCER,WLOW,WHIG [Interaction forcing]

.

>>>>>>>> Counter array dimensions and pdf ranges.

NBE EL,EU,NBE [Energy window and no. of bins]

NBANGL NBTH,NBPH [Nos. of bins for the angles THETA and PHI]

NBZ NBZ [No. of bins for the Z-coordinate]

NBR NBR [No. of radial bins]

NBTL TLMIN,TLMAX,NBTL [Track-length interval and no. of TL-bins]

.

>>>>>>>> Energy-deposition detectors (up to 25).

ENDETC EL,EU,NBE [Energy window and number of bins]

EDSPC spc-enddet-##.dat [Output spectrum file name, 20 chars]

EDBODY KL,KC [Active body; one line for each body]

.

>>>>>>>> Dose and charge distributions.

DOSE2D KL,KC,NZ,NR [Tally 2D dose and charge dists. in body KL,KC]

.

>>>>>>>> Job properties.

RESUME dump1.dmp [Resume from this dump file, 20 chars]

DUMPTO dump2.dmp [Generate this dump file, 20 chars]

DUMPP DUMPP [Dumping period, in sec]

.

RSEED ISEED1,ISEED2 [Seeds of the random-number generator]

NSIMSH DSHN [Desired number of simulated showers]

TIME TIMEA [Allotted simulation time, in sec]

.

END [Ends the reading of input data]

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..
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The following listing describes the function of each of the keywords, the accompanying
data and their default values.

TITLE ... Title of the job (up to 65 characters).
-- Default: none (the input file must start with this line)

The TITLE string is used to mark dump files. To prevent improper use of wrong
resuming files, change the title each time you modify basic parameters of your
problem. The code will then be able to identify the inconsistency and it will stop
after writing an error message.

• Geometry definition

Geometry definition list . . . begins with the line “GSTART” and ends with the line
“GEND--” (notice the two blanks). The only allowed keywords in the geometry
list are “GSTART”, “LAYER-”, “CENTRE”, “CYLIND” and “GEND--”. The line after
“GSTART” must be a “LAYER-” line. Each “LAYER-” line contains the z-coordinates
of its lower and upper limiting planes and is followed by a “CENTRE” line (optional)
and by one or several “CYLIND” lines, which contain the material and the inner
and outer radii of the various concentric rings in the layer; empty layers are disre-
garded.

Layers must be defined in increasing order of heights, from bottom to top of the
structure. If the “CENTRE” line is not entered, cylinders are assumed to be centred
on the z-axis (XCEN = YCEN = 0.0). Cylinders have to be defined in increasing
radial order, from the centre to the periphery. The two lengths in each “LAYER-”
and “CYLIND” line must be entered in increasing order. The geometry definition
list can be debugged/visualised with the code gviewc (operable under Microsoft
Windows). Notice that gviewc reads the geometry directly from the pencyl input
data file (i.e., the first line in the geometry definition file must be the “TITLE-”
line).
-- Default: none (the geometry must be defined in the input file)

• Source definition

SKPAR ... Kind of primary particle (1 = electrons, 2 = photons, or 3 = positrons).
-- Default: KPARP=1

SENERG ... For monoenergetic sources: initial energy SE0 of primary particles.
-- Default: SE0=1.0E6

SPECTR ... For a source with continuous (stepwise constant) energy spectrum, each
“SPECTR” line gives the lower end-point (Ei) of an energy bin of the spectrum and
the associated relative probability (Pi), integrated over the bin. Up to NSEM =
1, 000 lines can be entered, in arbitrary order. The upper end of the spectrum is
defined by entering a line with Ei equal to the upper energy end point, and with
a negative Pi value.
-- Default: none
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SGPOL ... This line activates the simulation of polarisation effects in the scattering
of photons, i.e., it sets IPOL=1 (electrons and positrons are assumed to be unpo-
larised). SP1, SP2, SP3 are the Stokes parameters of primary photons, which define
the degrees of linear polarisation at 45 deg azimuth, of circular polarisation, and of
linear polarisation at zero azimuth, respectively (see Appendix C). It is assumed
that secondary photons are emitted with null polarisation (SP1=SP2=SP3=0.0).
-- Default: none

SEXTND ... For internal extended sources, this line defines an active body KL, KC (the
cylinder KC in layer KL) and its relative activity density, RELAC.
-- Default: none
NOTE: The labels KL, KC that identify each body are defined by the ordering in
the input geometry list. These labels are written on the output geometry report.

STHICK ... For an external source, thickness (height) of the active volume of the
source (cylinder or ring).
-- Default: STHICK=0.0

SRADII ... For an external source, inner and outer radii of the active volume of the
source.
-- Defaults: SRIN=0.0, SROUT=0.0

SPOSIT ... For an external source, coordinates (x0, y0, z0) of the centre of the source
volume.
-- Defaults: SX0=SY0=SZ0=0.0

SCONE ... Conical source beam. Polar and azimuthal angles of the beam axis direc-
tion, THETA and PHI, and angular aperture, ALPHA, in deg.
-- Defaults: THETA=0.0, PHI=0.0, ALPHA=0.0

The case ALPHA=0.0 defines a monodirectional source, and ALPHA=180.0 corre-
sponds to an isotropic source.

SPYRAM ... Pyramidal source beam. Limiting polar and azimuthal angles of the
source beam window, (THETAL,THETAU)×(PHIL,PHIU), in deg.
-- Defaults: THETAL=0.0, THETAU=0.0, PHIL=0.0, PHIU=0.0

The case THETAL=THETAU, PHIL=PHIU defines a monodirectional source. To define
an isotropic source, set THETAL=0.0, THETAU=180.0, PHIL=0.0 and PHIU=360.0.

Note that the default source is a pencil beam that moves upwards along the z-axis.

• Material data and simulation parameters

MFNAME ... Name of a penelope input material data file (up to 20 characters). This
file must be generated in advance by running the program material.
-- Default: none

MSIMPA ... Values of the simulation parameters for this material: absorption energies,
EABS(1:3,M), elastic scattering parameters, C1(M) and C2(M), and cutoff energy
losses for inelastic collisions and bremsstrahlung emission, WCC(M) and WCR(M).
-- Defaults: EABS(1,M)=EABS(3,M)=0.01*EPMAX, EABS(2,M)=0.001*EPMAX
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C1(M)=C2(M)=0.1, WCC(M)=EABS(1,M), WCR(M)=EABS(2,M)

EPMAX is the maximum energy of all particles found in the simulation. It is deter-
mined by the source energies.

For each material we must provide the name of the material-data file and a set
of simulation parameters. The label (material number) assigned by penelope
to each material is determined by the ordering of the material list in the input
file. That is, the first, second, . . .materials are assigned the labels 1, 2, . . . These
labels are also used in the geometry definition. The material file may contain mul-
tiple declarations of the same material, e.g., to specify different sets of simulation
parameters in different bodies with the same composition.

The original programs in the distribution package allow up to 10 materials. This
number can be increased by changing the value of the parameter MAXMAT in the
original source files.

• Local maximum step lengths and absorption energies

DSMAX ... Maximum step length DSMAX(KL,KC) of electrons and positrons in cylin-
der KL,KC. This parameter is important only for thin bodies; it should be given a
value of the order of one tenth of the cylinder thickness or less.
-- Default: DSMAX=0.1 times the cylinder thickness

EABSB ... Local absorption energies EABSB(KPAR,KL,KC) of particles of type KPAR

in body KL,KC. These values must be larger than EABS(KPAR,M), where M is the
material of body KL,KC. When the particle is moving within body KL,KC, the ab-
sorption energy EABS(KPAR,M) is temporarily set equal to EABSB(KPAR,KL,KC).
Thus, the simulation of the particle history is discontinued when the energy be-
comes less than EABSB(KPAR,KL,KC). This feature can be used, e.g., to reduce the
simulation work in regions of lesser interest.
-- Defaults: EABSB(KPAR,KL,KC)=EABS(KPAR,M) (no action)

• Interaction forcing

IFORCE ... Activates forcing of interactions of type ICOL of particles KPAR in cylinder
KC of layer KL. FORCER is the forcing factor, F , which must be larger than unity
(Section 1.6.1). The values WLOW, WHIG are the limits of the weight window where
interaction forcing is applied (see Section 7.1.3).
-- Default: no interaction forcing

If the mean free path for real interactions of type ICOL is MFP, the program will
simulate interactions of this type (real or forced) with an effective mean free path
equal to MFP/FORCER.

The real effect of interaction forcing on the efficiency is not easy to predict. Please,
do tentative runs with different FORCER values and check the efficiency gain (or
loss!).
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TRICK: a negative input value of FORCER, −F , is assumed to mean that each
particle should interact, on average and approximately, F times in a path length
equal to the range of the particle with E = EPMAX. This is very useful, e.g., to
generate x-ray spectra.

• Counter array dimensions and tallied ranges

NBE ... Limits, EL and EU, of the interval where energy distributions are tallied
and number of energy bins, NBE (≤ 1, 000).
-- Defaults: EL=0.0, EMAX=EPMAX, NBE=100

NBANGL ... Number of bins for the polar angle θ and the azimuthal angle ϕ, respec-
tively, NBTH and NBPH (≤ 180).
-- Defaults: NBTH=90, NBPH=1 (azimuthal average)

NOTE: In the output files, the terms “upbound” and “downbound” are used
to denote particles that leave the material system moving upwards (W>0) and
downwards (W<0), respectively4.

NBZ ... Number of bins for the z-coordinate. Less than or equal to 200.
-- Default: NBZ=100

NBR ... Number of bins for the radial variable, r = (x2+y2)1/2. Less than or equal
to 200.
-- Default: NBR=100

NBTL ... Limits of the interval where track-length distributions of primary particles
are tallied. Number of track-length bins, NBTL ≤ 200.
-- Defaults: TLMIN=0.0, TLMAX=2.5*RANGE(EPMAX,KPARP,1), NBTL=100

• Energy-deposition detectors

ENDETC ... Starts the definition of a new energy-deposition detector. Up to 25 dif-
ferent detectors can be considered. EL and EU are the lower and upper limits of
the energy window covered by the detector.

NBE is the number of bins in the output energy spectrum (≤1,000). If NBE is
positive, energy bins have uniform width, DE=(EU-EL)/NBE. When NBE is negative,
the bin width increases geometrically with the energy, i.e., the energy bins have
uniform width in a logarithmic scale.

WARNING: The energy-deposition spectrum may be strongly biased when inter-
action forcing is applied within the detector bodies.

EDSPC ... Name of the output spectrum file (up to 20 characters).
-- Default: spc-enddet-##.dat

4In previous versions of the programs we used the respective terms “transmitted” and “backscat-
tered”, which did cause some confussion when primary particles were incident from above.
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EDBODY ... Active body KL,KC of the detector. One line for each active body.
-- Default: none

NOTE: A body cannot be part of more than one energy-deposition detector.

• Absorbed dose and charge distributions

DOSE2D ... The program will tally 2D, depth-radius, dose and deposited charge dis-
tributions in the body KL,KC (i.e., the cylinder KC of layer KL). The numbers NZ
and NR of z- and r-bins have to be specified by the user, they must be between 1
and 200. Up to ten different bodies can be selected, a DOSE2D line is required for
each body.
-- Default: off

• Job properties

RESUME ... The program will read the dump file dump1.dmp (up to 20 characters)
and resume the simulation from the point where it was left. Use this option very,
very carefully. Make sure that the input data file is fully consistent with the one
used to generate the dump file.
-- Default: off

DUMPTO ... Generate a dump file named dump2.dmp (name given by the user, up to
20 characters) after completing the simulation run. This allows the simulation to
be resumed to improve statistics.
-- Default: off

NOTE: If the file dump2.dmp already exists, it is overwritten.

DUMPP ... When the DUMPTO option is activated, simulation results are written in the
output files every DUMPP seconds. This option is useful to check the progress of
long simulations. It also allows the program to be run with a long execution time,
and to be stopped when the required statistical uncertainty has been reached.
-- Default: DUMPP=1.0E15

RSEED ... Seeds of the-random number generator.
-- Default: ISEED1=1; ISEED2=1

NSIMSH ... Desired number of simulated showers.
-- Default: DSHN=2.0E9

TIME ... Allotted simulation time, in sec.
-- Default: TIMEA=2.0E9

END ... Ends the reading of the input file. This line is needed only when the TIME
line is missing.
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7.2.1.2 Example

The example of input file given below (cyld.in) belongs to the pencyl file set included
in the distribution package. It corresponds to the simulation of a narrow photon beam
with E0 = 1.25 MeV (roughly the average energy of gamma rays from 60Co) entering
a 3”×3” NaI scintillation detector in an Al case, whose inner surface is partially cov-
ered by a layer of Al2O3, which diffuses scintillation light back to the crystal and the
photomultiplier. Note that the order of the materials is NaI (MAT=1), Al2O3 (MAT=2)
and Al (MAT=3). The incident beam photons move along the z-axis with θ = 0 (i.e.,
upwards) and impinge normally on the surface of the detector. The geometry is shown
schematically in the insets of Fig. 7.4, which displays two of the distributions generated
by pencyl. The plotted distributions were obtained from 10 million random showers;
the uncertainty bars represent statistical uncertainties (3σ), which are pretty small in
this case.

• Example input file of the pencyl program (cyld.in).

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

TITLE NaI detector with Al cover and Al2O3 reflecting foil

GSTART >>>>>>>> Beginning of the geometry definition list.

LAYER -0.24 -0.16 1

CENTRE 0.00 0.00

CYLIND 3 0.00 4.05

LAYER -0.16 0.00 2

CYLIND 2 0.00 3.97

CYLIND 3 3.97 4.05

LAYER 0.00 7.72 3

CYLIND 1 0.00 3.81

CYLIND 2 3.81 3.97

CYLIND 3 3.97 4.05

LAYER 7.72 9.72 4

CYLIND 3 0.00 4.05

GEND <<<<<<<< End of the geometry definition list.

>>>>>>>> Source definition.

SKPAR 2 [Primary particles: 1=electron, 2=photon, 3=positron]

SENERG 1.25e6 [Initial energy (monoenergetic sources only)]

SPOSIT 0.0 0.0 -10.0 [Coordinates of the source center]

SCONE 0 0 0 [Conical beam; angles in deg]

>>>>>>>> Material data and simulation parameters.

MFNAME NaI.mat [Material file, up to 20 chars]

MSIMPA 1.0e5 1000 1.0e5 0.1 0.1 1.0e4 1000 [EABS(1:3),C1,C2,WCC,WCR]

MFNAME Al2O3.mat [Material file, up to 20 chars]

MSIMPA 1.0e5 1000 1.0e5 0.1 0.1 1.0e4 1000 [EABS(1:3),C1,C2,WCC,WCR]

MFNAME Al.mat [Material file, up to 20 chars]
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MSIMPA 1.0e5 1000 1.0e5 0.1 0.1 1.0e4 1000 [EABS(1:3),C1,C2,WCC,WCR]

>>>>>>>> Energy-deposition detectors (up to 25).

ENDETC 0 1.3e6 130 [Energy window and number of bins]

EDBODY 3 1 KL,KC [Active body; one line for each body]

>>>>>>>> Dose and charge distributions.

DOSE2D 3 1 50 50 [Tally 2D dose and charge dists. in body KL,KC]

>>>>>>>> Job properties

RESUME dump.dmp [Resume from this dump file, 20 chars]

DUMPTO dump.dmp [Generate this dump file, 20 chars]

DUMPP 60 [Dumping period, in sec]

NSIMSH 1.0e9 [Desired number of simulated showers]

TIME 1.0e9 [Allotted simulation time, in sec]

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

The upper plot in Fig. 7.4 shows the distribution of energy Ed deposited into the
NaI crystal volume (per primary photon). The lower plot displays the distribution (per
primary photon) of the energy Eb of downbound photons, i.e., photons that emerge
from the system pointing downwards, with W = cos θ < 0. These distributions show
three conspicuous structures that arise from backscattering of incident photons in the
crystal volume or in the Al backing (B), escape of one of the ∼ 511 keV x rays resulting
from positron annihilation (A) and escape of ∼ 30 keV iodine K x rays (C). The peak A
is so small because pair production is a relatively unlikely process for 1.25 MeV photons
(the energy is too close to the pair-production threshold).

