REVIEW OF FISSION PRODUCT YIELDS AND DELAYED NEUTRON DATA FOR THE ACTINIDES NP-237, PU-242, AM-242M, AM-243, CM-243 AND CM-245

R.W. MILLS

School of Physics and Space Research, University of Birmingham, England

OECD/NEA Data Bank July 1990 ı. . ,

Title:

Review of fission product yields and delayed neutron data for the actinides Np-237, Pu-242, Am-242m, Am-243, Cm-243 and Cm-245.

Author:

R W Mills, School of Physics and Space Research, The University of Birmingham, B15 2TT, England. With the advice and assistance of D R Weaver of the University of Birmingham.

Abstract:

A review of fission product yields and delayed neutron data for Np-237, Pu-242, Am-242m, Am-243, Cm-243 and Cm-245 has been undertaken. Gaps in understanding and inconsistencies in existing data were identified and priority areas for further experimental, theoretical and evaluation investigation detailed.

Introduction:

Since 1982 it has been recognised that long term basic research into utilisation of high level nuclear waste by separation into individual actinides and fission products could produce many benefits. It is currently planned that the actinides be disposed of in geological formations, unseparated from the fission products. However, they could, if separated, yield a more efficient approach to the utilization of the limited world nuclear resources and the reduction of long-lived nuclear waste. Fission products from the uranium and plutonium isotopes conventionally present in nuclear fuel could be a source of noble metals to be used as catalysts in industrial chemistry, and of radionuclides for use in medicine and industry. The higher actinides, on the other hand, could be introduced into reactors as fuel. This could have dual benefits; firstly by contributing to the generation of heat, and secondly by reducing the quantities of these materials through their being fissioned. Thus they would be present in lower concentrations in the high-level nuclear waste and, as the actinides are longer lived than most of the fission products, it would reduce the time high-level waste must be monitored.

The Japanese government has decided to fund research and development in this field, through a project entitled 'OMEGA': "Options Making Extra Gains of Actinides and fission products generated in the nuclear fuel cycle".

This report was funded by the OMEGA project through the Nuclear Energy Agency (NEA). It represents a critical review of fission product yields and delayed neutron data for actinides of interest to the OMEGA project. The nuclides considered were the most important higher actinides Np-237, Pu-242, Am-242m, Am-243, Cm-243 and Cm-245. The objects of this study were the identification of gaps in understanding and inconsistencies in existing data and also to identify priority areas for further experimental, theoretical and evaluation efforts.

For fission products the open literature and available computer readable databases (CINDA and EXFOR) were scanned for chain, cumulative, independent and ternary yields. For data on delayed neutrons the quantities of interest were: total delayed neutron yields v_d , the time dependence of the neutron activity, and the delayed neutron spectra. The same sources of data were searched as for fission yields.

The search for data was restricted to neutron induced and spontaneous fission, with the energy being specified as one of the three following classes:

- Thermal neutrons: Maxwellian distributed neutrons with a mean energy of 1/40 eV.
- (2) Fast neutrons: here the definition is less precise as a fast reactor can have a wide range of average energies from a few hundred keV to several MeV, depending on the composition of the reactor. In practice, most fast reactor designs have a mean energy of about 400 keV.
- (3) High energy neutrons: these are formed around 14-16 MeV by accelerator induced reactions, and if commercial fusion becomes viable would be produced by fusion reactors.

At the moment it is felt that charged particle and photon induced fission would not produce sufficiently great reaction rates both from consideration of the appropriate cross-sections and due to the low fluxes currently obtainable from accelerators. Also it is noted that within the data extracted there were no results from the use of monoenergetic neutron beams, except for those for the third class mentioned above "High Energy Neutrons".

In the medium term only thermal and fast reactors are available, however it should be noted that, if fusion becomes commonly available, the mass and charge distribution from fission can be greatly changed by changing the energy of the neutrons causing fissions from thermal or fast to 14MeV. On one hand this may enable, by variation of neutron energy, the minimisation of fission product activity in waste or the maximisation of the production of rare radionuclides or of highly valuable stable nuclides. Several papers on actinide burning reactors were presented at the PHYSOR conference at Marseilles, France during May 1990, proceedings of which are to be published.

For thermal and fast reactors the delayed neutron component of the reactor flux is of great importance in the control and design of the reactor. As, in the future, greater concentrations of the higher actinides will be generated both through use of recycled fuels and as reactor burnups are increased, there will be increasing need for their delayed neutron data in order to predict reactor kinetics, a procedure that had not, until recently, been attempted without the use of greatly simplified models (private communication, M.Brady, ORNL). In fusion reactors, on the other hand, the difference in the typical energies of delayed neutrons and those from fusion, plus the need to place the actinides outside the reactor core make it unlikely that delayed neutrons from actinides would have any major effects.

Fission Yields:

Fission yields are reported in 3 types:

(i) The independent yield, Yi(A,Z,I), is the yield of a particular nuclide of mass A, charge Z and isomeric state I produced directly from fission.

(ii) The cumulative yield Yc is the yield of a nuclide (A,Z,I) over all time, i.e. Yc is the independent yield for (A,Z,I) plus all the contributions from (A',Z',I') decaying into (A,Z,I) when

multiplied by the appropriate decay branching fractions; these can be beta decays down the mass chains, but also the results of delayed neutron emission. Thus cumulative yields can be derived from independent yields by use of the decay data branching ratios and knowledge of the nature of the decays. Towards the end of the decay chain, where Yi(A,Z,I) is very small compared with Yc(A,Z,I), the yield is called the chain yield. It should be noted, however, that the more correct definition of the chain yield is the sum of all Yc for all stable nuclides of mass A; this takes account of chains where there are intermediate stable nuclei.

(iii) The third type of yield is the ternary yield; this is the cumulative yield of a light charged particle, e.g. 4He, 3H, 14C etc, which is well below the main double peak distribution.