7.2.2 Program penmain

This is a generic main program that performs simulations of electron-photon transport
in complex material structures. penmain is devised to allow occasional users to employ
penelope without having to write their main program. The geometry of the material
system is described by means of the package pengeom (see Chapter 6), which is able to
handle complicated geometries very efficiently (provided only that the user takes care of
defining a sufficiently ramified genealogical tree of modules). The operation of penmain
is completely controlled from the input data file. Although it is impossible to cover all
possible cases with a “closed” program, penmain is flexible enough to solve a broad class
of practical problems.

In the default mode, penmain assumes that primary particles of a given kind are
emitted from a point or an extended source, either with fixed energy or with a speci-
fied (histogram-like) energy spectrum. The initial direction of the primary particles is
sampled uniformly within a circle of the unit sphere (conical beam), or within a “rectan-
gular” window (pyramidal beam). Alternatively, the program can read the initial state
variables of “primary” particles from pre-calculated phase-space files. This option is
useful for splitting the simulation of complex problems into several consecutive stages.
The program also admits radiation sources defined by the user, although this requires
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Figure 7.4: Partial results from pencyl for the NaI photon detector described in the text

(input file cyld.in). Top: distribution of energy deposited in the NaI crystal (MAT=1). Bottom:

energy distribution of backscattered (downbound) photons.
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some editing work.

penmain provides global simulation results such as the energy and angular distribu-
tions of particles that emerge from the material system, the average energy deposited
in each body, etc. To generate more specific information, the user can define impact de-
tectors (see Section 5.5.1) and energy-deposition detectors. Each detector consists of a
set of active (non-void) bodies, which must have been defined as parts of the geometry.
The output spectrum from an impact detector is the energy distribution of particles
that entered any of the active bodies coming from a body that is not active (i.e., that is
not part of the detector). Optionally, for each impact detector, the program can gener-
ate a phase-space file where the state variables of particles at the detector entrance are
recorded. The output spectrum of an energy-deposition detector is the distribution of
absorbed energy (per shower) in the active bodies. The program also offers the option
of tallying a dose map in an orthogonal mesh defined by the user.

A report on the global simulation, including relevant input data as well as some
partial results, is written in a file named penmain.dat. The calculated continuous
distributions (histograms) are written in separate files, whose names have the extension
“.dat”. These files are in a format suited for direct visualisation with gnuplot (version
4.2).

The program penmain is designed to be run on single-processor computers. The
dump/resume option allows us to stop the simulation at any time, and to resume it
from the last dumping point in a completely consistent way. Optionally, the program
can also write simulation results in the output files at regular time intervals.

7.2.2.1 Structure of the input file

The structure of the penmain input file is the following (the 72-column rulers are just
for visual aid, they do not form part of the input file).

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

TITLE Title of the job, up to 65 characters.

. (the dot prevents editors from removing trailing blanks)

>>>>>>>> Source definition.

SKPAR KPARP [Primary particles: 1=electron, 2=photon, 3=positron]

SENERG SE0 [Initial energy (monoenergetic sources only)]

SPECTR Ei,Pi [E bin: lower-end and total probability]

SGPOL SP1,SP2,SP3 [Stokes parameters for polarised photons]

SPOSIT SX0,SY0,SZ0 [Coordinates of the source]

SBOX SSX,SSY,SSZ [Source box dimensions]

SBODY KB [Active source body; one line for each body]

SCONE THETA,PHI,ALPHA [Conical beam; angles in deg]

SPYRAM THETAL,THETAU,PHIL,PHIU [Rectangular beam; angles in deg]

.

>>>>>>>> Input phase-space file (psf).



302 Chapter 7. Structure and operation of the code system

IPSFN psf-filename.ext [Input psf name, up to 20 characters]

IPSPLI NSPLIT [Splitting number]

WGTWIN WGMIN,WGMAX [Weight window, RR & spl of psf particles]

EPMAX EPMAX [Maximum energy of particles in the psf]

.

>>>>>>>> Material data and simulation parameters.

Up to MAXMAT materials; 2 lines for each material.

MFNAME mat-filename.ext [Material file, up to 20 chars]

MSIMPA EABS(1:3),C1,C2,WCC,WCR [EABS(1:3),C1,C2,WCC,WCR]

.

>>>>>>>> Geometry and local simulation parameters.

GEOMFN geo-filename.ext [Geometry file, up to 20 chars]

DSMAX KB,DSMAX(KB) [KB, maximum step length in body KB]

EABSB KB,EABSB(1:3,KB) [KB, local absorption energies, EABSB(1:3)]

.

>>>>>>>> Interaction forcing.

IFORCE KB,KPAR,ICOL,FORCER,WLOW,WHIG [KB,KPAR,ICOL,FORCER,WLOW,WHIG]

.

>>>>>>>> Emerging particles. Energy and angular distributions.

NBE EL,EU,NBE [Energy window and no. of bins]

NBANGL NBTH,NBPH [Nos. of bins for the angles THETA and PHI]

.

>>>>>>>> Impact detectors (up to 25 different detectors).

IPSF=0; no psf is created.

IPSF=1; the psf is created.

IDCUT=0; tracking is discontinued at the detector entrance.

IDCUT=1; the detector does not affect the tracking.

IDCUT=2; the detector does not affect tracking, the energy

distribution of particle fluence (averaged over the

volume of the detector) is calculated.

IMPDET EL,EU,NBE,IPSF,IDCUT [E-window, no. of bins, IPSF, IDCUT]

IDSPC spc-impdet-##.dat [Spectrum file name, 20 chars]

IDPSF psf-impdet-##.dat [Phase-space file name, 20 chars]

IDFLNC fln-impdet-##.dat [Fluence spectrum file name, 20 chars]

IDBODY KB [Active body; one line for each body]

IDKPAR KPAR [Kind of detected particles, one line each]

.

>>>>>>>> Energy-deposition detectors (up to 25).

ENDETC EL,EU,NBE [Energy window and number of bins]

EDSPC spc-enddet-##.dat [Output spectrum file name, 20 chars]

EDBODY KB [Active body; one line for each body]

.

>>>>>>>> Dose distribution.

GRIDX XL,XU [X coordinates of the dose box vertices]
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GRIDY YL,YU [Y coordinates of the dose box vertices]

GRIDZ ZL,ZU [Z coordinates of the dose box vertices]

GRIDBN NDBX,NDBY,NDBZ [Numbers of bins]

.

>>>>>>>> Job properties.

RESUME dump1.dmp [Resume from this dump file, 20 chars]

DUMPTO dump2.dmp [Generate this dump file, 20 chars]

DUMPP DUMPP [Dumping period, in sec]

.

RSEED ISEED1,ISEED2 [Seeds of the random-number generator]

NSIMSH DSHN [Desired number of simulated showers]

TIME TIMEA [Allotted simulation time, in sec]

.

END [Ends the reading of input data]

....+....1....+....2....+....3....+....4....+....5....+....6....+....7..

The following listing describes the function of each of the keywords, the accompanying
data and their default values.

TITLE ... Title of the job (up to 120 characters).
-- Default: none (the input file must start with this line)

The TITLE string is used to mark dump files. To prevent improper use of wrong
resuming files, change the title each time you modify basic parameters of your
problem. The code will then be able to identify the inconsistency and it will stop
after writing an error message.

• Source definition

SKPAR ... Kind of primary particle (1 = electrons, 2 = photons, or 3 = positrons).
-- Default: KPARP=1

If KPARP=0, the initial states of primary particles are set by subroutine SOURCE, to
be provided by the user. An example of that subroutine, corresponding to a 60Co
source (two gamma rays in each nuclear de-excitation), is included at the end of
the penmain.f source file.

SENERG ... For monoenergetic sources: initial energy SE0 of primary particles.
-- Default: SE0=1.0E6

SPECTR ... For a source with continuous (stepwise constant) energy spectrum, each
“SPECTR” line gives the lower end-point (Ei) of an energy bin of the spectrum and
the associated relative probability (Pi), integrated over the bin. Up to NSEM =
1, 000 lines can be entered, in arbitrary order. The upper end of the spectrum is
defined by entering a line with Ei equal to the upper energy end point, and with
a negative Pi value.
-- Default: none
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SGPOL ... This line activates the simulation of polarisation effects in the scattering
of photons (electrons and positrons are assumed to be unpolarised). SP1, SP2, SP3
are the Stokes parameters of primary photons, which define the degrees of linear
polarisation at 45 deg azimuth, of circular polarisation, and of linear polarisation
at zero azimuth, respectively (see Appendix C). It is assumed that secondary
photons are emitted with null polarisation (SP1=SP2=SP3=0.0).
-- Default: none

SPOSIT ... For an external source, coordinates (x0, y0, z0) of the centre of the source
volume.
-- Defaults: SX0=SY0=SZ0=0.0

SBOX ... Extended source box. The source has uniform activity within the volume
of a right prism centred at the point (SX0,SY0, SZ0) and whose sides have lengths
SSX, SSY and SSZ.
-- Defaults: SSX=SSY=SSZ=0.0

In the case of a extended source, the active volume can be restricted to that of
a body or a set of bodies, which must be defined as parts of the geometry. The
activity of the source is assumed to be uniform within the volume of the intersec-
tion of the active bodies and the source box. Note that the initial coordinates of
primary particles are sampled by the rejection method; the sampling efficiency is
equal to the fraction of the source box volume that is occupied by active bodies.

To define each active source body, add the following line:

SBODY ... Active source body. One line for each body.
-- Default: none

The program stops if the source box has not been defined previously

SCONE ... Conical source beam. Polar and azimuthal angles of the beam axis direc-
tion, THETA and PHI, and angular aperture, ALPHA, in deg.
-- Defaults: THETA=0.0, PHI=0.0, ALPHA=0.0

The case ALPHA=0.0 defines a monodirectional source, and ALPHA=180.0 corre-
sponds to an isotropic source.

SPYRAM ... Pyramidal source beam. Limiting polar and azimuthal angles of the
source beam window, (THETAL,THETAU)×(PHIL,PHIU), in deg.
-- Defaults: THETAL=0.0, THETAU=0.0, PHIL=0.0, PHIU=0.0

The case THETAL=THETAU, PHIL=PHIU defines a monodirectional source. To define
an isotropic source, set THETAL=0.0, THETAU=180.0, PHIL=0.0 and PHIU=360.0.

Note that the default source is a pencil beam that moves upwards along the z-axis.

• Input phase-space file

IPSFN ... Name of an input phase-space file (up to 20 characters).
The initial state variables of primary particles can be read directly from a set of pre-
calculated phase-space files. When this option is active, previous definitions about
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the source are ignored. Moreover, photons from phase-space files are assumed to
be unpolarised.
-- Default: none

Up to 100 phase-space files may be declared. They are read sequentially.

Phase-space files are in ASCII format. Each line defines the initial state of a
particle; it contains the following quantities in free format (and in the order they
are listed here):
-- KPAR, type of particle (1 = electron; 2 = photon; 3 = positron).
-- E, energy (eV).
-- X,Y,Z, position coordinates (cm).
-- U,V,W, direction cosines.
-- WGHT, weight.
-- ILB(1),ILB(2),ILB(3),ILB(4), a set of indices that provide information on
how the particle was generated (see Section 7.1.2).
-- NSHI, incremental shower number, defined as the difference between the shower
numbers of the present particle and the one preceding it in the phase-space file
(employed instead of the shower number to reduce the file size).

Phase-space files can be generated by running penmain using an impact detector
with the flag IPSF = 1 (see below).

Because of the limited size of phase-space files, the results of analogue simulations
tend to be “too noisy”. This can be partially corrected by splitting the particles
from the phase-space files.

IPSPLI ... Splitting number. Each particle in the phase-space files will be split into
NSPLIT equivalent particles, with weights equal to WGHT/NSPLIT.
-- Default: NSPLIT=1 (no splitting)

Notice that there is a “latent” uncertainty in the phase-space files, which sets a
limit to the accuracy that can be attained by using large splitting numbers.

WGTWIN ... Weight window, (WGMIN,WGMAX). Particles in the phase-space file that
have initial weights WGHT less than WGMIN will be subjected to Russian roulette,
and those with WGHT larger than WGMAX will be split. Note that the weight window
has preference over the splitting option, i.e., a particle will be split into NSPLIT

or less particles only if the latter have weights larger than WGMIN.
-- Default: WGMIN=1.0E-35, WGMAX=1.0E35 (no action)

EPMAX ... Maximum energy (in eV) of particles in the phase-space files. EPMAX is
the upper limit of the energy interval covered by the simulation lookup tables. To
minimise interpolation errors, EPMAX should not be much larger than the maximum
energy actually occurring during the simulation.

When the initial state variables of particles are read from a phase-space file, this
parameter is required to initialise penelope and is critical; the code crashes if it
finds a particle that has energy larger than EPMAX.
-- Default: EPMAX=1.0E9 (interpolation is not optimal)



306 Chapter 7. Structure and operation of the code system

• Material data and simulation parameters

MFNAME ... Name of a penelope input material data file (up to 20 characters). This
file must be generated in advance by running the program MATERIAL.
-- Default: none

MSIMPA ... Values of the simulation parameters for this material: absorption energies,
EABS(1:3,M), elastic scattering parameters, C1(M) and C2(M), and cutoff energy
losses for inelastic collisions and bremsstrahlung emission, WCC(M) and WCR(M).
-- Defaults: EABS(1,M)=EABS(3,M)=0.01*EPMAX, EABS(2,M)=0.001*EPMAX

C1(M)=C2(M)=0.1, WCC(M)=EABS(1,M), WCR(M)=EABS(2,M)

EPMAX is the maximum energy of all particles found in the simulation. It is deter-
mined by the source energies.

For each material we must provide the name of the material-data file and a set
of simulation parameters. The label (material number) assigned by penelope
to each material is determined by the ordering of the material list in the input
file. That is, the first, second, . . .materials are assigned the labels 1, 2, . . . These
labels are also used in the geometry definition. The material file may contain mul-
tiple declarations of the same material, e.g., to specify different sets of simulation
parameters in different bodies with the same composition.

The original programs in the distribution package allow up to 10 materials. This
number can be increased by changing the value of the parameter MAXMAT in the
original source files.

• Geometry definition

GEOMFN ... pengeom’s geometry definition file name (a string of up to 20 characters).
-- Default: none

The geometry definition file can be debugged and visualised with the viewers
gview2d and gview3d (see Section 5.6). Notice that bodies must be referenced
by the internal label assigned by pengeom; this label can be identified by run-
ning the viewer gview2d or by inspecting the geometry report file written by
pengeom.

DSMAX ... Maximum step length DSMAX(KB) (in cm) of electrons and positrons in
body KB. This parameter is important only for thin bodies; it should be given a
value of the order of one tenth of the body thickness or less. Insert one line for
each thin body in the geometrical structure.
-- Default: DSMAX=1.0E20 (no step length control)

EABSB ... Local absorption energies EABSB(KPAR,KB) of particles of type KPAR in
body KB. These values must be larger than EABS(KPAR,M), where M is the ma-
terial of body KB. When the particle is moving within body KB, the absorption
energy EABS(KPAR,M) is temporarily set equal to EABSB(KPAR,KB). Thus, the sim-
ulation of the particle history is discontinued when the energy becomes less than
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EABSB(KPAR,KB). This feature can be used, e.g., to reduce the simulation work in
regions of lesser interest.
-- Default: EABSB(KPAR,KB)=EABS(KPAR,M) (no action)

• Interaction forcing

IFORCE ... Activates forcing of interactions of type ICOL of particles KPAR in cylinder
KC of layer KL. FORCER is the forcing factor, F , which must be larger than unity
(Section 1.6.1). The values WLOW, WHIG are the limits of the weight window where
interaction forcing is applied (see Section 7.1.3).
-- Default: no interaction forcing

If the mean free path for real interactions of type ICOL is MFP, the program will
simulate interactions of this type (real or forced) with an effective mean free path
equal to MFP/FORCER.

The real effect of interaction forcing on the efficiency is not easy to predict. Please,
do tentative runs with different FORCER values and check the efficiency gain (or
loss!).

TRICK: a negative input value of FORCER, −F , is assumed to mean that each
particle should interact, on average and approximately, F times in a path length
equal to the range of the particle with E = EPMAX. This is very useful, e.g., to
generate x-ray spectra.