Fission fragment yield measurements are available in the literature but can only be used for practical purposes if the fission fragments are summed over ionic charge and fragment energy as there can be considerable structure in the ionic charge and energy distributions.

The two main uses of fission product yields are (i) the determination of fission product inventories (in reactors or in spent fuel) for reprocessing or safety studies, and (ii) the calculation of decay heat (beta and gamma activities as well as thermal emission) for shielding and safety studies.

There are 3 methods of reporting fission product yields: absolute, relative and 'ratio of ratio' (sometimes known as R-value). In the absolute method the yield is given as a fraction with respect to the total number of fissions. For the relative method the yield is given relative to the yield of another 'reference' fission product. The 'ratio of ratio' method is more complicated; here the ratio of the measured product to the reference is divided by the same ratio of the measured product to reference product but either in a different target material or in the same target at some different incident irradiation energy. In order to compare yields, data from the last two types must be converted to absolute form using measured or estimated yields.

Literature search.

The primary source of references for this work was the CINDA database at the NEA Data Bank at Saclay, France. This was supplemented by the Crouch(1977), Rider(1980) and Mills(1990) reference databases, and a preliminary version of Rider(1990). Also a scan was made of the EXFOR database for appropriate data. For each fissile nuclide of interest the reference is given in tables 1-7 in the standard CINDA format. References from a single experiments or a continuous strand of work are 'blocked' together, each block is assigned a reference number used in this report, the reference abbreviations used in this report are the standard notation from CINDA, except where otherwise stated.

Statistical treatment of data.

For each fissioning system the data were first converted to absolute values, then the weighted mean was calculated along with internal and external consistency errors and a χ^2 test applied to test for a normal distribution of the data. If a set of measurements of a quantity are described by a set of x_i with experimental variances σ_i^2 and a total of n measurements; then

Weighted mean,
$$\bar{x} = \sum_{i=1}^{n} x_i / W$$
, where $W = \sum_{i=1}^{n} w_i$ and $w_i = 1/\sigma_i^2$

Internal consistency error
$$-\int_{1}^{1}W$$

External consistency error =
$$\sqrt{\sum_{i=1}^{n} \frac{w_i (x_i - \bar{x})^2}{W(n-1)}}$$

$$x^{2} = \sum_{j=1}^{p} w_{j} (x_{j} - \overline{x}) ...$$

with (n - 1) degrees of freedom.

Detailed treatment of fission product references.

<u>Np-237</u>

For Np-237 there exists data for thermal, fast and 14MeV neutron induced fission. The references are shown in table 1.

Thermal.

YE09, Tracy et al, measured Kr and Xe isotopes relative to Kr-86 and Xe-132, using mass spectrometry. An estimate of Kr-86 and Xe-132 were produced by interpolation of YE45 chain yield measurements, which were used to convert the relative measurements to absolute values.

YE45, Jacobs et al, measured 32 chain yields and 2 fraction independent yields by gamma spectrometry of catcher foils.

YE47. Wageman et al, measured the absolute He-4 yield by detection of the energetic He-4 particles from fission.

Fast

YE07, Waldo et al, measured delayed neutron activity against time and by associating two of the 6 groups with sole components from I-137 and Br-87 calculated the cumulative yield from the Pn values, I have renormalised the yields using the more recent Lund and Rudstam NFL-60 (1989) Pn evaluation and adding the errors in quadrature. It should be noted that other delayed neutron emitters will add components to these 2 groups, however these should be negligible for the Br-87 group. For the I-137 group this may not be negligible.

YE09, Tracy et al, measured cumulative yields of Xe and Kr relative to Xe-132 and Kr-86, these were converted to cumulative yields using values of the standards from the table, in Appendix A.

YE34, Namboodiri et al, measured 26 cumulative yields using radiochemical techniques.

YE35, Stella et al, measured 18 cumulative yields relative to Ba-140 (assumed = 6.35); these were renormalised using an updated estimate of 5.899 %/fission from this work. An earlier work by Katcoff (Nucleonics 18, 201 [1960]) was used to convert the ratio of ratio R-value measured to a simpler relative value. For completeness the relative values can be converted back to the R-values (which were not published) and then reconverted using the latest evaluation.

YE36, Ramaswami et al, measured the fractional cumulative yield of 3 nuclides by radiochemical methods.

YE37, Petrzhak et al, measured 4 Xe yields by mass spectrometry. No experimental uncertainties were given and thus a 15% uncertainty was assumed. The yields were converted using the Xe-134 yield.

YE41, Gudkov et al, measured 29 cumulative yields and 2 fractional cumulative yields, by analysis of decay gamma spectra.

YE43, Dudley et al, measured 3 fission product cumulative yields using measurements of sample gamma spectra by 3 laboratories of irradiated samples and taking the average.

YE46, D'Hondt et al, measured the He-4 ternary fission yield by detection of He-4 particles.

YE52, Weshsler and Mc Elroy et al, measured absolutely 2 standard yields: Ba-140 and Cs-137 by radiochemistry. As no experimental uncertainties were given 15% was assumed, being a justifiable accuracy for the radiochemical techniques available in the late 1960's and early 1970's.

YE57, Chapman et al, used isotope dilution mass spectrometry and gamma spectrometry to measure the Ba-140 cumulative yield.

YE58, Koch, used isotope dilution mass spectrometry and gamma spectrometry to measure 28 chain yields in the high mass peak. No errors are given so 20% is assumed as a reasonable estimate.

YE59, Maeck used mass spectrometry to measure 43 chain yields in 2 neutron spectra, with average energies of 250keV and 485 keV. As the differences are within 2 standard deviations (most within 1) both datasets have been included in the fast fission cumulative yield tables.

YE61 Kirouac et al, using a Cf-252 neutron source, measured 5 chain yields. The data were taken from the EXFOR entry. Gamma spectrometry was used to determine the yields.