• Distributions of emerging particles

NBE ... Limits, EMIN and EMAX, of the interval where energy distributions are
tallied and number of energy bins, NME ≤ 1, 000.
-- Defaults: EMIN=0.0, EMAX=EPMAX, NBE=100

NBANGL ... Number of bins for the polar angle θ and the azimuthal angle ϕ, respec-
tively, NBTH and NBPH (≤ 180).
-- Default: NBTH=90, NBPH=1 (azimuthal average)
NOTE: In the output files, the terms “upbound” and “downbound” are used to
denote particles that leave the material system moving upwards (W> 0) and down-
wards (W< 0), respectively.

• Impact detectors

IMPDET ... Starts the definition of a new impact detector. Up to 25 different detectors
can be considered.

EL and EU are the lower and upper limits of the energy window covered by the
detector.

NBE is the number of bins in the output energy spectrum of the detector (≤ 1,000).
If NBE is positive, energy bins have uniform width, DE=(EU-EL)/NBE. When NBE is
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negative, the bin width increases geometrically with the energy, i.e., the energy
bins have uniform width in a logarithmic scale.

The integer flag IPSF serves to activate the creation of a phase-space file (psf),
which contains the state variables of all particles that enter the detector. Use this
option with care, because psf’s may grow very fast.
IPSF=0; no psf is created.
IPSF=1; the psf is created.

The integer flag IDCUT allows discontinuing the tracking of particles that enter the
detector.
IDCUT=0; the simulation of a particle is discontinued when it enters the detector
(useful to stop the simulation of particles recorded in a psf).
IDCUT=1; the presence of the detector does not affect the tracking of particles.
IDCUT=2; the presence of the detector does not affect the tracking of particles.
The distribution of particle fluence with respect to energy (integrated over the
volume of the detector) is tallied. The calculated distribution has dimensions of
length/energy.
-- Default: none

IDPSF ... Name of the output phase-space file (up to 20 characters).
-- Default: psf-impdet-##.dat

IDSPC ... Name of the output energy-spectrum file (up to 20 characters).
-- Default: spc-impdet-##.dat

IDFLNC ... Name of the output file with the energy distribution of particle fluence
(20 characters). This file is generated only when IDCUT=2.
-- Default: fln-impdet-##.dat

IDBODY ... Active body of the detector. One line for each active body.
-- Default: none

NOTE: a body cannot be part of more than one impact detector.

IDKPAR ... Kind of particle that is detected (1=electrons, 2=photons or 3=posi-
trons). One line for each kind.
-- Default: All particles are detected

• Energy-deposition detectors

ENDETC ... Starts the definition of a new energy-deposition detector. Up to 25 dif-
ferent detectors can be considered. EL and EU are the lower and upper limits of
the energy window covered by the detector.

NBE is the number of bins in the output energy spectrum (≤ 1,000). If NBE is
positive, energy bins have uniform width, DE=(EU-EL)/NBE. When NBE is negative,
the bin width increases geometrically with the energy, i.e., the energy bins have
uniform width in a logarithmic scale.

WARNING: The energy-deposition spectrum may be strongly biased when inter-
action forcing is applied within the detector bodies.
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EDSPC ... Name of the output spectrum file (up to 20 characters).
-- Default: spc-enddet-##.dat

EDBODY ... Active body of the detector. One line for each active body.
-- Default: none

NOTE: A body cannot be part of more than one energy-deposition detector.

• Absorbed dose distributions

The program can calculate the absorbed dose distribution inside a parallelepiped
(dose box) whose edges are parallel to the axes of the laboratory frame. The dose box
is defined by giving the coordinates of its vertices. The dose is tallied using a uniform
orthogonal grid with NDBX, NDBY and NDBZ (≤ 101) bins (= voxels) along the directions
of the respective coordinate axes. These numbers should be odd, to make sure that the
“central” axes (i.e., lines that join the centres of oposite faces of the box) go through
the centres of a row of voxels.

GRIDX ... x-coordinates of the vertices of the dose box.
-- Default: none

GRIDY ... y-coordinates of the vertices of the dose box.
-- Default: none

GRIDZ ... z-coordinates of the vertices of the dose box.
-- Default: none

GRIDBN ... Numbers of bins NBDX, NBDY, and NBDZ in the x, y and z directions,
respectively.
-- Defaults: NBDX=25, NBDY=25, NBDZ=25

• Job properties

RESUME ... The program will read the dump file dump1.dmp (up to 20 characters)
and resume the simulation from the point where it was left. Use this option very,
very carefully. Make sure that the input data file is fully consistent with the one
used to generate the dump file.
-- Default: off

DUMPTO ... Generate a dump file named dump2.dmp (name given by the user, up to
20 characters) after completing the simulation run. This allows the simulation to
be resumed to improve statistics.
-- Default: off

NOTE: If the file dump2.dmp already exists, it is overwritten.

DUMPP ... When the DUMPTO option is activated, simulation results are written in
the output files every DUMPP seconds. This option is useful to check the progress of
long simulations. It also allows the program to be run with a long execution time,
and to be stopped when the required statistical uncertainty has been reached.
-- Default: DUMPP=1.0E15
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RSEED ... Seeds of the random-number generator.
-- Default: ISEED1=1; ISEED2=1

NSIMSH ... Desired number of simulated showers.
-- Default: DSHN=2.0E9

TIME ... Allotted simulation time, in sec.
-- Default: TIMEA=2.0e9

END ... Ends the reading of the input file. This line is needed only when the TIME
line is missing.

7.3 Selecting the simulation parameters

The speed and accuracy of the simulation of electrons and positrons is determined by
the values of the simulation parameters Eabs, C1, C2, Wcc, Wcr and smax, which are
selected by the user for each material in the simulated structure5. Here we summarise
the rules for assigning “safe” values to these parameters.

The absorption energies Eabs are determined either by the characteristics of the ex-
periment or by the required space resolution. If we want to tally dose or deposited-charge
distributions, Eabs should be such that the residual range R(Eabs) of electrons/positrons
is less than the typical dimensions of the volume bins used to tally these distributions6.
In other cases, it is advisable to run short simulations (for the considered body alone)
with increasing values of Eabs (starting from 50 eV) to study the effect of this parameter
on the results. It is worth mentioning that the input values EABS(KPAR,M) are used
to set the lower limit of the energy interval covered by the look-up tables. During the
simulation, EABS(KPAR,M) can be given arbitrary higher values, for instance, to absorb
particles in bodies that are far from the region of interest. This feature is used in the
example main programs, which allow the user to define local absorption energies.

It is worth noting that the use of different absorption energies in neighbouring bodies
may originate visible artifacts in the space distribution of absorbed dose. For instance,
if the values of Eabs for electrons in bodies 1 and 2 are, respectively, 10 keV and 100
keV, electrons entering body 2 from body 1 with E less than 100 keV will be absorbed
at the first interaction, giving an excess of dose in the border of body 2. When the
spatial distribution of absorbed dose is important, absorption energies should be given
essentially the same values over the region of interest.

The allowed values of the elastic-scattering parameters C1 and C2 are limited to the
interval [0,0.2]. Due to the consideration of the energy dependence of the cross sections

5To specify simulation parameters for a single body we can simply assign a specific material to this
body (the input file may contain multiple declarations of the same material). Note also that individual
bodies can be assigned absorption energies higher than those specified for the material (see Section
/.1.4)

6penelope prints tables of electron and positron ranges if subroutine PEINIT is invoked with INFO=3

or larger. Alternatively, these tables can be generated by running the program tables.
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for soft interactions and of the hard mean free paths (see Sections 4.2 and 4.3), these
parameters have a very weak influence on the results. Our recommended practice is to
set C1 = C2 = 0.05, which is fairly conservative, as shown by the example described
below. Before increasing the value of any of these parameters, it is advisable to perform
short test simulations to verify that with the augmented parameter value the results
remain essentially unaltered (and that the simulation runs faster; if there is no gain in
speed, keep the conservative values).

We have already indicated that the cutoff energies Wcc and Wcr have a very weak
influence on the accuracy of the results provided only that they are both smaller than the
width of the bins used to tally energy distributions. When energy distributions are of no
interest, our recommendation is to set these cutoff energies equal to one hundredth of the
typical energy of primary particles. Note that, for the sake of consistency, Wcc must be
smaller than the absorption energy of electrons in the material, EABS(1,M) (otherwise,
we would lose secondary electrons that have energies larger than EABS(1,M)). Similarly,
Wcr must be less than the photon absorption energy EABS(2,M). penelope modifies
the values of Wcc and/or Wcr when these conditions are not met.

The maximum allowed step length smax (denoted by DSMAX in the Fortran source
files) should be about, or less than one tenth of the characteristic thickness of the body
where the particle moves. This ensures that, on average, there will be more than 13
soft events7 (hinges) along a typical electron/positron track through that body, which
is enough to “wash out” the details of the artificial distributions used to sample these
events. Notice however that penelope internally forces the step length to be less than
∼ 4λ

(h)
T (see Section 4.4). Therefore, for thick bodies (thicker than ∼ 15λ

(h)
T ), the average

number of hinges along each track is larger than about 20, and it is not necessary to
limit the length of the steps. In this case, we can set smax = 1035 cm, or some other
very large value, to switch off the external step-length control.

The example main program pencyl (see Section 7.2.1) can be readily used to study
the effect of the simulation parameters for a material body of a given characteristic
thickness. As an example, Figs. 7.5 and 7.6 display partial results from pencyl simu-
lations for a parallel electron beam of 500 keV impinging normally on the surface of a
200-µm-thick aluminium slab (the input file, slab.in, is included in the distribution
package). The absorption energies were set equal to 10 keV (for all kinds of particles)
and Wcr was given a negative value, which compels penelope to set Wcr = 10 eV,
and to disregard emission of soft bremsstrahlung (with W < 10 eV). That is, radiative
events that yield bremsstrahlung photons with energy higher than 10 eV were simulated
individually. First, we ran pencyl.exe using Wcc = 0 and C1 = C2 = 0; in this case,
penelope performs a purely detailed, collision by collision, simulation and, therefore,
it provides exact results (affected only by statistical uncertainties and by inaccuracies of
the physical interaction model). Differences between these results and those from mixed
simulations are then completely attributable to the approximations in our mixed trans-
port algorithm. To our knowledge, no other high-energy transport code allows detailed

7penelope randomises smax in such a way that the actual step length never exceeds the value smax

set by the user and, on average, is equal to 0.75smax.
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Figure 7.5: Results from pencyl for a 500 keV electron beam impinging normally on the

surface of a 200-µm-thick aluminium slab (further details are given in the text). Top: depth-

dose distribution within the slab. Bottom: angular distribution of emerging (transmitted and

backscattered) electrons (primaries and secondaries).
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Figure 7.6: Results from pencyl for a 500 keV electron beam impinging normally on the

surface of a 200-µm-thick aluminium slab (further details are given in the text). Top: energy

distribution of transmitted (upbound) electrons. Bottom: energy distribution of backscattered

(downbound) electrons. Secondary electrons are included in both cases.
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simulation and this kind of direct validation of electron/positron transport mechanics.

Figures 7.5 and 7.6 show results from this detailed simulation, obtained from 10
million random showers8; the error bars indicate statistical uncertainties (3σ). The
continuous lines in Figs. 7.5 and 7.6 represent results from a mixed simulation with
C1 = C2 = 0.15, smax = 0.002 cm, Wcc = 1 keV (and Wcr = −10 eV, as before).
With these relatively high values of C1 and C2, the mixed simulation is quite fast, the
speed (generated showers per second) is about 40 times higher than that of the detailed
simulation9. The continuous lines in Figs. 7.5 and 7.6 represent results from this mixed
simulation obtained from 100 million showers; the associated statistical uncertainties
are much (a factor ∼ 3.3) smaller than those of the detailed simulation. As shown
in the plots, the results from the mixed simulation are practically equivalent to those
from detailed simulation. The only visible difference is in the energy distribution of
backscattered electrons (bottom plot in Fig. 7.6), where mixed simulation tends to
overestimate slightly the backscattering of electrons with energies close to that of the
incident beam. It should be noted that electron (and positron) backscattering is one
of the most difficult cases to study because it involves transport near and across an
interface.

To illustrate the effect of the cutoff energy loss Wcc, we ran a second mixed sim-
ulation with this parameter changed to 10 keV (i.e., one fiftieth of the incident beam
energy, twice the value recommended above). The results, from 100 million simulated
showers, agreed closely with those of the previous mixed simulation with Wcc = 1 keV,
except for the energy distribution of transmitted electrons, which were slightly distorted
(see the top plot in Fig. 7.6); a similar distortion occurs for the distribution of energy
deposited in the slab. On the other hand, the simulation was only 15 % faster than
with Wcc = 1 keV. Usually, when Wcc and Wcr are larger than ∼ 5 keV, the simulation
speed is fairly insensitive to variations of these cutoff values. This is not unexpected,
because the energy-loss DCSs for inelastic collisions and bremsstrahlung emission de-
crease rapidly with W (roughly as W−2 and W−1, respectively) and, therefore, most of
these interactions involve energy losses much smaller than ∼ 5 keV.

7.4 The code shower

Monte Carlo simulation has proven to be a very valuable tool for education. In the past,
radiation physics used to be considered as a tough subject, mostly because high-energy
radiation is well outside the realm of daily experience. Nowadays, by simply running
a transport simulation code on a personal computer we can learn more than from tens
of obscure empirical formulas and numerical tables, and eventually “understand” many
aspects of radiation transport (those for which we have run the simulation code and

8The program was compiled with the gfortran compiler and ran on a Pentium M 2.00 GHz
processor. The generation of the 10 million showers took 39 hours.

9The simulation speed here is bound by the fact that each particle must undergo a minimum number
of soft interactions (hinges). For thick bodies, much higher simulation speeds can be reached.
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“digested” the results).

The penelope distribution package includes a binary file named shower that gen-
erates electron-photon showers within a slab (of one of the 280 materials defined in
pdcompos.p08, see Table 7.1.1) and displays them (projected) on the computer screen
plane. The current version operates only under Microsoft Windows. The program is
self-explanatory, and requires only a small amount of information from the user, which is
entered from the keyboard, in response to prompts from the program. Electron, photon
and positron tracks are displayed in different colours and intensities that vary with the
energy of the particle. It is worth mentioning that the maximum number of showers
that can be plotted in a single shot is limited to 50, because the screen may become too
cluttered. Generating this small number of showers takes a short time, of the order of
a few seconds, even on modest personal computers (provided only that the absorption
energies are sensibly chosen).

Once on the graphical screen, the view plane can be rotated about the horizontal
screen axis by typing “r” and the rotation angle in degrees; the screen plane can also
be rotated progressively, by 15 deg steps, by pressing the “enter” key repeatedly. En-
tering the single-character command “n” erases the screen and displays a new bunch
of showers. Observation of single showers projected on a revolving plane gives a truly
three-dimensional perspective of the transport process.

7.5 Installation

The complete penelope code system is distributed as a single ZIP compressed file
named penelope.zip, which contains the Fortran source files, the example main pro-
grams and auxiliary programs, the database, and documentation. To install penelope
on your computer, simply inflate (unzip) this file, keeping its directory organisation.
The directory structure and contents of the code system are the following (see Fig. 7.7):

• Directory fsource. It contains the following 6 Fortran source files:

penelope.f ... basic subroutine package for the simulation of coupled electron-photon
transport in unbounded media.

rita.f ... subroutines for random sampling from single-variate discrete and contin-
uous probability distributions.

pengeom.f ... subroutine package for tracking particles through modular quadric
geometries (handles systems with up to 10,000 surfaces and 5,000 bodies).

penvared.f ... variance-reduction subroutines (splitting, Russian roulette and in-
teraction forcing).

timer.f ... timing subroutines, based on standard intrinsic procedures of Fortran
95. They also work with some Fortran 77 and Fortran 90 compilers.
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Figure 7.7: Directory tree of the penelope code system.

material.f ... main program to generate material data files.

To obtain the executable binary file of material, compile and link the source files
material.f, penelope.f and rita.f. Notice that penelope.f and rita.f are de-
clared through an include statement inside material.f and do not have to be listed in
the compilation command. The executable file material.exe must be placed and run
in the same subdirectory as the database files (pendbase).

• Directory pendbase. penelope database. The directory pdfiles contains 995
files with the extensions “.p08” and “.p11” (see Section 7.1.1). Do not remove or alter
any of the files in this directory.