YE63, Ford et al, used radiochemical methods to measure ratio of ratio R-values for 14 fission products relative to U-235 thermal using Mo-99 as the standard. The values were converted to absolute cumulative yields using data from the current UK evaluation, UKFY2, for U-235 thermal values (reference 1). Nuclides with multiple determinations were weighted averaged before conversion.

YE65, Oldham et al, measured the Ba-140 cumulative yield using gamma ray spectrometry of a radiochemically separated sample.

YE66, Gilliam et al, measured by gamma ray spectrometry 5 fission product cumulative yields.

YE67, Kelloge et al, measured 3 important standard nuclides relative to Cs-137, these were converted using the Cs-137 value in Appendix A of this report.

YE71, Cottone et al, measured 12 cumulative yields by isotope dilution mass spectrometry and gamma ray spectrometry.

YE75, Blachot et al, reports the Cs-136 cumulative yield, this is also the independent Cs-136 yield as this nuclide is shielded.

YE83. Ferrieu reports 36 cumulative yields measured by radiochemistry and gamma ray spectrometry. As the original reference was unobtainable the data was taken from the 1980 Rider database, from a copy held at the NEA databank, Paris.

High energy.

YE33, Coleman et al, measured 19 fission product yields radiochemically.

YE37, Petrzhak et al, measured the relative yields of 4 Xe isotopes, using mass spectrometry, relative to the Xe-132 yield. I converted these to absolute cumulative yields by assuming the Te-132 yield is about equal to the Xe-132 yield because both are near the end of the 132 chain.

YE42, Adamov et al, measures the He-4 yield relative to thermal U-235, which was converted to absolute using the current UK evaluation. Also the H-1 and H-3 yields which were measured relative to He-4 were converted using the this absolute He-4 yield from value in Appendix A.

Discussion:

Np-237 is the most measured of the nuclides requested with, for the most important neutron energy i.e. fast fission, good coverage of chain yields. Discrepancies exist for Kr-85, Sr-92, Sr-89, Zr-95, Zr-97, Ru-103, Sb-127, Te-132, Xe-135, Xe-131, Ce-141, Ce-148, Ce-144, Nd-147, Nd-149 and 154-Chain yield. These discrepancies do not seem to be due to any work being wholly erroneous; rather, single measurements are discrepant or have measured values over a wide range of values (much greater than the standard deviations would suggest).

Very little fractional cumulative and independent data exists, however.

<u>Pu-242</u>

There are 8 reference blocks with data, as shown in table 2.

Spontaneous.

YE17, Nobles, measured the long range particles from fission, greater than 97% being He-4, using a multiple ionisation chamber.

YE22, Ganapathy and Kuroda, measured the cumulative yields of I isotopes relative to I-131. As no absolute measurements of I-131 have been measured the data could not be converted without making assumptions about this yield. Thus as this yield is expected to be significantly less than the chain yield, no attempt has been made to produce a value in this report.

Fast.

YE07, Waldo et al, using the same adjustment of Pn values as referred to under Np237, determined the cumulative yields of Br-87 and I-137.

YE20, Gudkov et al, measured 29 cumulative yields by gamma ray spectrometry.

YE57, Chapman et al, measured the Ba-136 cumulative yield using chemical separation and isotope dilution mass spectrometry.

YE58, Koch et al, measured 28 chain yields by isotope dilution mass spectrometry and gamma spectrometry. As no errors are given, 20% is assumed.

YE59, Maeck, measured 43 chain yields for a filtered neutron spectrum with a mean energy of 400keV.

High.

YE18, Winkelmann et al, measured 65 cumulative yields using a (d,T) neutron source with a mean energy of 15.1 + 0.7 MeV. 43 of these cumulative yields are close enough to the end of the chains to be assumed as equivalent to chain yields. Radiochemical methods were used for Pd, Ag, Cd, Sn, Sb and Ce, with β - and gamma spectrometry. Others nuclides were measured by gamma spectrometry alone.

Discussion:

Again the chain yield distribution is well mapped out, although far from complete. However, very little data exists to determine charge distribution and hence independent yields. Also there are discrepancies for the chain yields of masses 133 and 135.

<u>Am-242m</u>

The references, shown in table 5, show 9 reference blocks.

Thermal.

YE01 Weinlaender et al, gives no usable data.

YE02 Gudkov et al, measured 32 thermal neutron induced cumulative yields of Am-242m relative to the Zr-97 cumulative yield and 4 fractional independent yields. The data was taken from the EXFOR entry. A value of 4.5 + 0.3 %/fission was assumed in the paper; this differs from the value in YE06, which used an assumption for the Ba-140 yield. As there are no Ba-140 or Zr-97 yields measured I have not renormalised these values, see YE06 for further discussion below.

YE03 Vorob'en et al, report ternary yields relative to the alpha yield for thermal neutron fission. The measurements were made using a mass spectrometer. As no measured alpha yield has been reported in the literature I have not converted these to absolute values.

YE05 Ford et al, report the fractional independent yields of Xe-133 and Xe-135 isomers for the thermal induced fission. The radiochemical samples were radiochemically separated before measurement of decay gamma activities.

YE06 Wolfsberg et al, measured the ratio of ratio R-value cumulative yield for 36 fission product nuclides and 1 independent yield: Cs-136 (a shielded nuclide). The measurements were made by radiochemical procedures. The values were converted to absolute values using thermal U-235 values from Mills et al (reference 1) and the Ba-140 values from YE02. The calculated Zr-97 value is 3.6 which is significantly different from the assumed 4.5 + 0.3 %/fission in YE02. The values in YE02 values were measured relative are to the Zr-97 value. Now the YE06 values used the Ba-140 value as a standard (which can be related to Zr-97 from YE02's Ba-140/Zr-97 ratio). Thus the YE06 values are inversely proportional to the value assumed for Zr-97 in YE02. Hence if the Zr-97 value assumed with the YE02 data is adjusted, the effect will be to alter the Zr-97 value predicted by YE06. This process can be continued until both Zr-97 values coincide. Alternatively, the adjustment can be arranged so that a more global agreement between the values for several fission products from the two experiments is achieved. However, it would be preferable to have absolute measurements of these two cumulative yield standards, as a simple renormalisation must assume no systematic errors in the experimental measurement of the 2 standards. Another method of renormalisation would be to fit the two datasets to a chain yield

model (i.e. the 5 Gaussian model), not constraining the summation of the 2 peaks to equal 200 %/fission. Then the values of the standards can be calculated which ensures a summation equal to 200 %/fission, although again this assumes no systematic errors.

YE09, Tracy et al, measured the relative cumulative yields of Kr and Xe isotopes relative to Kr-84 and Xe-132 in thermal neutron induced fission. To normalise the values to absolute yields as Kr-84 and Xe-134 were not measured, the cumulative yields of Br-84 and I-132 (0.321 + 0.05 and 5.11 + 0.4) were used because the independent yields of Kr-84 and Xe-132 are negligible compared to the cumulative yields and thus approximately equal to the chain yield (calculating the fractional independent yields using a simple Zp model with a Gaussian width of 0.6 and assuming the unchanged charge distribution to calculate the most probable Z value in the 2 mass chains).

YE38 Rao et al, gives no data in this paper.

YE72 Fontenla et al, gives no useful fission product yield data in this paper.

Fast.

YE07 Waldo et al, measured the delayed neutron emissions after neutron irradiation with fast neutrons, removing the thermal component with sufficient completeness to avoid the effects of thermal neutron fission. From the dependence of the neutron activity to the 6 group temporal model, and assuming two groups as being from Br-87 and I-137 only, the group strengths were fitted and, by knowing the Pns (the delayed neutron branching ratios), the cumulative yields were calculated. The assumption that the two groups were dominated by single precursors is probably correct to the accuracy quoted for Br-87, although this is less clear for I-137.

The Pns used to renormalise the results are those which have been re-evaluated by Lund and Rudstam (NFL60, 1989).

At the present time this reference, YE07, is the only fast fission measurements available.

Discussion.

Am-242m fast neutron fission has very few measurements: only 2 cumulative yields. Thus to produce accurate predictions more measurements are required.

Am-242m thermal neutron fission has cumulative yield measurements for 70% of the total mass distribution, ternary yields relative to the alpha yield (but no actual alpha yield measurements), and 10 fractional independent yields.

It would be desirable to have measurements of absolute cumulative yields of Ba-140, Zr-97, Te-132 and I-135 in order to resolve discrepancies. Also more independent yields are needed in order to derive charge distribution parameters.

<u>Am-243</u>

The references, shown in table 3, from CINDA show 5 reference blocks.

Thermal.

YE8 Caitucoli et al, gives no data.

YE12 Asghar et al, gives no useable fission product yields only statistical fission fragment data.

YE78 Deruytter et al, refer to measurements of He-4 ternary yield, but have yet to publish a value.

Fast.

The work of Gusev in YK 1988 1 24 was unobtainable, but its CINDA comment suggests the work measures ternary yields of Li and Be between 1 and 10 MeV neutron energy.

YE11 Dickens et al, gives cumulative yields for several fission products in many fissioning systems, however problems in the experiment makes it inadvisable to use the data given in this report directly. Dickens published a paper in NSE 96 8 which extracted usable data from ORNL-6266 (for further details see the comments in Rider on reference 86DIC2). As Am243 was not included in the NSE paper these Am measurements should be ignored unless corrections can be applied. (See under Cm-243 below)

Discussion. .

As yet no reliable fission product yield data exists for Am-243.

<u>Cm-243</u>

There are 3 reference blocks for Cm-243 fission product yields, as shown in table 4.

Thermal.

YE10 Dickens et al, measures 77 cumulative yields and 1 shielded nuclide: Cs-136 (i.e. no parent decays to this daughter and thus the cumulative yield is equal to the independent yield). The measurements were made using a 75ng sample of Cm-243 enriched to >99%; the yields were measured using the decay gammas from the fission products (7 were determined by multiple gamma lines).

YE64 Merriman et al, measures 12 fission product yields (Tc-105 being measured by 2 gamma lines), from thermal fission by measurements of decay gamma rays from a 77 ng sample of Cm-243.

Fast

YE11 Dickens et al, see notes on this reference under Am-243, only used yields published in NSE 96 8 (1987). These 4 cumulative yields are measured relative to Cs-137, but as no measurements of this exist for Cm-243 fast fission the value estimated by an empirical interpolation model in NSE 96 8 (1987) is used to normalise the yields to absolute values.

Discussion.

No ternary yields have been measured for neutron fission of Cm-243. Only 1 independent yield has been measured, this being the shielded Cs-136 from thermal fission. Cumulative yields for thermal fission have been the most measured results, and only 4 fast measurements exist. There are discrepancies between YE10 and YE11 for Tc-105 and Tc-106, which requires further investigation. For fast cumulative yields, the 4 measured fission product yields are a slim dataset on which to base models. It would be preferable to have Cs-137 measurements and a more extensive list of measured yields.

<u>Cm-245</u>

Thermal.

YE23, Troutner and Harbour, measured 2 fractional cumulative yields, Te-132 and Te-134, by radiochemical separation and gamma spectrometry.

YE24, Harbour et al, measured the fractional independent yield of Xe-135 and 21 cumulative yields by gamma spectrometry.

YE25, Ramaswami et al, measured ratio of ratio R-values. These were converted using the Mo-99 standard as 4.1076 + 0.02 from other references in this work and cumulative yields of U-235 thermal from the current UK evaluation (UKFY2). The measurements were made by gamma spectrometry and gamma counting of radiochemical separated nuclides.

YE26, Ramaswami, measured 14 cumulative yields by decay gamma spectrometry, using track etching to determine the number of fissions.