• Directory other. Consists of the following 4 subdirectories,

gview ... . Contains the geometry viewers gview2d and gview3d (see Section 5.6),
which are operable under Microsoft Windows, and several examples of geometry
definition files.

shower ... Contains the executable binary file of the code shower (see Section 7.4),
which operates under Microsoft Windows. This code generates electron-photon
showers within a slab (of one of the 280 materials defined in pdcompos.p08) and
displays the showers projected on the screen plane. To use shower, just copy the
file shower.exe into the directory pendbase and run it from there. This little tool
is particularly useful for teaching purposes, it makes radiation physics “visible”.

emfields ... Contains the subroutine package penfield.f, which does simulation
of electron/positron transport under external static magnetic (and electric) fields,
and examples of programs that use it.
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tables ... . This directory contains the program tables.f, which reads a material
data file and generates tables of interaction data (cross sections, mean free paths,
ranges, ...), and the gnuplot script tables.gnu, which plots the most relevant
of these quantities as functions of the energy. The program tables.exe also
calculates interpolated values of these quantities at specified energies, as well as
restricted stopping powers.
The subdirectory .\class-II contains the program tables-class-II.f, which
gives mean-free paths and other transport parameters for hard events of electrons
and positrons. This information is useful to analyze the effect of the simulation
parameters on the speed of mixed (class-II) simulations.
The subdirectory .\LEA includes the programs LEA.f and mutren.f that calculate
the linear energy absorption of electrons, positrons and photons from simulations
with penelope (see Chapter 5).

• Directory mains. Examples of main programs, 3 subdirectories.

pencyl ... Contains the main program pencyl.f for particle transport in cylindrical
structures, the geometry viewer gviewc.exe for these structures (which operates
under Microsoft Windows), and a layout of the input file. Complete sets of in-
put and material-data files for three simple simulation exercises are provided in
separate subdirectories.

penmain ... Contains the generic main program penmain.f for particle transport in
quadric geometries, the file pmcomms.f with common blocks and parameter defi-
nitions (inserted in the main program and its subroutines through include state-
ments), a layout of the input file and five subdirectories with input and material-
data files for five simulation exercises.

gscripts ... Contains gnuplot scripts (with the extension .gnu) that display con-
tinuous distributions generated by the programs penmain and pencyl. A script
filename.gnu plots the contents of the output file of the same name and the
extension .dat.

The executable files of pencyl and penmain are obtained by compiling and linking the
following groups of source files:
pencyl : pencyl.f, penelope.f, rita.f, penvared.f, timer.f

penmain: penmain.f, penelope.f, rita.f, pengeom.f, penvared.f, timer.f

NOTE: To simplify the typing of compilation commands, all the modules used by a
main program have been declared through include statements within the program (see,
for example, the source file penmain.f) and do not have to be listed in the compilation
command; still, all the associated modules must be in the same directory as the main
program.

The main programs pencyl and penmain generate multiple files with simulated prob-
ability distributions. Each output file has a heading describing its content, which is in
a format ready for visualisation with a plotting program. We use gnuplot, which is
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small in size, available for various platforms (including Linux and Windows) and free;
this software can be downloaded from the distribution sites listed at the gnuplot Central
site, http://www.gnuplot.info. The provided gnuplot scripts display the different
distributions generated by the main programs. For instance, in Windows, after run-
ning pencyl.exe you can visualise the contents of the output file depth-dose.dat by
simply 1) copying the file depth-dose.gnu from the directory /mains/gscripts to the
directory that contains the simulation results; and 2) entering the command “wgnuplot
depth-dose.gnu” (or clicking the icon of the script). Some of the scripts assume that
the output files have their default names; if the user assigns different filenames to those
output files, the scripts need to be edited and modified appropriately.

• Directory doc. Documentation, 2 files.

tutorial.pdf ... A guided tour through the penelope code system. Includes brief
descriptions of the programs and subroutine packages, instructions to install the
system, and to build binary executable files.

penelope-2011-NEA.pdf ... The present manual.

The simulation programs are written in Fortran 77 language10, but use a few exten-
sions that are included in most compilers; all these extensions are part of Fortran 95.
To generate the executable binary files of your simulation programs you need to have a
Fortran compiler installed on your computer. For Win32 (Windows 9x/NT/2000/XP),
a number of free compilers are available. We use the Fortran compiler gfortran11

from the Free Software Foundation. Salford Software12 offers his Fortran 95 compiler
Salford FTN95 Personal Edition free of charge for personal, non-commercial usage; on
execution, programs compiled with FTN95PE display a banner.

10Updated information on Fortran can be found in “Clive Page’s list of Fortran Resources”,
http://www.star.le.ac.uk/∼cgp/prof77.html, including Page’s (1988) book, Professional Pro-
grammer’s Guide to Fortran 77, in various formats.

11http://mingw-w64.sourceforge.net
12http://www.salfordsoftware.co.uk/



Appendix A

Collision kinematics

To cover the complete energy range of interest in radiation transport studies we use
relativistic kinematics. Let P denote the energy-momentum 4-vector of a particle, i.e.,

P = (Wc−1,p), (A.1)

where W and p are the total energy (including the rest energy) and momentum respec-
tively and c is the velocity of light in vacuum. The product of 4-vectors, defined by

P · P′ =WW ′c−2 − p·p′, (A.2)

is invariant under Lorentz transformations. The rest mass m of a particle determines
the invariant length of its energy-momentum,

P · P =W2c−2 − p2 = (mc)2. (A.3)

The kinetic energy E of a massive particle (m ̸= 0) is defined as

E =W −mc2, (A.4)

where mc2 is the rest energy. The magnitude of the momentum is given by

(cp)2 = E(E + 2mc2). (A.5)

In terms of the velocity v of the particle, we have

E = (γ − 1)mc2 and p = βγmcv̂, (A.6)

where

β ≡ v

c
=

√
γ2 − 1

γ2
=

√
E(E + 2mc2)

(E +mc2)2
(A.7)

is the velocity of the particle in units of c and

γ ≡
√

1

1− β2
=
E +mc2

mc2
(A.8)
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is the total energy in units of the rest energy. From the relation (A.5), it follows that

E =
√

(cp)2 +m2c4 −mc2 (A.9)

and
dp

dE
=

1

v
=

1

cβ
. (A.10)

For a photon (and any other particle with m = 0), the energy and momentum are
related by

E = cp. (A.11)

A.1 Two-body reactions

Consider a reaction in which a projectile “1” collides with a target “2” initially at rest in
the laboratory frame of reference. We limit our study to the important case of two-body
reactions in which the final products are two particles, “3” and “4”. The kinematics of
such reactions is governed by energy and momentum conservation.

We take the direction of movement of the projectile to be the z-axis, and set the
x-axis in such a way that the reaction plane (i.e., the plane determined by the momenta
of particles “1”, “3” and “4”) is the x-z plane. The energy-momentum 4-vectors of the
projectile, the target and the reaction products are then (see Fig. A.1)

P1 = (W1c
−1, 0, 0, p1), (A.12a)

P2 = (m2c, 0, 0, 0), (A.12b)

P3 = (W3c
−1, p3 sin θ3, 0, p3 cos θ3), (A.12c)

P4 = (W4c
−1,−p4 sin θ4, 0, p4 cos θ4). (A.12d)

Energy and momentum conservation is expressed by the 4-vector equation

P1 + P2 = P3 + P4. (A.13)

From this equation, the angles of emergence of the final particles, θ3 and θ4, are uniquely
determined by their energies, W3 and W4. Thus,

m2
4c

2 = P4 ·P4 = (P1 + P2 − P3)·(P1 + P2 − P3)

= P1 ·P1 + P2 ·P2 + P3 ·P3 + 2P1 ·P2 − 2P1 ·P3 − 2P2 ·P3

= m2
1c

2 +m2
2c

2 +m2
3c

2 + 2W1W2c
−2

− 2
(
W1W3c

−2 − p1p3 cos θ3
)
− 2W2W3c

−2, (A.14)

and it follows that

cos θ3 =
m2

4c
4 −m2

1c
4 −m2

2c
4 −m2

3c
4 + 2W1(W3 −W2) + 2W2W3

2 (W2
1 −m2

1c
4)

1/2
(W2

3 −m2
3c

4)
1/2

. (A.15)
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Clearly, by symmetry, we can obtain a corresponding expression for cos θ4 by interchang-
ing the indices 3 and 4

cos θ4 =
m2

3c
4 −m2

1c
4 −m2

2c
4 −m2

4c
4 + 2W1(W4 −W2) + 2W2W4

2 (W2
1 −m2

1c
4)

1/2
(W2

4 −m2
4c

4)
1/2

. (A.16)
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Figure A.1: Kinematics of two-body reactions.

The different two-body reactions found in Monte Carlo simulation of coupled elec-
tron-photon transport can be characterised by a single parameter, namely the energy
of one of the particles that result from the reaction. The energy of the second particle
is determined by energy conservation. Equations (A.15) and (A.16) then fix the polar
angles, θ3 and θ4, of the final directions. Explicitly, we have

• Binary collisions of electrons and positrons with free electrons at rest.

Projectile: Electron or positron m1 = me, W1 = E +mec
2.

Target: Electron m2 = me, W2 = mec
2.

Scattered particle: m3 = me, W3 = E −W +mec
2.

Recoil electron: m4 = me, W4 = W +mec
2.

cos θ3 =

(
E −W
E

E + 2mec
2

E −W + 2mec2

)1/2

, (A.17)

cos θ4 =

(
W

E

E + 2mec
2

W + 2mec2

)1/2

. (A.18)

• Compton scattering of photons by free electrons at rest.

Projectile: Photon m1 = 0, W1 = E ≡ κmec
2.

Target: Electron m2 = me, W2 = mec
2.

Scattered photon: m3 = 0, W3 ≡ τE.

Recoil electron: m4 = me, W4 = mec
2 + (1− τ)E.

cos θ3 =
1

κ

(
κ+ 1− 1

τ

)
, (A.19)
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cos θ4 = (κ+ 1)

(
1− τ

κ [2 + κ(1− τ)]

)1/2

. (A.20)

• Annihilation of positrons with free electrons at rest.

Projectile: Positron m1 = me, W1 = E +mec
2 ≡ γmec

2.

Target: Electron m2 = me, W2 = mec
2.

Annihilation photons: m3 = 0, W3 ≡ ζ(E + 2mec
2).

m4 = 0, W4 = (1− ζ)(E + 2mec
2).

cos θ3 =
(
γ2 − 1

)−1/2
(γ + 1− 1/ζ) , (A.21)

cos θ4 =
(
γ2 − 1

)−1/2
(
γ + 1− 1

1− ζ

)
. (A.22)

A.1.1 Elastic scattering

By definition, elastic collisions keep the internal structure (i.e., the mass) of the projec-
tile and target particles unaltered. Let us consider the kinematics of elastic collisions
of a projectile of mass m (= m1 = m3) and kinetic energy E with a target particle of
mass M (= m2 = m4) at rest (see Fig. A.2). After the interaction, the target recoils
with a certain kinetic energy W and the kinetic energy of the projectile is reduced to
E ′ = E −W . The angular deflection of the projectile cos θ and the energy transfer W
are related through Eq. (A.15), which now reads

cos θ =
E(E + 2mc2)−W (E +mc2 +Mc2)√
E(E + 2mc2) (E −W )(E −W + 2mc2)

. (A.23)

The target recoil direction is given by Eq. (A.16),

cos θr =
(E +mc2 +Mc2)W√

E(E + 2mc2)W (W + 2mc2)
. (A.24)

Solving Eq. (A.23), we obtain the following expression for the energy transfer W
corresponding to a given scattering angle θ,

W =
[
(E +mc2) sin2 θ +Mc2 − cos θ

√
M2c4 −m2c4 sin2 θ

]
× E(E + 2mc2)

(E +mc2 +Mc2)2 − E(E + 2mc2) cos2 θ
. (A.25)

In the case of collisions of particles with equal mass, m = M , this expression simplifies
to

W =
E(E + 2mc2) sin2 θ

E sin2 θ + 2mc2
if M = m. (A.26)



A.2. Inelastic collisions of charged particles 323

E

W

z

x

1

2

2

1

E ’=   E   —W

θr

θ

Figure A.2: Kinematics of elastic collisions.

In this case, θ can only take values less than 90 deg. For θ = 90 deg, we have W = E
(i.e., the full energy and momentum of the projectile are transferred to the target).
Notice that for binary collisions of electrons and positrons (m = me), the relation
(A.26) becomes identical to (A.17).

For elastic collisions of electrons by atoms and ions, the mass of the target is much
larger than that of the projectile and Eq. (A.25) becomes

W =

[
(E +mc2) sin2 θ +Mc2(1− cos θ)

]
E(E + 2mc2)

(E +Mc2)2 − E(E + 2mc2) cos2 θ
if M ≫ m. (A.27)

The non-relativistic limit (c→∞) of this expression is

W =
2m

M
(1− cos θ)E if M ≫ m and E ≪ mc2. (A.28)

A.2 Inelastic collisions of charged particles

We consider here the kinematics of inelastic collisions of charged particles of mass m
and velocity v as seen from a frame of reference where the stopping medium is at
rest (laboratory frame). Let p and E be the momentum and the kinetic energy of
the projectile just before an inelastic collision, the corresponding quantities after the
collision are denoted by p′ and E ′ = E −W , respectively. Evidently, for positrons the
maximum energy loss is Wmax = E. In the case of ionisation by electron impact, owing
to the indistinguishability between the projectile and the ejected electron, the maximum
energy loss is Wmax ≃ E/2 (see Section 3.2). The momentum transfer in the collision is
q ≡ p− p′. It is customary to introduce the recoil energy Q defined by

Q(Q+ 2mec
2) = (cq)2 = c2

(
p2 + p′2 − 2pp′ cos θ

)
, (A.29)

where me is the electron rest mass and θ = arccos(p̂·p̂′) is the scattering angle. Equiv-
alently, we can write

Q =
√

(cq)2 +m2
ec

4 −mec
2. (A.30)
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Notice that, when the collision is with a free electron at rest, the energy loss is completely
transformed into kinetic energy of the recoiling electron, i.e., Q =W . For collisions with
bound electrons, the relation Q ≃ W still holds for hard ionising collisions (that is, when
the energy transfer W is much larger than the ionisation energy of the target electron
so that binding effects are negligible).

The kinematically allowed recoil energies lie in the interval Q− < Q < Q+, with end
points given by Eq. (A.29) with cos θ = +1 and −1, respectively. That is

Q± =
√

(cp± cp′)2 +m2
ec

4 −mec
2

=

√[√
E(E + 2mc2)±

√
(E −W )(E −W + 2mc2)

]2
+m2

ec
4 −mec

2. (A.31)

Notice that, for W < E, Q+ is larger than W and Q− < W . When W ≪ E, expression
(A.31) is not suitable for evaluating Q− since it involves the subtraction of two similar
quantities. In this case, it is more convenient to use the approximate relation

cp− cp′ ≃ c

(
dp

dE
W − 1

2

d2p

dE2
W 2

)
=
W

β

(
1 +

1

2γ(γ + 1)

W

E

)
(A.32)

and calculate Q− as

Q− ≃
√
(cp− cp′)2 +m2

ec
4 −mec

2 (A.33)

or, if cp− cp′ ≪ mec
2,

Q− ≃
1

2

(cp− cp′)2

mec2
− 1

8

(cp− cp′)4

(mec2)3
. (A.34)

Thus, for E ≫ W ,

Q−(Q− + 2mec
2) ≃ W 2/β2. (A.35)

In the non-relativistic limit,

Q ≡ q2/2me, Q± =
m

me

[
E1/2 ± (E −W )1/2

]2
. (A.36)

From (A.31), it is clear that the curves Q = Q−(W ) and Q = Q+(W ) vary monoto-
nously with W and intersect at W = E. Thus, they define a single continuous function
W = Wm(Q) in the interval 0 < Q < Q+(0). By solving the Eqs. Q = Q±(Wm) we
obtain

Wm(Q) = E +mc2 −
√[√

E(E + 2mc2)−
√
Q(Q+ 2mec2)

]2
+m2c4, (A.37)

which, when W ≪ E, reduces to

Wm(Q) ≃ β
√
Q(Q+ 2mec2). (A.38)
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Figure A.3: Domains of kinematically allowed transitions in the (Q,W ) plane for elec-

trons/positrons. The curves represent the maximum allowed energy loss Wm(Q), given by Eq.

(A.37), for electrons with the indicated kinetic energies (in eV). When E increases, Wm(Q)

approaches the vacuum photon line, W = [Q(Q+2mec
2)]1/2, which is an absolute upper bound

for the allowed energy losses.

Now it follows that, for given values of E and Q [< Q+(0)], the only kinematically
allowed values of the energy loss are those in the interval 0 < W < Wm(Q) (see Fig.
A.2).

For a given energy loss W , the quantity

qmin ≡ c−1
√
Q−(Q− + 2mec2), (A.39)

is the minimum value of the momentum transfer in an inelastic collision, which occurs
when θ = 0. qmin is always larger thanW/c. When the energy of the projectile increases,
β → 1 and qmin decreases approaching (but never reaching) the value W/c. It is worth
recalling that a photon of energy W in vacuum has a linear momentum q = W/c and,
hence, interactions consisting of emission of bare photons would be located on the line
Q(Q + 2mec

2) = W 2 of the (Q,W ) plane, the so-called vacuum photon line. This line,
lies outside the kinematically allowed region, i.e., the “recoil” energy of the photon is
less than Q− (see Fig. A.2). Therefore, when the target is a single atom, the emission of
photons by the projectile is not possible1. When the energy E of the projectile increases,

1In a condensed medium, ultrarelativistic projectiles can emit real photons (Cerenkov radiation)
under certain, quite restricting circumstances (see, e.g., Jackson, 1975).
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Q− decreases and tends to the photon line when β tends to unity. Hence, emission
of photons by ultrarelativistic projectiles in low-density media is barely prevented by
energy and momentum conservation. Generally speaking, as the interaction involves the
exchange of a virtual photon, the DCS increases as the photon becomes more real, that
is as we approach the photon line. For a dilute gas, this causes a gradual increase of the
cross section with the projectile energy when β → 1.

The scattering angle θ is related to the energy loss through [see Eq. (A.29)]

cos θ =
(cp)2 + (cp′)2 −Q(Q+ 2mec

2)

2(cp)(cp′)
. (A.40)

The recoil angle θr between p and q is given by

cos θr =
(cp)2 − (cp′)2 + (cq)2

2(cp)(cq)
, (A.41)

which can also be written in the form

cos2 θr =
W 2/β2

Q(Q+ 2mec2)

(
1 +

Q(Q+ 2mec
2)−W 2

2W (E +mc2)

)2

. (A.42)

For high-energy projectiles and collisions such that Q≪ E and W ≪ E,

cos2 θr ≃
W 2/β2

Q(Q+ 2mec2)
≃ Q−(Q− + 2mec

2)

Q(Q+ 2mec2)
. (A.43)
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Numerical tools

B.1 Cubic spline interpolation

In this Section we follow the presentation of Maron (1982). Suppose that a function
f(x) is given in numerical form, i.e., as a table of values

fi = f(xi) (i = 1, . . . , N). (B.1)

The points (knots) xi do not need to be equispaced, but we assume that they are in
(strictly) increasing order

x1 < x2 < · · · < xN . (B.2)

A function φ(x) is said to be an interpolating cubic spline if

1) It reduces to a cubic polynomial within each interval [xi, xi+1], i.e., if xi ≤ x ≤ xi+1

φ(x) = ai + bix+ cix
2 + dix

3 ≡ pi(x) (i = 1, . . . , N − 1). (B.3)

2) The polynomial pi(x) matches the values of f(x) at the endpoints of the i-th interval,

pi(xi) = fi, pi(xi+1) = fi+1 (i = 1, . . . , N − 1), (B.4)

so that φ(x) is continuous in [x1, xN ].

3) The first and second derivatives of φ(x) are continuous in [x1, xN ]

p′i(xi+1) = p′i+1(xi+1) (i = 1, . . . , N − 2), (B.5)

p′′i (xi+1) = p′′i+1(xi+1) (i = 1, . . . , N − 2). (B.6)

Consequently, the curve y = φ(x) interpolates the table (B.1) and has a continuously
turning tangent.
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To obtain the spline coefficients ai, bi, ci, di (i = 1, . . . , N −1) we start from the fact
that φ′′(x) is linear in [xi, xi+1]. Introducing the quantities

hi ≡ xi+1 − xi (i = 1, . . . , N − 1) (B.7)

and
σi ≡ φ′′(xi) (i = 1, . . . , N), (B.8)

we can write the obvious identity

p′′i (x) = σi
xi+1 − x

hi
+ σi+1

x− xi
hi

(i = 1, . . . , N − 1). (B.9)

Notice that xi+1 must be larger than xi in order to have hi > 0. Integrating Eq. (B.9)
twice with respect to x, gives for i = 1, . . . , N − 1

pi(x) = σi
(xi+1 − x)3

6hi
+ σi+1

(x− xi)3

6hi
+ Ai(x− xi) +Bi(xi+1 − x), (B.10)

where Ai and Bi are constants. These can be determined by introducing the expression
(B.10) into eqs. (B.4), this gives the pair of eqs.

σi
h2i
6

+Bihi = fi and σi+1
h2i
6

+ Aihi = fi+1. (B.11)

Finally, solving for Ai and Bi and substituting the result in (B.10), we obtain

pi(x) =
σi
6

[
(xi+1 − x)3

hi
− hi(xi+1 − x)

]
+ fi

xi+1 − x
hi

+
σi+1

6

[
(x− xi)3

hi
− hi(x− xi)

]
+ fi+1

x− xi
hi

.

(B.12)

To be able to use φ(x) to approximate f(x), we must find the second derivatives
σi (i = 1, . . . , N). To this end, we impose the conditions (B.5). Differentiating (B.12)
gives

p′i(x) =
σi
6

[
−3(xi+1 − x)2

hi
+ hi

]
+
σi+1

6

[
3(x− xi)2

hi
− hi

]
+ δi, (B.13)

where

δi =
fi+1 − fi

hi
. (B.14)

Hence,

p′i(xi+1) = σi
hi
6
+ σi+1

hi
3
+ δi, (B.15a)

p′i(xi) = −σi
hi
3
− σi+1

hi
6
+ δi (B.15b)
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and, similarly,

p′i+1(xi+1) = −σi+1
hi+1

3
− σi+2

hi+1

6
+ δi+1. (B.15c)

Replacing (B.15a) and (B.15c) in (B.5), we obtain

hiσi + 2(hi + hi+1)σi+1 + hi+1σi+2 = 6 (δi+1 − δi) (i = 1, . . . , N − 2). (B.16)

The system (B.16) is linear in the N unknowns σi (i = 1, . . . , N). However, since
it contains only N − 2 equations, it is underdetermined. This means that we need
either to add two additional (independent) equations or to fix arbitrarily two of the N
unknowns. The usual practice is to adopt endpoint strategies that introduce constraints
on the behaviour of φ(x) near x1 and xN . An endpoint strategy fixes the values of σ1
and σN , yielding an (N − 2) × (N − 2) system in the variables σi (i = 2, . . . , N − 1).
The resulting system is, in matrix form,

H2 h2 0 · · · 0 0 0

h2 H3 h3 · · · 0 0 0

0 h3 H4 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · HN−3 hN−3 0

0 0 0 · · · hN−3 HN−2 hN−2

0 0 0 · · · 0 hN−2 HN−1





σ2

σ3

σ4
...

σN−3

σN−2

σN−1


=



D2

D3

D4

...

DN−3

DN−2

DN−1


, (B.17)

where
Hi = 2(hi−1 + hi) (i = 2, . . . , N − 1) (B.18)

and
D2 = 6(δ2 − δ1)− h1σ1

Di = 6(δi − δi−1) (i = 3, . . . , N − 2)

DN−1 = 6(δN−1 − δN−2)− hN−1σN .

(B.19)

(σ1 and σN are removed from the first and last equations, respectively). The matrix
of coefficients is symmetric, tridiagonal and diagonally dominant (the larger coefficients
are in the diagonal), so that the system (B.17) can be easily (and accurately) solved
by Gauss elimination. The spline coefficients ai, bi, ci, di (i = 1, . . . , N − 1) —see Eq.
(B.3)— can then be obtained by expanding the expressions (B.12):

ai =
1

6hi

[
σix

3
i+1 − σi+1x

3
i + 6 (fixi+1 − fi+1xi)

]
+
hi
6
(σi+1xi − σixi+1),

bi =
1

2hi

[
σi+1x

2
i − σix2i+1 + 2 (fi+1 − fi)

]
+
hi
6
(σi − σi+1),

ci =
1

2hi
(σixi+1 − σi+1xi),

di =
1

6hi
(σi+1 − σi).

(B.20)



330 Appendix B. Numerical tools

When accurate values of f ′′(x) are known, the best strategy is to set σ1 = f ′′(x1) and
σN = f ′′(xN), since this will minimise the spline interpolation errors near the endpoints
x1 and xN . Unfortunately, the exact values f

′′(x1) and f
′′(xN) are not always available.

The so-called natural spline corresponds to taking σ1 = σN = 0. It results in
a y = φ(x) curve with the shape that would be taken by a flexible rod (such as a
draughtman’s spline) if it were bent around pegs at the knots but allowed to maintain its
natural (straight) shape outside the interval [x1, xN ]. Since σ1 = σN = 0, extrapolation
of φ(x) outside the interval [x1, xN ] by straight segments gives a continuous function
with continuous first and second derivatives [i.e., a cubic spline in (−∞,∞)].

The accuracy of the spline interpolation is mainly determined by the density of knots
in the regions where f(x) has strong variations. For constant, linear, quadratic and cubic
functions the interpolation errors can be reduced to zero by using the exact values of
σ1 and σN (in these cases, however, the natural spline may introduce appreciable errors
near the endpoints). It is important to keep in mind that a cubic polynomial has, at
most, one inflexion point. As a consequence, we should have at least a knot between
each pair of inflexion points of f(x) to ensure proper interpolation. Special care must
be taken when interpolating functions that have a practically constant value in a partial
interval, since the spline tends to wiggle instead of staying constant. In this particular
case, it may be more convenient to use linear interpolation.

Obviously, the interpolating cubic spline φ(x) can be used not only to obtain inter-
polated values of f(x) between the knots, but also to calculate integrals such as∫ b

a

f(x) dx ≃
∫ b

a

φ(x) dx, x1 ≤ a and b ≤ xN , (B.21)

analytically. It is worth noting that derivatives of φ(x) other than the first one may
differ significantly from those of f(x).

To obtain the interpolated value φ(xc) —see Eq. (B.3)— of f(x) at the point xc,
we must first determine the interval (xi, xi+1] that contains the point xc. To reduce the
effort to locate the point, we use the following binary search algorithm:

(i) Set i = 1 and j = N .

(ii) Set k = [(i+ j)/2].

(iii) If xk < xc, set i = k; otherwise set j = k.

(iv) If j − i > 1, go to step (ii).

(v) Deliver i.

Notice that the maximum delivered value of i is N − 1.
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B.2 Numerical quadrature

In many cases, we need to calculate integrals of the form∫ B

A

f(z) dz, (B.22)

where the integrand is coded as an external function subprogram, which gives nominally
exact values. These integrals are evaluated by using the Fortran 77 external function
SUMGA, which implements the twenty-point Gauss method with an adaptive bipartition
scheme to allow for error control. This procedure is comparatively fast and is able to
deal even with functions that have integrable singularities located at the endpoints of
the interval [A,B], a quite exceptional feature.

B.2.1 Gauss integration

We use the twenty-point Gauss formula (see, e.g., Abramowitz and Stegun, 1974), given
by ∫ b

a

f(z) dz =
b− a
2

20∑
i=1

wif(zi) (B.23)

with

zi =
b− a
2

xi +
b+ a

2
. (B.24)

The abscissa xi (−1 < xi < 1) is the i-th zero of the Legendre polynomial P20(x), the
weights wi are defined as

wi =
2

(1− x2i ) [P ′
20(xi)]

2 . (B.25)

The numerical values of the abscissas and weights are given in Table B.1. The difference
between the exact value of the integral and the right-hand side of Eq. (B.23) is

∆20 =
(b− a)41(20!)4

41 (40!)3
f (40)(ξ), (B.26)

where ξ is a point in the interval [a, b].

The Gauss method gives an estimate of the integral of f(z) over the interval [a, b],
which is obtained as a weighted sum of function values at fixed points inside the interval.
We point out that (B.23) is an open formula, i.e., the value of the function at the
endpoints of the interval is never required. Owing to this fact, function SUMGA can
integrate functions that are singular at the endpoints. As an example, the integral of
f(x) = x−1/2 over the interval [0,1] is correctly evaluated. This would not be possible
with a method based on a closed formula (i.e., one that uses the values of the integrand
at the interval endpoints).
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Table B.1: Abscissas and weights for twenty-point Gauss integration.

±xi wi

7.6526521133497334D-02 1.5275338713072585D-01

2.2778585114164508D-01 1.4917298647260375D-01

3.7370608871541956D-01 1.4209610931838205D-01

5.1086700195082710D-01 1.3168863844917663D-01

6.3605368072651503D-01 1.1819453196151842D-01

7.4633190646015079D-01 1.0193011981724044D-01

8.3911697182221882D-01 8.3276741576704749D-02

9.1223442825132591D-01 6.2672048334109064D-02

9.6397192727791379D-01 4.0601429800386941D-02

9.9312859918509492D-01 1.7614007139152118D-02

B.2.2 Adaptive bipartition

Function SUMGA exploits the fact that the error ∆20, Eq. (B.26), of the calculated integral
decreases when the interval length is reduced. Thus, halving the interval and applying
the Gauss method to each of the two subintervals gives a much better estimate of the
integral, provided only that the function f(x) is smooth enough over the initial interval.
Notice that the error decreases by a factor of about 2−40(!).

The algorithm implemented in SUMGA is as follows. The integration interval (A,B)
is successively halved so that each iteration gives a doubly finer partition of the initial
interval. We use the term “n-subinterval” to denote the subintervals obtained in the n-th
iteration. In each iteration, the integrals over the different n-subintervals are evaluated
by the Gauss method, Eq. (B.23). Consider that the integral over a given n-subinterval
is S1. In the following iteration, this n-subinterval is halved and the integrals over each
of the two resulting (n + 1)-subintervals are evaluated, giving values S1a and S1b. If
S ′
1 = S1a + S1b differs from S1 in less than the selected tolerance, S ′

1 is the sought value
of the integral in the considered n-subinterval; the value S ′

1 is then accumulated and
this n-subinterval is no longer considered in subsequent iterations. Each iteration is
likely to produce new holes (eliminated subintervals) in the regions where the function
is smoother and, hence, the numerical effort progressively concentrates in the regions
where f(x) has stronger variations. The calculation terminates when the exploration
of the interval (A,B) has been succesfully completed or when a clear indication of an
anomalous behaviour of f(x) is found (e.g., when there is a persistent increase of the
number of remaining n-subintervals in each iteration). In the second case a warning
message is printed in unit 26 and the control is returned to the calling program.



Appendix C

Photon polarisation

The current version of penelope can simulate the scattering of polarised photons ac-
cording to the theory described in Section 2.7. Polarisation effects are accounted for
by using DCSs that depend on the polarisation of the incident and scattered photons.
Hence, the simulation algorithm requires defining the polarisation state of the primary
photons and keeping track of the polarisation changes induced by scattering events. In
the present Appendix we introduce elementary concepts on photon polarisation and we
devise a consistent scheme for describing arbitrary polarisation states, which is tailored
for Monte Carlo simulation of photon multiple scattering processes. Our treatment is
based on the density matrix formalism and the representation of density matrices in
terms of the so-called Stokes parameters, as described, e.g., by Fano (1954b), McMaster
(1954) and Tolhoek (1956).