YE28, Von Gunten et al, measured the independent yield of 2 shielded nuclides and 38 cumulative yields (in 34 mass chains), by radiochemical separation, beta counting and NaI gamma spectrometry.

YE30, Dickens and McConnell measured 1 shielded nuclide (Cs-136) and 94 cumulative yield (using 105 gamma lines) by gamma ray spectrometry. Full data were given in the paper so that corrections to the gamma line data could be used to correct the yields, if an improved set of gamma line data becomes available.

YE31, Naik et al, measured the independent isomeric ratio Yi(meta)/(Yi(meta)+Yi(ground)) of I-132 by radiochemical separation and gamma ray spectrometry.

YE80, Manohar et al, measured fractional cumulative yields of I-135, I-140 and Mo-99 by gamma spectrometry of catcher foils.

Fast.

YE07, Waldo et al, measured the cumulative yields of Br-87 and I-137. The adjustment described under NP237 was applied to this data.

Discussion.

As with Cm-243 only a few cumulative yields have been measured for fast fission, although the thermal fission cumulative yields have been well mapped, although not completely. Again very little data on the independent yield distribution exists.

Models and fitting of data.

For even the best measured system some filling of gaps is required, particularly in the charge (independent yield) distribution. For the systems of interest these procedures are the only method of producing complete chain and independent yield sets, due to the sparsity of the available data. For the production of datasets for practical use, independent yields are required (cumulative yields being calculated from the independent yield and decay data). Currently, there are 2 acceptable models for fractional independent yields, these being Wahl's Ap' and Zp models, described in reference 2. In this paper Wahl describes the fitting of data for several important fissioning fuels; he extended this in reference 3 where he attempted to find trends in the derived parameters to allow extrapolation to other systems. It should be noted that these models are empirical, assuming distributions to be basically Gaussian, with some physical constraints from conservation laws and correction applied.

However, Wahl's models do require mass yields to convert the fractional independent yields to useable absolute yields. Therefore, even with the thermal fission of U-235, predictions have to be made for missing chain yields/ There are four prediction methods applied to chain yields. The first is interpolation and extrapolation of the graph of ln (Chain yield) vs mass, usually by using straight lines between points and a constant slope at the extremes of the distribution. The second is interpolation and extrapolation of the ln (Chain yield) vs fissioning mass (mass of compound nucleus); this gives good agreement for some masses and allows extrapolation to systems where no measurements are available or practical to make. However, it does not give good agreement for all required masses. The third method is the 5 Gaussian model of Muserove et al (reference 4); here the double-humped mass distribution is approximated by 5 Gaussians (2 for each peak plus a central Gaussian to fill in the valley region).' The requirements of conservation laws which can be applied to the model, reduce from 15 to 8 the number of parameters required. Mills et al (Washington 1989, reference 5) attempted fitting for the most populous systems, and extrapolation of trends in these to produce a general predictive technique for all systems with insufficient measurements to fit to the model. More recently they have suggested a renormalisation technique to force the model predictions to be constrainted to the experimental data; this work is to be published as a UK Atomic Energy Authority report during 1990 (reference 1).

Data libraries currently available for systems of interest.

The evaluation of experimental data and production of computer readable fission product data libraries started in the 1960's. However, the 3 current evaluations are those of the Japanese, the United Kingdom, and the United States (currently JENDL-3, UKFY2 and ENDF-6 [expected late 1990]). There are also evaluation efforts in France, China and the USSR. The fissioning systems currently available are :

Data available (T-thermal, F- fast, H- High energy, S - Spontaneous)

	Np237	Pu242	1	AM242m	1	AM243	1	Cm243		Cm245	1
ENDF-6	FH(T)	(TH)F	1	Т	I	F	1	(TF)	1	Т	1
JENDL-3	F	F	Í		1		1		1		ł
UKFY2	TF	F	1	TF	1	TF	1	TF	1	TF	1

() are fissioning systems funded by the Japan/US Actinides Program, supported in part by JAERI.

It is planned that the UK evaluations will be compared with the US and other available files at the end of 1990 (when ENDF-6 is finalised) under the UK's current data evaluation program (reference 1).

The UK evaluation UKFY2 is available either from the authors or the NEA Data Bank at Saciay. Also the UKFY2 evaluation has been submitted to the JEF2 committee and was adopted for the JEF2 file.

Delayed Neutrons,

Delayed neutrons are produced following β decay of fission products, when a nucleus is left with sufficient excitation energy to throw off its most loosely bound neutron; this process removes a fraction of the decay along the initial β decay chain and instead feeds the A-1 decay chain. This effect is small in most mass chains for most fissioning systems. Despite this contribution being small relative to the overall neutron economy of a thermal or fast reactor, it is an important stabilising influence because it causes the effective neutron lifetime to be increased very significantly.

As the delayed neutron emission is governed purely by the decay of nuclides it depends upon the fission yields and the decay data (branching ratios and half-lives). It is possible to calculate the total delayed neutron activity, v_d , the behaviour of neutron activity with time, and (using the spectra of delayed neutrons from individual precursors) the total delayed neutron spectrum. The v_d can be calculated from the summation of the Cumulative yield multiplied by the delayed branching ratio, Pn, for each nuclide produced. The behaviour of neutron activity with time is more complicated as the rate of decay of each nuclide must be multiplied by the Pn values; this entails doing a inventory calculation of the fission products, and the results will depend on the system and the time of irradiation. A simplification of this is the Keepin 6 group model. This assumes that an infinitely short irradiation will lead to delayed neutron emission represented by the summation of 6 exponential decays. This crude model has not been amended significantly since 1956, although attempts at other numbers of exponential decays have been tried. From these 6 group parameters the reactor kinetics parameter β_{eff} can be calculated. Until recently no attempt was made to calculate β_{eff} from the fission yields and decay data because of the lack of basic data and the complexity of the calculation, however a simple GODIVA core has now been modelled (reference 6). However, the delayed neutron reactor kinetics parameters have not yet been calculated (believably) from the basic data for more complicated cores and reactor histories. The delayed neutron spectrum, which is not a fission spectrum, could affect the kinetic behaviour and fission rate of a reactor, although this has yet to be quantified. The v_d values have been calculated by several groups in France, Japan, Sweden and the UK. However, the calculation of v_{d} , neutron emission with time, and spectra has only been calculated by M.Brady (Oak Ridge, ORNL) for the nuclides of interest to this report.

As well as direct calculation, empirical models have been used in the past and are still used to estimate the v_d for fissioning systems. The most recently published evaluation by Tuttle (reference 7 and 8) fitted ln (v_d) against (Ac-3Z) β_c/Z where Ac is the mass of the compound nucleus).

Experimental delayed neutron data references.

NE1, Waldo et al, measured the v_d and the 6 group model parameters for fast fission, using a highly filtered neutron beam. The work measured Np237, Pu242, Am242m and Cm245. However the 400ms delay between irradiation and counting made determination of the shorter lived groups impractical, as is shown by the larger percentage uncertainties and the need to assume a value for the 6th group decay constant.

NE2, Maksjutenko et al, measured Np237 delayed neutrons using monoenergetic neutrons between 0.4 and 1.2 MeV in 0.1 MeV steps. The Keepin decay constants are assumed and the group strengths are measured relative to group 1. The 6 second delay between irradiation and counting made determination of group 5 and 6 unrealistic.

NE3, Benedetti et al, measured Np237 fast delayed neutron activity (v_d and 6 group parameters). The 600ms irradiation to measurement time made group 6 measurement unreliable for calculation of group 6 parameters.

NE5, Krick and Evans, measured the v_d value at 4 neutron energies between 0.64 and 1.25 MeV for Pu242. The technique used had a 10ms delay between irradiation and counting, a 50ms counting period and a 40 ms irradiation. As all the measurements lay within the standard deviations of each other the average of 1.5 + 0.5 per 100 fissions was assumed as the fast neutron fission value.

NE6, East et al, measured the delayed neutron activity with time for Pu242 assuming the 6 group model when using high energy neutrons from an accelerator. Both the normalised group yields and decay constants were measured, but the v_d value was not measured.

NE7, Gudkov et al, measured Np237 with a fast neutron spectrum. The time from irradiation to counting was 0.8s. No uncertainties were estimated on the decay constants. The 6th group was calculated as the delay before counting made measurement of this group unrealistic.

As shown in table 7 references for delayed neutron data in the systems of interest are sparse, mostly being Np237. The experimental v_d values are shown in table 8. Comparison of the 6 group parameters is difficult, as this is an empirical model with no theoretical justification (the only true model would have 1 group for each delayed neutron precursor). Therefore, comparison is only possible if the original decay with time is published with error bars or the full covariance matrix and x^2 of the fitting is given allowing calculation of the error bars. Although it is possible to produce graphs of delayed neutron emission with time after a fission pulse for the different sets of parameters, without corresponding information on the uncertainties the significance of discrepancies cannot be assessed.

Summation calculations,

As summation calculations depend upon fission yields, Pn values, and half-lives only the most recent data from publications is compared from the different groups. It should be noted that the work of Brady and England in the US are the most complete and current results including v_d , 6 group parameters and delayed neutron spectra.

NC1, Brady and England, have used a preliminary version of ENDF-6 with Brady's database of 271 Pn values, half-life values and precursor spectra. Gaps have been filled by models, where necessary, to generate v_d , 6 group parameters, and delayed neutron spectra. Results are available for Np-237(FH), Pu-242(F), Am-242m(T), Am-243(F) and Cm-245(T); a recent addition to the fission yields in ENDF-6 will add Np-237(T), Pu-242(TH) and Cm-243(TF) in the near future.

NC2, Tachibana et al, used the Japanese nuclear data committee file version 2 for fission yields and Pn values from several sources to calculate the v_d value (without uncertainties), therefore uncertainties of 0.5 per 100 fissions was assumed in this report. I include in this report only the calculations using the JNDC-2 Pns.

NC3, Rudstam used ENDF-5 and his own half-life and Pn values for 67 precursors to generate v_d and 6 group parameters. It should be noted that for U-235 he also calculated the delayed neutron spectra.

NC4, James et al, calculated v_d values for Np-237(TF), Pu-242(F), Am-242m(TF), Am-243(TF), Cm-243(TF) and Cm-245(TF). The Pn values were taken from a Pn evaluation of Lund and Rudstam (1989) NFL-60, with gaps filled by a private communication from Klapdor (1989, March) and the 1986 Mann evaluation published in the proceedings of the Birmingham meeting in the UK (1986).

The results for v_d are shown in table 9 with the weighted means of the experimental results from table 8. It should be noted that the summation results still disagree with experiments even for some of the more common nuclides, eg U-238, and thus these results should be used with care. However, the most recent NC01 and NC04 results do tend to follow the experimental results.

Comparison of experimental summation and empirical results of ν_d .

To compare the experimental results with previous evaluations, the new data are plotted with the data from Tuttle (reference 7) in figure 1. The new data for Np-237 of Benedetti deviates from the straight line model of v_d against -[Ac - SZ]Ac/Z, when viewed from the rather small experimental uncertainty quoted by Benedetti. However, the Waldo results all lie within one standard deviation of Tuttle's model. To simplify comparison, figure 2 shows the Tuttle prediction with the new data only.

Figure 3 compares the Tuttle model and the summation calculation, in a similar manner to figure 2; the Tuttle prediction is plotted with the NCO1 and NCO4 results and again there is approximate agreement. However, it can be seen from figures 2 and 3 that there is a slight trend for the experimental results to agree better with the summation results rather than with the Tuttle model.