C.1 Polarisation states

Let us consider classical electromagnetic plane waves that propagate in the direction
given by the unit vector k̂. These waves are transverse, i.e., their electric and magnetic
fields are perpendicular to k̂. Hence, the polarisation of a wave can be described in
terms of two orthogonal unit vectors ϵ̂1 and ϵ̂2 that lie in the plane orthogonal to k̂. It
is convenient to select the polarisation vectors in such a way that ϵ̂1, ϵ̂2 and k̂ form a
right-handed set of mutually orthogonal unit vectors, that is

ϵ̂1×ϵ̂2 = k̂, ϵ̂1 ·ϵ̂2 = 0. (C.1)

Clearly, the first polarisation vector, ϵ̂1, can be selected arbitrarily among the unit
vectors orthogonal to k̂, and then the second polarisation vector is determined by the
condition k̂× ϵ̂1 = ϵ̂2. The electric field of a monochromatic plane wave of angular
frequency ω that advances in the direction k̂ is

E(r, t) = E0 Re {[d1ϵ̂1 + d2ϵ̂2] exp[i(k·r− ωt)]} , (C.2a)
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where k = (ω/c)k̂ is the wave vector, d1 and d2 are complex numbers such that |d1|2 +
|d2|2 = 1, and the real parameter E0 determines the amplitude of the wave. The wave
(C.2a) can be expressed in the equivalent form

E(r, t) = E0 Re {ζ exp[i(k·r− ωt)]} . (C.2b)

where the polarisation vector ζ is complex and has unit magnitude, i.e., ζ∗·ζ = 1. With
all generality, we can write (apart from an irrelevant phase factor)

ζ = cos(α/2)ϵ̂1 + sin(α/2) exp(iβ)ϵ̂2 (C.3)

with α ∈ (0, π) and β ∈ (0, 2π). The plane wave (C.2b) is elliptically polarised. When
β = 0, the polarisation is linear; the electric field of the wave oscillates in a direction
that forms an angle α/2 with ϵ̂1. If α = π/2 and β = ±π/2, we have right-hand circular
polarisation (+) and left-hand circular polarisation (−).

To facilitate the simulation of interactions of polarised electromagnetic radiation,
and to avoid ambiguities, for each direction of propagation k̂ we define a “natural”
basis of polarisation vectors as follows. Let ϑ and φ denote the polar and azimuthal
angles of the direction k̂, that is,

k̂ =


cosφ sinϑ

sinφ sinϑ

cosϑ

 . (C.4)

A rotation of angle ϑ about the ŷ axis followed by a rotation of angle φ about the ẑ
axis transforms the vector ẑ into k̂. The matrix of this rotation is

R(ϑ, φ) = R(φẑ)R(ϑŷ) =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1




cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ



=


cosφ cosϑ − sinφ cosφ sinϑ

sinφ cosϑ cosφ sinφ sinϑ

− sinϑ 0 cosϑ

 . (C.5)

We define the polarisation vectors ϵ̂1(k̂) y ϵ̂2(k̂) corresponding to the propagation di-
rection k̂ as those that result from rotating the unit vectors x̂ and ŷ (see Fig. C.1), i.e.,

ϵ̂1(k̂) ≡ R(ϑ, φ)x̂ =


cosφ cosϑ

sinφ cosϑ

− sinϑ

 (C.6a)
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and

ϵ̂2(k̂) ≡ R(ϑ, φ)ŷ =


− sinφ

cosφ

0

 . (C.6b)

Evidently,

ϵ̂1(k̂)×ϵ̂2(k̂) = k̂ and ϵ̂1(k̂)·ϵ̂2(k̂) = 0.

Note that ẑ×k̂ = sinϑϵ̂2(k̂). That is, ϵ̂2(k̂) is perpendicular to the plane that contains
the vectors ẑ and k̂. Therefore, the vector ϵ̂1(k̂) lies in that plane. To simplify the
writing of formulas, in what follows we will use the notation ϵ̂1 and ϵ̂2 to designate
the polarisation vectors, removing the explicit reference to the propagation direction k̂,
which is implied by the context.

ǫ̂2

k  

ǫ̂1

ϑ

ϕ
yx

z

Figure C.1: Vectors ϵ̂1(k̂) and ϵ̂2(k̂) of the “natural” basis of linear polarisation for waves

that propagate in the direction k̂.

In Quantum Mechanics, a classical wave (C.2) corresponds to a beam of photons
in a pure polarisation state. In the basis {|ϵ̂1⟩, |ϵ̂2⟩} of linear polarisation states, the
state of a photon is expressed as a linear superposition of the basis states, with complex
coefficients and unit norm,

|ζ⟩ = d1|ϵ̂1⟩+ d2|ϵ̂2⟩ =

(
d1

d2

)
, |d1|2 + |d2|2 = 1. (C.7a)

The quantities |d1|2 and |d2|2 are the probabilities that in a measurement of the polari-
sation we find the photon in the states |ϵ̂1⟩ and |ϵ̂2⟩, respectively. There is a one-to-one
correspondence between polarisation states |ζ⟩ and the polarisation vectors of classical
waves, ζ = d1ϵ̂1 + d2ϵ̂2. Hereafter we write ζ and ϵ̂i instead of |ζ⟩ and |ϵ̂i⟩, i.e., we use
the same symbol to designate the quantum polarisation states and the unit polarisation
vectors.
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We will see that the quantum description of photon polarisation is mathematically
identical (isomorphic) to that of the spin orientation of a spin-1/2 particle. An arbitrary
polarisation state can be expressed in the form

ζ = cos(α/2)ϵ̂1 + sin(α/2) exp(iβ)ϵ̂2 =

(
cos(α/2)

sin(α/2) exp(iβ)

)
(C.7b)

with α ∈ (0, π) and β ∈ (0, 2π). States with β = 0 correspond to linear polarisation
in a direction that makes an angle α/2 with ϵ̂1. If β = ±π/2 and α = π/2, we have
right-hand (+) and left-hand (−) circularly polarised photons.

C.2 Density matrix and Stokes parameters

Usually, photons in a real beam cannot be assigned a definite polarisation state because
a complete quantum description of the beam is not available. For instance, when a beam
of photons in a pure polarisation state is scattered by the atoms of a gas, the scattered
beam can be expressed as a linear combination of pure states, but with coefficients d1
and d2 that depend on the state of the target atom after the interaction. Such photon
beams are said to have partial polarisation and can be described by using the density
matrix formalism (Falkoff and MacDonald, 1951; Fano, 1954b; McMaster, 1954).

Let us consider a partially polarised beam, whose photons are in certain states ζn of
pure polarisation with corresponding probabilities pn. The occupied states ζn are only
assumed to be normalised to unity, the number and nature of these states are arbitrary.
The probabilities pn are positive and add to unity,∑

n

pn = 1. (C.8)

The density operator for such a radiation beam is defined as

ρ =
∑
n

|ζn⟩ pn⟨ζn|. (C.9)

The matrix elements of the density operator in the basis of states of linear polarisation
{ϵ̂1, ϵ̂2} are

ρµν =
∑
n

⟨ϵ̂µ|ζn⟩ pn⟨ζn|ϵ̂ν⟩ (µ, ν = 1, 2). (C.10)

If the beam photons are in a single pure state, Eq. (C.7a), the density matrix reduces
to

ρ = |ζ⟩⟨ζ| and ρµν = dµd
∗
ν , (C.11)

that is,

ρ =

(
d1d

∗
1 d1d

∗
2

d2d
∗
1 d2d

∗
2

)
. (C.12)
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The density matrix is Hermitian,

ρ† = ρ, ρµν = ρ∗νµ, (C.13)

and has unit trace,

Trρ = ρ11 + ρ22 =
∑
n

pn = 1. (C.14)

Hence ρ is determined by three real parameters. Since ρ is a 2× 2 Hermitian matrix, it
can be expressed as a linear combination of the Pauli matrices,

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 , (C.15)

and the 2× 2 identity matrix, with real coefficients,

ρ =
1

2
(I2 + P1σ1 + P2σ2 + P3σ3) =

1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)
. (C.16)

The quantities Pi are the Stokes parameters, which are important because they provide
a complete description of the polarisation of a beam and, as we will show below, they
can be measured experimentally. From the properties of the Pauli matrices, we have

Trρσi = Pi. (C.17)

This equality defines the Stokes parameters in terms of the density matrix elements ρµν ,

P1 = ρ12 + ρ21, P2 = i(ρ12 − ρ21), P3 = ρ11 − ρ22. (C.18)

We can introduce the Poincaré vector, P ≡ (P1, P2, P3), and write

ρ =
1

2
(I2 +P·σ) . (C.19)

The Poincaré vector is analogous to the direction of the spin of a spin-1
2
particle. How-

ever, the spin direction belongs to ordinary space (because it transforms as a common
vector under rotations), while P is in a different vector space (because its components
transform in a special form under space rotations, see Section C.2.1). The determinant
of the density matrix is

det ρ =
1

2
(1− P 2), (C.20)

with P 2 = P 2
1 + P 2

2 + P 2
3 .

If the Stokes parameters vanish, P = 0, we have ρ = 1
2
I2. That is, all polarisation

directions are equivalent. A density matrix of this type represents unpolarised photons.
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The opposite case is that of a pure state (α, β), Eq. (C.7b), which has the following
density matrix,

ρ =

(
cos2(α/2) cos(α/2) sin(α/2) exp(−iβ)

cos(α/2) sin(α/2) exp(iβ) sin2(α/2)

)
. (C.21)

The corresponding Stokes parameters are given by expressions (C.18),

P1 = sinα cos β, P2 = sinα sin β, P3 = cosα. (C.22)

Note that α and β are the polar and azimuthal angles of the Poincaré vector P, and
that

P 2 = P 2
1 + P 2

2 + P 2
3 = 1. (C.23)

It is worth mentioning that in Optics the Pauli matrices are usually given in a differ-
ent order, namely, {σ3, σ1, σ2}. We prefer the ordering (C.15) employed in Quantum
Mechanics, not only because it allows the geometrical interpretation of the state angles
α and β expressed by Eqs. (C.22) but also because the formalism is parallel to that
of polarisation of spin-1

2
particles, which is studied in elementary Quantum Mechanics

courses.

It is clear that P , the magnitude of the Poincaré vector, can take values from 0
(unpolarised photons) to 1 (pure polarisation states). It is natural to refer to P as
the polarisation degree of the photons. The endpoints of the Poincaré vectors fill the
interior of the unit sphere, the so-called Poincaré sphere. The pure states (complete
polarisation) have the endpoints of their Poincaré vectors on the surface of that sphere.

In the case of pure states (P = 1), inverting the relations (C.22), we can obtain the
state angles (α, β) from the Stokes parameters,

α = arccosP3, exp(iβ) =
P1 + iP2√
1− P 2

3

. (C.24)

The pure states corresponding to the Poincaré vectors P and −P, with respective di-
rections (α, β) and (π − α, β + π), are

ζ(P) ≡ ϵ̂(α, β) =

(
cos(α/2)

sin(α/2) exp(iβ)

)
, (C.25a)

ζ(−P) ≡ ϵ̂(π − α, β + π) =

(
sin(α/2)

− cos(α/2) exp(iβ)

)
. (C.25b)

Note that these states are orthogonal,

⟨ζ(P)| ζ(−P)⟩ = 0. (C.26)

Hence, by reversing the signs of the Stokes parameters of a pure state, we obtain its
orthogonal state (except, possibly, an irrelevant phase factor). Thus, the state angles
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(α, β), the Poincaré vectors and the density matrices of the states {ϵ̂1, ϵ̂2} of the linear-
polarisation basis are

ϵ̂1 =

(
1

0

)
:

α = 0, β = 0,

P(ϵ̂1) = (0, 0, 1),
ρ(ϵ̂1) =

1

2

(
2 0

0 0

)
, (C.27a)

ϵ̂2 =

(
0

1

)
:

α = π, β = π,

P(ϵ̂2) = (0, 0,−1),
ρ(ϵ̂2) =

1

2

(
0 0

0 2

)
. (C.27b)

Similarly, for the states of the basis of circular polarisation, we have

ϵ̂(r) =
1√
2

(
1

i

)
:

α = π/2, β = π/2,

P(ϵ̂(r)) = (0, 1, 0),
ρ(ϵ̂(r)) =

1

2

(
1 −i
i 1

)
, (C.28a)

ϵ̂(l) =
1√
2

(
1

−i

)
:

α = π/2, β = −π/2,
P(ϵ̂(l)) = (0,−1, 0),

ρ(ϵ̂(l)) =
1

2

(
1 i

−i 1

)
. (C.28b)

As a third example, to which we will refer below, we consider the basis of polarisation
states obtained by rotating the vectors of the basis {ϵ̂1, ϵ̂2} an angle of 45 degrees about
the propagation direction k̂,

ϵ̂
(45)
1 =

1√
2

(
1

1

)
:
α = π/2, β = 0,

P(ϵ̂
(45)
1 ) = (1, 0, 0),

ρ(ϵ̂
(45)
1 ) =

1

2

(
1 1

1 1

)
, (C.29a)

ϵ̂
(45)
2 =

1√
2

(
1

−1

)
:

α = π/2, β = π,

P(ϵ̂
(45)
2 ) = (−1, 0, 0),

ρ(ϵ̂
(45)
2 ) =

1

2

(
1 −1
−1 1

)
. (C.29b)

The intensity of a photon beam is defined as the number of photons per unit volume
in the beam. Let us consider two photon beams with intensitiesN1 andN2 and respective
density matrices ρ1 and ρ2. The incoherent admixture of these two beams gives a beam
with intensity N = N1 +N2 and density matrix

ρ =
N1

N
ρ1 +

N2

N
ρ2. (C.30a)

The corresponding Stokes parameters are

P =
N1

N
P1 +

N2

N
P2, (C.30b)

where P1 and P2 are the Poincaré vectors of the initial beams.

A partially polarised beam with Stokes parameters P (P < 1) can be regarded as
an incoherent admixture of an unpolarised beam and a completely polarised beam. To
characterise these beams, we define the reduced Stokes parameters

P ′
i ≡ Pi/P. (C.31)
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The matrix density of the partially polarised beam P can then be expressed as

ρ =
1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)

= (1− P )1
2

(
1 0

0 1

)
+ P

1

2

(
1 + P ′

3 P ′
1 − iP ′

2

P ′
1 + iP ′

2 1− P ′
3

)
. (C.32)

The second term in the last expression describes a completely polarised beam, because
P ′2
1 + P ′2

2 + P ′2
3 = 1. Hence, the result of mixing an unpolarised beam and a completely

polarised beam P′, with relative intensities (1 − P ) and P , respectively, has the same
density matrix as the original partially polarised beam. Therefore, any polarisation
measurement on the mixed beam will yield the same results as for the original beam ρ
(see below).

The density matrices of beams in pure polarisation states with Poincaré vectors P
and −P (P = 1) are

ρ(P) =
1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)
and ρ(−P) =

1

2

(
1− P3 −P1 + iP2

−P1 − iP2 1 + P3

)
,

(C.33)
respectively. The density matrix of the beam obtained by mixing these two beams, with
equal intensities, is

ρ =
1

2
ρ(P) +

1

2
ρ(−P) =

1

2

 1 0

0 1

 , (C.34)

which is the density matrix of an unpolarised beam. This result implies that an unpo-
larised beam can be regarded as an admixture of two completely polarised beams with
equal intensities and “opposite” polarisations P and −P, independently of the direction
of P.

C.2.1 Rotations of the base vectors

A unitary1 transformation U in the space of polarisation states (i.e., a change of ba-
sis, {ϵ̂1, ϵ̂2}) induces a transformation of Poincaré vectors and density matrices. The
transformed density matrix is ρ′ = UρU−1 and, from Eq. (C.20),

P ′2 = 1− 4 det ρ′ = 1− 4 det ρ = P 2. (C.35)

That is, the transformation leaves the length of the Poincaré vectors (the degree of
polarisation) unaltered. As we are going to show, rotations of the unit polarisation
vectors induce rotations of the Poincaré vectors.

1We recall that a 2×2 matrix U is unitary if U† = U−1.
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Let us assume that we change the zero-azimuth plane by an angle ϕ, i.e., we rotate
the vectors of the basis of linear polarisation an angle ϕ about the k̂ axis. The vectors
of the new basis are

ϵ̂′1 = R(ϕk̂)ϵ̂1 = cosϕ ϵ̂1 + sinϕ ϵ̂2,

ϵ̂′2 = R(ϕk̂)ϵ̂2 = − sinϕ ϵ̂1 + cosϕ ϵ̂2. (C.36)

The rotation matrix has elements Rij(ϕk̂) =
⟨
ϵ̂i|ϵ̂′j

⟩
, i.e.,

R(ϕk̂) =

(
cosϕ − sinϕ

sinϕ cosϕ

)
= cosϕI2 − i sinϕσ2. (C.37)

The matrix of the inverse rotation is

R(−ϕk̂) = R−1(ϕk̂) =

(
cosϕ sinϕ

− sinϕ cosϕ

)
= cosϕI2 + i sinϕσ2. (C.38)

Note that R−1(ϕk̂) = R†(ϕk̂). The coefficients of the expansion of the polarisation state
ζ = diϵ̂i in the new basis are

d′j =
⟨
ϵ̂′j |ζ

⟩
=
⟨
R(ϕk̂)ϵ̂j

∣∣∣ diϵ̂i⟩ =
⟨
ϵ̂j

∣∣∣R(−ϕk̂)∣∣∣ ϵ̂i⟩ di = Rji(−ϕk̂)di, (C.39)

Or, more explicitly,

d′1 = cosϕ d1 + sinϕ d2, d′2 = − sinϕ d1 + cosϕ d2. (C.40)

We see that the transformation (C.36) is equivalent to rotating the electromagnetic field
an angle −ϕ about the k̂ axis, leaving the orientation of the axes fixed.