Therefore, I suggest that where experimental results are reported these should be used. If there are no experimental measurements the summation results should be used. Finally, if no summation results are reported, the Tuttle model should be used. For experimental results the weighted mean should be used along with the larger of the internal and external standard deviations. For summation calculations, I would recommend the NC01 and NC04 results as they are the most recent and use the two most complete fission yield evaluations to date. However, comparison of NC01 and NC04 shows definite differences and neither of these 2 sets of results are systematically closer to the experimental values than the other.

For the time dependence of the neutron activity, there are several references in table 7. However, in most of these the group decay constants and strengths are fitted with constraints, either the decay constants are assumed (usually to the Keepin values) or assumptions are made for the shorter lived group strengths. The most complete fitting of the six group value has been that in NC01, which employed the results from inventory calculations, and made no assumptions about any of the group parameters. In practice, if no unconstrained 6 group parameters exist, the Brady and England NC01 results should be used, until better data becomes available. For delayed neutron spectra the only published results for the nuclides under study are the predictions of Brady and England made for ENDF/6 and these should be used until better data becomes available.

Fission yields.

The datasets for Np-237F, Pu-242F, Am-242mT, Cm-243T and Cm-245T have a good enough coverage of chain yields that the predictive models, interpolations and extrapolations described above will give a good estimate of values in the remaining gaps in the total chain yield distribution. Of the remaining reactions understudy, some have no experimental results at all, while the rest are only poorly defined. Appendix A lists cases where there are at least some data, but systems which have no published chain yield data are not mentioned in the tables. Clearly filling of gaps or estimating of the whole chain yield distribution is much less certain than if there is good coverage from experimental results.

There is need for new measurements of chain yields both to confirm previous results and to fill gaps in the unmeasured regions. New work should concentrate on those nuclides whose fission rates are highest for what are considered reasonable estimates of typical fuel composition in reactors of interest.

There is little data available for fractional independent yields of the nuclides under study. However, if it is required that complete yield sets be produced, then it is desirable to have some experimental values so as to be able to determine the appropriate model parameters. Thus, if large enough samples of these materials can be produced, the relatively new mass separators would be advantageous for new measurements because they allow the measurement of many independent yields without complicated and time consuming chemical separations. Examples of these mass separators are Lohengrin and Hiawatha.

Until now, only empirical models have been used for the modelling of fission yields; it would be useful to investigate whether nuclear physics theory of fission can provide a deeper insight into the processes involved and hence the form of equations which might be used to represent fission product emission.

Delayed neutron data.

Delayed neutron measurements are difficult to make accurately, and considering the small amount of data currently available, more measurements are required both of v_d , the time dependence (allowing all parameters to vary and using a full covariance analysis), and measurement of spectra.

However, in the short and medium term, improvements in fission yields and decay data for the summation methods would in my opinion produce a greater improvement in the data. This would have to be followed up by experimental measurements, however, to confirm the results, because at present, the charge distributions for fission in these nuclides are produced by extrapolation from the charge distribution model parameters for better characterised systems. Thus the predicted charge distributions are uncertain and hence, as these distributions are very important in determining the delayed neutron precursor formation, so are the delayed neutron emission characteristics.

Acknowledgements,

I would like to thank the following for helping me in this work, Dr C Nordborg, Dr S Webster, Dr M Lammer, Dr V McLane, Dr M Brady, Mr M F James and the staff of the NEA Data Bank.

References:

1. R W Mills, M F James and D R Weaver, United Kingdom Atomic Energy Establishment (Winfrith) Report. "A new evaluation of fission product yields and the production of a new library (UKFY2) of independent and cumulative yields", this will be published during 1990 in 4 parts.

2. A Wahl, Atomic and Nuclear Data Tables, 39, 1 (1988).

3. A Wahl, Proc. of the "50 Years with Nuclear Fission" meeting at NIST Washington DC, page 525. (1989).

4. A R Musgrove, J L Cook and G D Trimble, Proc. Panel Fission Product Nuclear Data, Bologna, IAEA-169, 2, 163-200 (1973).

5. R W Mills et al, Proc. of the "50 Years with Nuclear Fission" meeting at NIST Washington DC, page 471. (1989).

6. M C Brady "Evalation and application of delayed neutron precursor data", Thesis published as Los Alamos report LA-11534-T.

7. R J Tuttle 'Delayed neutron yields in nuclear fission' Proc. consultants' meeting on delayed neutrons properties, Vienna, 26-30 March 1979.

8. R J Tuttle, Nucl. Sci. Eng. 56, 37 (1975).

Figure 1: Results from Tuttle 1979 evaluation and New data.

Figure 2: Prediction from Tuttle 1979 model and New data.

Figure 3: Prediction from Tuttle 1979 model and Summation data.

References for Np237 fission yields (from CINDA).