Let us consider a beam with the density matrix ρµν . In the new polarisation basis,
the density matrix of this beam is

ρ′µν =
∑
n

⟨ϵ̂′µ|ζn⟩ pn⟨ζn|ϵ̂′ν⟩ =
∑
n

∑
i,j

⟨R(ϕk̂)ϵ̂µ|ϵ̂i⟩⟨ϵ̂i|ζn⟩ pn⟨ζn|ϵ̂j⟩⟨ϵ̂j|R(ϕk̂)ϵ̂ν⟩

=
∑
n

∑
i,j

⟨ϵ̂µ|R(−ϕk̂)|ϵ̂i⟩⟨ϵ̂i|ζn⟩ pn⟨ζn|ϵ̂j⟩⟨ϵ̂j|R(ϕk̂)|ϵ̂ν⟩. (C.41)

That is,

ρ′ = R(−ϕk̂)ρR(ϕk̂) = (cosϕI2 + i sinϕσ2)
1

2
(I2 −P·σ) (cosϕI2 − i sinϕσ2)

=
1

2

{
I2 + [− sin(2ϕ)P3 + cos(2ϕ)P1]σ1 + P2σ2 + [cos(2ϕ)P3 + sin(2ϕ)P1]σ3

}
. (C.42)

Hence,

P ′
3 = cos(2ϕ)P3 + sin(2ϕ)P1

P ′
1 = − sin(2ϕ)P3 + cos(2ϕ)P1. (C.43)
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Thus, a rotation of the zero-azimuth plane by an angle ϕ is equivalent to a rotation of the
photon polarisation state by an angle −ϕ and to a rotation of the Stokes parameters P3

and P1 by an angle −2ϕ. In the case ϕ = π, we have P ′
3 = P3 and P

′
1 = P1. This feature

is consistent with the fact that linearly polarised waves with polarisation vectors ζ and
−ζ correspond to the same polarisation state. Note that P ′

2 = P2, because rotations
about the k̂ axis do not affect the states of circular polarisation.

C.3 Polarisation analysers

The polarisation of a photon beam can be measured using polarisation filters, which
transmit light of various polarisations with different efficiencies. An ideal filter is com-
pletely transparent for a certain polarisation state and absolutely opaque to the orthogo-
nal state, working similarly to a Stern-Gerlach analyser with one of the output channels
(spin values) blocked. Let us consider an ideal filter that transmits photons in the state
ζ(Q), corresponding to the Poincaré vector Q, and absorbs photons in the state ζ(−Q)
of opposite polarisation, −Q. This filter can be considered as a measuring apparatus
with an associated quantum operator (observable) F [ζ(Q)] that has the eigenstates
ζ(Q) and ζ(−Q) with eigenvalues 1 and 0, respectively. We recall that |⟨ζ(Q)|ζ(P)⟩|2
is the probability that an incident photon in the pure state ζ(P) is transmitted through
the filter, emerging in the polarisation state ζ(Q).

To determine the operator F [ζ(Q)], we recall that the pure state ϵ̂1 corresponds to
the Poincaré vector Q = (0, 0, 1), see Eq. (C.27). Then, if a polariser transmits photons
with polarisation ϵ̂1, we must have

F(ϵ̂1) =

(
1 0

0 0

)
. (C.44)

This matrix can also be expressed as

F(ϵ̂1) =
1

2
[I2 + σ3] =

1

2
[I2 +Q·σ] . (C.45)

Now, the operator F [ζ(Q)] for any other polarisation direction Q can be obtained by
means of a unitary transformation of {ϵ̂1, ϵ̂2}. Therefore, the most general form of that
operator is

F [ζ(Q)] =
1

2
[I2 +Q·σ] . (C.46)

Using this formula, we see that the operators of polarisation filters that transmit photons
with the polarisations ϵ̂(r) and ϵ̂

(45)
1 are [see Eqs. (C.28a) and (C.29a)]

F(ϵ̂(r)) =

(
1 −i
i 1

)
(C.47)
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and

F(ϵ̂
(45)
1 ) =

(
1 1

1 1

)
, (C.48)

respectively. It can be easily verified that, indeed, the eigenstates of these operators are
those of the bases {ϵ̂(r), ϵ̂(l)} and {ϵ̂(45)1 , ϵ̂

(45)
2 } defined above.

Note that the matrix of the filter operator F [ζ(Q)] is equal to the density matrix of
a pure state with Poincaré vector Q, Eq. (C.19),

F [ζ(Q)] = ρ(Q). (C.49)

Moreover, F2[ζ(Q)] = F [ζ(Q)], that is, the operator of an ideal polariser is a projector.
Therefore,

F [ζ(Q)] = |ζ(Q)⟩⟨ζ(Q)|. (C.50)

Evidently,

F [ζ(Q)] +F [ζ(−Q)] = |ζ(Q)⟩⟨ζ(Q)|+ |ζ(−Q)⟩⟨ζ(−Q)| = I2. (C.51)

The transmission probability of photons in a pure state ζ(P), with Poincaré vector
P (P = 1) and density matrix ρ(P), through the polariser F [ζ(Q)] is

⟨F [ζ(Q)]⟩ ≡ ⟨ζ(P)|F [ζ(Q)]|ζ(P)⟩

=
∑
i,j

⟨ζ(P)|ϵ̂i⟩ ⟨ϵ̂i|F [ζ(Q)]|ϵ̂j⟩ ⟨ϵ̂j|ζ(P)⟩

=
∑
i,j

⟨ϵ̂i|F [ζ(Q)]|ϵ̂j⟩ ⟨ϵ̂j|ζ(P)⟩ ⟨ζ(P)|ϵ̂i⟩

= Tr{F [ζ(Q)] ρ(P)}. (C.52)

In the case of a partially polarised beam, with Poincaré vector P (P ≤ 1), the transmis-
sion probability can be readily obtained from the decomposition (C.32). The unpolarised
component is transmitted with probability 1/2, while the transmission probability of the
completely polarised component is given by (C.52). Hence,

⟨F [ζ(Q)]⟩ = (1− P ) 1
2
+ P Tr{F [ζ(Q)] ρ(P′)}

= Tr{F [ζ(Q)] ρ(P)}. (C.53)

This result can also be derived, in a more general fashion, from elementary considerations
on the density matrix, Eq. (C.9) (see, e.g., Sakurai, 1997; Ballentine, 1998). Using the
relation

(Q·σ)(P·σ) = Q·P+ iσ ·(Q×P), (C.54)
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we see that

⟨F [ζ(Q)]⟩ = Tr

{
1

2
[I2 +Q·σ] 1

2
[I2 +P·σ]

}
.

=
1

2
(1 +Q·P). (C.55)

That is, if P is parallel (antiparallel) to Q, the transmission probability is unity (zero).
When P and Q are mutually orthogonal, the fraction of transmitted photons is 1/2.

Now we are ready to show how the Stokes parameters can be measured experimen-
tally. Let us consider a photon beam in an arbitrary (pure or mixed) polarisation state,
described by the Poincaré vector P (P ≤ 1), and assume that we perform measure-
ments with ideal analysers. The probability of transmission through a linear filter with
polarisation vector ϵ̂1 [Q = (0, 0, 1)] is

⟨F(ϵ̂1)⟩ = Tr

{(
1 0

0 0

)
1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)}
= 1

2
(1 + P3). (C.56a)

Similarly, for a linear filter of polarisation ϵ̂
(45)
1 [Q = (1, 0, 0)],

⟨F(ϵ̂
(45)
1 )⟩ = Tr

{
1

2

(
1 1

1 1

)
1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)}
= 1

2
(1 + P1). (C.56b)

Finally, the transmission probability through a right-hand circular polariser [with Q =
(0, 1, 0)] is

⟨F(ϵ̂(r))⟩ = Tr

{
1

2

(
1 −i
i 1

)
1

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)}
= 1

2
(1 + P2). (C.56c)

That is, to determine the Stokes parameters of a photon beam, we only have to per-
form measurements with the three ideal polarisers ϵ̂1, ϵ̂

(45)
1 and ϵ̂(r). The parameter

P3 characterizes the polarisation along {ϵ̂1, ϵ̂2}: if P3 = 1, the photon is in the pure
state ϵ̂1, while P3 = −1 corresponds to total polarisation in the orthogonal direction ϵ̂2.
The second Stokes parameter describes circular polarisation: P2 = 1 corresponds to the
pure state ϵ̂(r), and P2 = −1 describes photons with left-hand circular polarisation, ϵ̂(l).
Similarly, P1 measures the polarisation in a direction that makes an angle of 45 degrees
with ϵ̂1. The values P1 = 1 and P1 = −1 correspond to the pure polarisation states ϵ̂

(45)
1

and ϵ̂
(45)
2 , respectively.

From the results in Eqs. (C.56), our ordering of the Stokes parameters, with P3

measuring linear polarisation in the “natural” directions ϵ̂1 and ϵ̂2, may seem awkward.
The ordering used in Optics, (P3, P1, P2), assigns more relevance to linear polarisations,
but alters the relationship (C.22) between the components of the Poincaré vector and
the state angles (α, β) obscuring the geometrical interpretation of the latter.
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Note: Real analysers. Real polarisation filters have maximum efficiency W+ (trans-
mission probability, ≤ 1) for pure states corresponding to a certain Poincaré vector Q
(Q = 1) and minimum efficiency W− for pure states polarised in the opposite direction,
−Q. A real filter can be regarded as the “superposition” of two ideal filters with weights
W+ and W−, and represented by the operator

F [ζ(Q);W+,W−] ≡ W+F [ζ(Q)] +W−F [ζ(−Q)]

=
1

2
[(W+ +W−)I2 + (W+ −W−)Q·σ] . (C.57)

The states |ζ(Q)⟩ and |ζ(−Q)⟩ are eigenstates of this operator with respective eigen-
values W+ and W−. Obviously, the transparent filter (i.e., the filter that transmits all
photons) corresponds to the operator

F [ζ(Q); 1, 1) = F [ζ(Q)] +F [ζ(−Q)] = I2. (C.58)

The transmission probability of photons in a pure state with Poincaré vector P
(P = 1), and density matrix ρ(P), through a polariser F [ζ(Q);W+,W−] is given by the
trace of the matrix F [ζ(Q);W+,W−] ρ(P) (see, e.g., Sakurai, 1994; Ballentine, 1998),

⟨F [ζ(Q);W+,W−]⟩ = Tr{F [ζ(Q);W+,W−] ρ(P)}

= Tr

{
1

2
[(W+ +W−)I2 + (W+ −W−)Q·σ]

1

2
[I2 +P·σ]

}
.

Using the property (C.54) of the Pauli matrices, and the fact that these matrices are
traceless, we obtain

⟨F [ζ(Q);W+,W−]⟩ =
1

2
[(W+ +W−) + (W+ −W−)Q·P] . (C.59)

It is clear that, if P is parallel (antiparallel) to Q, the transmission probability is W+

(W−). When P and Q are mutually orthogonal, the fraction of incident photons that is
transmitted is (W+ +W−)/2.

Using the relation (C.54), we see that

F2[ζ(Q);W+,W−] =
1

2

[
(W 2

+ +W 2
−)I2 + (W 2

+ −W 2
−)Q·σ

]
. (C.60)

This operator represents a composite filter consisting of two identical polarisers of the
type F [ζ(Q);W+,W−]. It has the same form as the operator F [ζ(Q);W+,W−], but
with efficiencies W 2

+ and W 2
−, as it could be expected from the fact that the attenuation

of the composite filter is the product of attenuations of the individual filters.
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In the simulations, polarisation states are described by means of the Stokes param-
eters. Pure states with polarisation P are represented by the four-component vector of
Stokes parameters,

P ≡ (1,P)T =


P0

P1

P2

P3

 , with P0 = 1. (C.61)

Alternatively, we can characterise the polarisation by means of the density-matrix four-
vector

DP ≡


ρ11

ρ22

ρ12

ρ21

 , (C.62)

whose components are the elements of the density matrix (notice the order). These two
representations are related by the linear transformation

DP = XP, P = X−1DP, (C.63)

with

X =
1

2


1 0 0 1

1 0 0 −1
0 1 −i 0

0 1 i 0

 , X−1 =


1 1 0 0

0 0 1 1

0 0 i −i
1 −1 0 0

 . (C.64)

For brevity, the four-vector P will be referred to as the Stokes vector. Similarly, an
ideal filter F [ζ(Q)] that accepts photons with polarisation Q can be represented by the
Stokes vector Q = (1,Q)T. Photons with the polarisation P are transmitted through
the filter with probability [see Eq. (C.55)]

⟨F [ζ(Q)]⟩ = 1

2
(1 +Q·P) ≡ 1

2
QTP. (C.65)

Or, in terms of the density-matrix four-vectors,

⟨F [ζ(Q)]⟩ = Tr[ρ(Q)ρ(P)] = DT
QZ34DP, (C.66)

where the matrix

Z34 ≡


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (C.67)

exchanges the third and fourth components of the vector DP, as required to get the
correct value of the trace.
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A rotation of the zero-azimuth plane by an angle ϕ causes the rotation of the Stokes
vector given by Eq. (C.43), i.e.,

P′ = R(ϕ)P with R(ϕ) =


1 0 0 0

0 cos(2ϕ) 0 − sin(2ϕ)

0 0 1 0

0 sin(2ϕ) 0 cos(2ϕ)

 . (C.68)

Note that the Stokes vector of a filter transforms in the same way, i.e., Q′ = R(ϕ)Q.
Indeed, from Eq. (C.65) we see that, when we rotate both the beam and the filter, the
results of measurements remain unaltered,

Q′TP′ = QTRT(ϕ)R(ϕ)P = QTP.

A beam of photons with polarisation P and intensity N (number of photons per unit
volume in the beam) will be represented by the Stokes vector NP. Similarly, the density
matrix of the beam will be defined as Nρ(P), so that the relations (C.63) are still valid.
Note, however, that with this convention the trace of the density matrix, and the zeroth
component of the Stokes vector, are equal to the intensity N of the beam. If the beam
NP is passed through an ideal filter F [ζ(Q)], the transmitted beam has the intensity

N ′ = N
1

2
(1 +Q·P) ≡ N

1

2
QTP, (C.69)

and its Stokes vector is N ′Q. The Stokes vector of the transparent filter (F = I2) is

QI = X−1


1

1

0

0

 =


2

0

0

0

 (C.70)

Evidently, for the transparent filter, Eq. (C.69) gives N ′ = N .
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Appendix D

Electron/positron transport in
electromagnetic fields

In this Appendix, we consider the transport of electrons/positrons in static external
electromagnetic (EM) fields, in vacuum and in condensed media. We assume that, in
the region where particles move, there is an electric field E and a magnetic field B,
which are set up by external sources and do not vary with time. For practical purposes,
we also consider that both E and B are continuous functions of the position vector r.

The interactions with the medium will be described by means of penelope. In each
individual interaction event, the electron/positron loses a discrete amount of kinetic
energy and changes its direction of motion. In the absence of EM fields, the electron
travels freely between consecutive interaction events, i.e., following a straight trajectory
segment at constant speed. To simulate electron transport with static external EM
fields, we assume that the interaction properties of electrons with the medium are not
substantially affected by the field. Consequently, to account for the effect of the EM
field, we only need to consider that along each “free flight” the electron is driven by the
EM force. With a proper selection of the simulation parameters (i.e., the energy loss and
angular cutoff values), trajectory segments may have macroscopic lengths. Therefore, in
material media it is appropriate to consider the macroscopic EM fields D and H rather
than the microscopic fields E and B.

It should be noted that, under the action of an electric field, the kinetic energy of the
electron can vary substantially along a single trajectory segment. This conflicts with
one of the basic assumptions in penelope, namely that the energy of the particle stays
practically constant along the segment. In practice, however, we can always limit the
maximum segment length by means of the parameter smax. Then, the effect of the EM
field can be treated independently of that of the interactions with the medium. In other
words, for simulation purposes, we only need an efficient method to generate particle
trajectories in the EM field in vacuum. It is also important to recall that strong electric
fields in material media accelerate unbound charged particles, even when they are at
rest (i.e., electrons are never absorbed, simulated tracks can only terminate when they
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leave the field volume). Injection of a single electron in the medium may give rise to a
complex cascade of delta rays, that accelerate in the direction opposite to the electric
field. To describe these cascades we need accurate cross sections for ionisation of outer
atomic shells by impact of low-energy electrons, much more accurate than the simple
ones implemented in penelope. Therefore, penelope is not expected to yield a reliable
description of this process. The simulation algorithm described here is applicable only to
magnetic fields and, cautiously, to weak electric fields. Notice also that we disregard the
emission of radiation by the charged particle when it is accelerated by the external EM
field (see, e.g., Jackson, 1975); this approximation is not valid for very strong magnetic
and electric fields.

The simulation algorithm described below is designed to track charged particles in
the presence of electromagnetic fields that are constant with time and vary slowly with
position. More specifically, we assume that the particle trajectory can be described as
a succession of short segments such that the electric and magnetic fields are essentially
constant along each segment. When this assumption is not valid (i.e., when the fields
vary too rapidly with position or time), our simple scheme for solving the equation of
motion [Eq. (D.7)] is not applicable.

D.1 Tracking particles in vacuum.

Let us begin by describing a “brute force” method to calculate trajectories of charged
particles in arbitrary static electric and magnetic fields in vacuum. We start from the
Lorentz force equation1 for an electron (Z0 = −1) or positron (Z0 = +1),

dp

dt
= Z0e

(
E +

v

c
×B

)
, (D.1)

which we write as
d(γβv̂)

dt
=
Z0e

mec
(E + βv̂×B), (D.2)

with v̂ = v/v, β = v/c and γ = (1− β2)−1/2. We note that

d(γβv̂)

dt
= γ3

dβ

dt
v̂ + γβ

dv̂

dt
(D.3)

where the vectors v̂ and dv̂/dt are orthogonal. Then, projecting Eq. (D.2) into the
directions of these two vectors, we obtain

dβ

dt
=

Z0e

mecγ
(1− β2)(E ·v̂) (D.4)

and
dv̂

dt
=

Z0e

mecβγ
[E − (E ·v̂)v̂ + βv̂×B] . (D.5)

1In this Appendix, electromagnetic quantities are expressed in the Gaussian system of units.
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It then follows that

dβv̂

dt
=

dβ

dt
v̂ + β

dv̂

dt

=
Z0e

mecγ

[
E − β2(E ·v̂)v̂ + βv̂×B

]
, (D.6)

which we cast in the form

dv

dt
= A, A ≡ Z0e

meγ

[
E − β2(E ·v̂)v̂ + βv̂×B

]
. (D.7)

Notice that, for arbitrary fields E and B, the “acceleration” A is a function of the
particle’s position r, energy E and direction of motion v̂.

Implicit integration of Eq. (D.7) gives the equations of motion

v(t) = v0 +

∫ t

0

A(r(t′), E(t′), v̂(t′)) dt′, (D.8)

r(t) = r0 +

∫ t

0

v(t′) dt′. (D.9)

Evidently, these equations are too complex for straight application in a simulation code
and we must have recourse to approximate solution methods. We shall adopt the ap-
proach proposed by Bielajew (1988), which is well suited to transport simulations. The
basic idea is to split the trajectory into a number of conveniently short steps such that
the acceleration A does not change much over the course of a step. Along each step, we
then have

v(t) = v0 + tA(r0, E0, v̂0) (D.10)

r(t) = r0 + tv0 + t2
1

2
A(r0, E0, v̂0), (D.11)

where the subscript “0” indicates values of the various quantities at the starting point
(t = 0). The travelled path length s and the flying time t are related by

t =

∫ s

0

ds′

v
, (D.12)

which to first order becomes
t = s/v0. (D.13)

Then, to first order in the electromagnetic force,

v(s) = v0 + s
A(r0, E0, v̂0)

cβ0

r(s) = r0 + s v̂0 + s2
1

2

A(r0, E0, v̂0)

c2β2
0

.
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That is,

r(s) = r0 + s v̂0 + s2
1

2

Z0e [E0 − β2
0(E0 ·v̂0)v̂0 + β0v̂0×B0]

mec2 γ0β2
0

. (D.14)

The particle’s velocity can be calculated directly from Eq. (D.10), which to first
order gives

v(s) = v0 +∆v (D.15)

with

∆v = s
Z0e [E0 − β2

0(E0 ·v̂0)v̂0 + β0v̂0×B0]

mec γ0β0
. (D.16)

In the tracking algorithm, the velocity is used to determine the direction vector at the
end of the step,

v̂(s) =
v0 +∆v

|v0 +∆v|
. (D.17)

Owing to the action of the electromagnetic force, the kinetic energy E of the particle
varies along the step. As the trajectory is accurate only to first order, it is not advisable
to compute the kinetic energy from the velocity of the particle. It is preferable to
calculate E(t) as

E(s) = E0 + Z0e [φ(r0)− φ(r(s))] (D.18)

where φ(r) is the electrostatic potential, E = −∇φ. Notice that this ensures energy
conservation, i.e., it gives the exact energy variation in going from the initial to the final
position.

This tracking method is valid only if
1) the fields do not change too much along the step

|E(r(s))− E(r0)|
|E(r0)|

< δE ≪ 1,
|B(r(s))−B(r0)|

|B(r0)|
< δB ≪ 1 (D.19)

and
2) the relative changes in kinetic energy and velocity (or direction of motion) are small∣∣∣∣E(s)− E0

E0

∣∣∣∣ < δE ≪ 1,
|∆v|
v0

< δv ≪ 1. (D.20)

These conditions set an upper limit on the allowed step length, smax, which depends
on the local fields and on the energy and direction of the particle. The method is ro-
bust, in the sense that it converges to the exact trajectory when the maximum allowed
step length tends to zero. In practical calculations, we shall specify the values of the
δ-parameters (which should be of the order of 0.05 or less) and consider step lengths con-
sistent with the above conditions. Thus, the smallness of the δ-parameters determines
the accuracy of the generated trajectories.

To test the accuracy of a tracking algorithm, it is useful to consider the special cases
of a uniform electric field (with B = 0) and a uniform magnetic field (with E = 0),
which admit relatively simple analytical solutions of the equations of motion.
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D.1.1 Uniform electric fields

Let us study first the case of a uniform electric field E . The equation of the trajectory
of an electron/positron that starts at t = 0 from the point r0 with velocity v0 can be
expressed in the form (adapted from Bielajew, 1988)

r(t) = r0 + tv0⊥ +
1

a

[
cosh (act)− 1 +

v0∥
c

sinh (act)
]
Ê , (D.21)

where v0∥ and v0⊥ are the components of v0 parallel and perpendicular to the direction
of the field,

v0∥ = (v0 ·Ê)Ê , v0⊥ = v0 − (v0 ·Ê)Ê (D.22)

and

a ≡ Z0eE
mec2γ0

=
Z0eE
E0

. (D.23)

The velocity of the particle is

v(t) = v0⊥ +
[
c sinh (act) + v0∥ cosh (act)

]
Ê

= v0 +
{
c sinh (act) + v0∥ [cosh (act)− 1]

}
Ê . (D.24)

Since the scalar potential for the constant field is φ(r) = −E ·r, the kinetic energy of
the particle varies with time and is given by

E(t) = E0 − Z0eE ·[r0 − r(t)] . (D.25)

Figure D.1 displays trajectories of electrons and positrons with various initial energies
and directions of motion in a uniform electric field of 511 kV/cm directed along the
positive z-axis. Particles start from the origin (r0 = 0), with initial velocity in the
xz-plane forming an angle θ with the field, i.e., v0 = (sin θ, 0, cos θ), so that the whole
trajectories lie in the xz-plane. Continuous curves represent exact trajectories obtained
from the analytical formula (D.21). The dashed curves are the results from the first-order
tracking algorithm described above [Eqs. (D.14)–(D.20)] with δE = δE = δv = 0.02. We
show three positron trajectories with initial energies of 0.1, 1 and 10 MeV, initially
moving in the direction θ = 135 deg. Three trajectories of electrons that initially move
perpendicularly to the field (θ = 90 deg) with energies of 0.2, 2 and 20 MeV are also
depicted. We see that the tracking algorithm gives quite accurate results. The error can
be further reduced, if required, by using shorter steps, i.e., smaller δ-values.

D.1.2 Uniform magnetic fields

We now consider the motion of an electron/positron, with initial position r0 and velocity
v0, in a uniform magnetic field B. Since the magnetic force is perpendicular to the
velocity, the field does not alter the energy of the particle and the speed v(t) = v0 is a
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Figure D.1: Trajectories of electrons and positrons in a uniform electric field of 511 kV/cm.

Continuous curves represent exact trajectories obtained from Eq. (D.21). The dashed lines are

obtained by using the first-order numerical tracking method described by Eqs. (D.14)–(D.20)

with δE = δE = δv = 0.02. The displayed trajectories correspond to the following cases. a:

positrons, E0 = 0.1 MeV, θ = 135 deg. b: positrons, E0 = 1 MeV, θ = 135 deg. c: positrons,

E0 = 10 MeV, θ = 135 deg. f: electrons, E0 = 0.2 MeV, θ = 90 deg. g: electrons, E0 = 2

MeV, θ = 90 deg. h: electrons, E0 = 20 MeV, θ = 90 deg.

constant of the motion. It is convenient to introduce the precession frequency vector ω,
defined by (notice the sign)

ω ≡ −Z0eB
meγc

= −Z0ecB
E0

, (D.26)

and split the velocity v into its components parallel and perpendicular to ω,

v∥ = (v·ω̂)ω̂, v⊥ = v − (v·ω̂)ω̂. (D.27)

Then, the equation of motion (D.7) becomes

dv∥

dt
= 0,

dv⊥

dt
= ω×v⊥. (D.28)

The first of these equations says that the particle moves with constant velocity v0∥ along
the direction of the magnetic field. From the second equation we see that, in the plane
perpendicular to B, the particle describes a circle with angular frequency ω and speed
v0⊥ (which is a constant of the motion). The radius of the circle is R = v0⊥/ω. That
is, the trajectory is an helix with central axis along the B direction, radius R and pitch
angle α = arctan(v0∥/v0⊥). The helix is right-handed for electrons and left-handed for
positrons (see Fig. D.2).
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Figure D.2: Trajectories of electrons and positrons in a uniform magnetic field. The two

particles start from the base plane with equal initial velocities.

In terms of the path length s = tv0, the equation of motion takes the form

r(s) = r0 +
s

v0
v0∥ +R [1− cos(s⊥/R)] (ω̂×v̂0⊥) +R sin(s⊥/R)v̂0⊥, (D.29)

where v̂0⊥ ≡ v0⊥/v0⊥ and s⊥ = sv0⊥/v0. Equivalently,

r(s) = r0 + sv̂0 −
s

v0
v0⊥ +

1

ω
[1− cos(sω/v0)] (ω̂×v0⊥) +

1

ω
sin(sω/v0)v0⊥. (D.30)

After the path length s, the particle velocity is

v(s) = v0
dr

ds
= v0 + [cos(sω/v0)− 1]v0⊥ + sin(sω/v0)(ω̂×v0⊥). (D.31)

In Fig. D.3 we compare exact trajectories of electrons and positrons in a uniform
magnetic field obtained from the analytical formula (D.30) with results from the first-
order tracking algorithm [Eqs. (D.14)-(D.20)] with δB = δE = δv = 0.02. The field
strength is 0.2 tesla. The depicted trajectories correspond to 0.5 MeV electrons (a) and
3 MeV positrons (b) that initially move in a direction forming an angle of 45 deg with
the field. We see that the numerical algorithm is quite accurate for small path lengths,
but it deteriorates rapidly for increasing s. In principle, the accuracy of the algorithm
can be improved by reducing the value of δv, i.e., the length of the step length. In
practice, however, this is not convenient because it implies a considerable increase of
numerical work, which can be easily avoided.

D.2 Exact tracking in homogeneous magnetic fields

In our first-order tracking algorithm [see Eqs. (D.14) and (D.16)], the effects of the
electric and magnetic fields are uncoupled, i.e., they can be evaluated separately. For
uniform electric fields, the algorithm offers a satisfactory solution since it usually admits
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Figure D.3: Trajectories of electrons and positrons in a uniform magnetic field of 0.2 tesla.

Continuous curves are exact trajectories calculated from Eq. (D.30). The short-dashed lines

are obtained by using the numerical tracking method described in the text with δv = 0.02.

Long-dashed curves are the results from the tracking algorithm with δv = 0.005. a: electrons,

E0 = 0.5 MeV, θ = 45 deg. b: positrons, E0 = 3 MeV, θ = 45 deg.

relatively large step lengths. In the case of uniform magnetic fields (with E = 0), the
kinetic energy is a constant of the motion and the only effective constraint on the
step length is that the change in direction |∆v|/v0 has to be small. Since the particle
trajectories on the plane perpendicular to the field B are circles and the first-order
algorithm generates each step as a parabolic segment, we need to move in sub-steps
of length much less than the radius R (i.e., δv must be given a very small value) and
this makes the calculation slow. On the other hand, the action of the uniform magnetic
field is described by simple analytical expressions [Eqs. (D.30) and (D.31)], that are
amenable for direct use in the simulation code. These arguments suggest the following
obvious modification of the tracking algorithm.

As before, we assume that the fields are essentially constant along each trajectory
step and write

r(s) = r0 + sv̂0 + (∆r)E + (∆r)B, (D.32)

where (∆r)E and (∆r)B are the displacements caused by the electric and magnetic
fields, respectively. For (∆r)E we use the first-order approximation [see Eq. (D.14)],

(∆r)E = s2
1

2

Z0e [E0 − β2
0(E0 ·v̂0)v̂0]

mec2 γ0β2
0

. (D.33)

The displacement caused by the magnetic field is evaluated using the result (D.30), i.e.,

(∆r)B = − s

v0
v0⊥ +

1

ω
[1− cos(sω/v0)] (ω̂×v0⊥) +

1

ω
sin(sω/v0)v0⊥ (D.34)
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with

ω ≡ −Z0ecB0

E0

, and v0⊥ = v0 − (v0 ·ω̂)ω̂. (D.35)

Similarly, the particle velocity along the step is expressed as

v(s) = v0 + (∆v)E + (∆v)B (D.36)

with [see Eqs. (D.16) and (D.31)]

(∆v)E = s
Z0e [E0 − β2

0(E0 ·v̂0)v̂0]

mec γ0β0
(D.37)

and
(∆v)B = [cos(sω/v0)− 1]v0⊥ + sin(sω/v0)(ω̂×v0⊥). (D.38)

In our implementation of this tracking algorithm, the allowed step lengths s are
limited by the following constraints [see Eqs. (D.19) and (D.20)]

|E(r(s))− E(r0)|
|E(r0)|

< δE ≪ 1,
|B(r(s))−B(r0)|

|B(r0)|
< δB ≪ 1 (D.39)

and ∣∣∣∣E(s)− E0

E0

∣∣∣∣ < δE ≪ 1,

∣∣(∆v)E + (∆v)B
∣∣

v0
< δv ≪ 1. (D.40)

The algorithm is robust, i.e., the accuracy of the generated trajectories increases when
the δ-parameters are reduced. In many practical cases, a good compromise between
accuracy and simulation speed is obtained by setting δE = δB = δE = δv = 0.02.
Notice that, in the case of a uniform magnetic field, the tracking algorithm is now
exact, irrespective of the step length.

This tracking algorithm has been implemented in the subroutine package penfield,
which is devised to work linked to penelope and pengeom. To simulate radiation
transport in a given field/material configuration, the user must provide the steering
main program as well as specific routines that define the EM field (see the examples and
comments in the source file penfield.f).
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Fernández-Varea J.M., R. Mayol, J. Baró and F. Salvat (1993b), “On the theory and
simulation of multiple elastic scattering of electrons”, Nucl. Instrum. Meth. B 73,
447–473.
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