Ref element Q	lab cou A blk serial H W	Emin Emax	reference da	te comments
¥233 P'93 NP 237 NFY	ALD UK 2 150 638025 3 E	1.5+7	J JIN 14 8 60	00 Coleman+ MASS YLD CURVE GIVEN
¥265 P 93 NP 237 NF¥ ¥265 [Ridor 72LAR1	ANL USA 1 772 325375 5 E]	FAST	P ANL-7879 72	05 Larson+ YLD 140BA.
YE43 P 93 NP 237 NFY YE43 (Rider 75DUD1	ANL USA 1 775 325757 3 E	FAST	J NT 25 294 75	02 Dudey+ ILRR RESULTS. EMC, CUN YLDS.
YE04 U 93 NP 237 NFY YE04 U 93 NP 237 NFY YE04 U 93 NP 237 NFY YE04 U 93 NP 237 NFY	MHG USA 1 784 311323 5 E ANL USA 1 781 303752 5 E MHG USA 1 780 301563 5 E	1.4+7 2.6+5 9.6+5 NDG	R DOE-NDC-33 126 84 P DOE-NDC-24 101 81 P DOE-NDC-19 109 80	04 Agrawal+ PF. ANG DIST. NDG. 04 Grady+ANL,HHG LABS.TBD.NDG. 05 Grady+ANISOTROPY MEAS TBD.NDG.
YE8 P 93 NP 237 NFY YE8 P 93 NP 237 NFY	GRE FR 2 153 767860 1 E Bor FR 2 150 759729 3 E	2.5-2 Махи	C 855ANTA 1 333 85 P NEANDC(E)-242 83	05 Caitucoli+ GRPH, YLD. 00 Caitucoli+EVEN-ODD AND SHELL EFFECT
YE68 P 93 NP 237 NFT	BOR FR 2 151 759737 3 E	5.0+5 6.0+6	P NEANDC(E)-242 83	00 Doan+ ENERGY CORRELATION STUDY
¥E69 P 93 NP 237 NFT	BOR FR 2 152 759739 3 B	1.0+6	P NEANDC(E)-242 83	00 Benfoughal+FINE STRUCTURE STUDY
¥E70 P 93 NP 237 NF¥	BOR PR 2 153 772343 5 B	NDG	P NEANDC(E)-262 85	12 Martinez+Double CAPTURE REACTION
YE48 P 93 NP 237 NFY	FEI CCP 4 001 574643 3 E	MAXW 1.6+7	C 69VIENNA 923 69	07 Vorob'eva+PPR133. FRAG YLD+E(NEUT-E)
YE40 U 93 NP 237 NFY	FEI CCP 4 002 574175 2 E	7.0+5 5.4+6	J YF 11 297 70	62 Kug'minov+ TIELD(FRAG-A)GRPH AT 8 ES
YE40 P 93 NP 237 NPY	PEI CCP 4 002 5/41/8 3 E PEI CCP 4 002 636592 6 E	8.0+5 2.2+6	4 EXFOR40172. 73	11 .5 SUBENT FOR 5 ES,EACH 41 LINES
YE41 0 93 NP 237 NFY YE41 P 93 NP 237 NFY	FEI CCP 4 482 768569 6 E	FAST Fast	4 EXFOR40677.002 84	03 GUAROVE CURUL ILD FOR 30 FISPROD, IBL 03 30 PTS, CUM VIELDS
¥642 P 93 NP 237 NFY	PTI CCP 4 001 574463 3 B	1.4+7	C 69VIENNA 900 69	07 Adamov+PPR146.LONG-RANGE-YLD VAL GVN
YE42 U 93 NP 237 NFY	FTI CCP 4 001 728298 3 E	1.4+7	JYF 9 732 69	Adamov+ PROTON, T, D AND ALFA YLD GIVN
1642 P 93 NP 237 NF1	FTI CCP 4 001 /2829/ 4 E	1.4+/	J SNP 9 424 69	IU . ENGL OF IF 9 732
YE76 P 93 NP 237 NFY	GRE FR 2 150 715081 3 E	MXXW	P CEA-N-2015 77	00 Asghar+TABLE OF MEAN PARAMETERS
¥E75 P 93 NP 237 NFY	GRE FR 2 151 735294 3 E	1.0+0	P CEA-N-2074 79	00 Blachot+EFFECT OF EVEN-ODD PROTON, FP
¥E83 U 93 NP 237 NFY	GRE FR	FAST	C 77PETTEN 1 77	00 Blachot+RAD.CHEM.CUM YLDS.
YE83 P 93 NP 237 NFY	GRE PR	FAST	W Rider 77BLA2 77	00 Blachot+RAD.CHEM.CUM YLDS.
IEDS [KIGHT //BLAZ	, data takun itom kidut 1980			
YE53 P 93 NP 237 NFY	GRE FR 2 152 739681 3 E	1.0+6 3.0+6	P CEA-N-2115 8 80	00 Hamelin+ P/V-RATIO, TBL.
YE53 P 93 NP 237 NFY	GRE FR 2 152 749851 3 E	1.0+6	* 79JUELIC# F29 79	05 Blachot+ ODD-EVEN EFFECT,CS-136.NDG
¥872 P 93 NP 237 NFY	GRE FR 2 154 772955 3 E	NDG	P CEA-N-2481 35 85	00 Brissot+FISS OF NP239,DOUBLE CAPTURE
YE67 P 93 NP 237 NFY	HED USA 1 777 325758 3 E	FAST	S NUREG/CP-0004 77	10 Kellog+VOL3, P1307. TBL. YLDS REL 137CS
YE67 U 93 NP 237 NFY	HED USA 1 777 325759 3 E	PAST	P HEDL-TME-77-34 78	05 Kellog+ VOL2, P27. YLDS REL 137CS.
¥281 U 93 NP 237 NFY	HED USA 1 784 311320 5 E	FAST	R DOE-NDC-33 49 84	04 Rawlins+ 13 FPROD. NDG.
YE12 P 93 NP 237 NFY	ILL FR 2 150 742176 1 E	MAXW	4 EXFOR21543. 81	02 2PTS.MASS OF LIGHT+HEAVY FRAGS.
YE12 U			P NEANDC(E)-212 80	00 Asghar+P. P48, ABSTR, NDG.
IEIZ P YE12 U			C 79JUELIC Z 81 79 P CEA-N-2074 17 70	US Asghar+ FROM NP/A 292.CFD OTH NUCLEI 00 Asghar+EVEN-EVEN.ODD-ODD EFFECT.TRL

Asghar+ P17, ABSTR, MDG. Wagemans+ Asghar+ 2 KIN EN + DIFF TOF MEASURED	Wagemans+ YIELD OF LONG-RANGE-ALPHAS Emsallem+TERN FISS,SHORT ABSTR.,MDG Wagemans+ ABST.LRA. Wagemans+ ABST.LRA. IPMT.LRA YIELD.	Asghar+ GRPH MASS-DIST.SHELL EFFECTS	Thierens+CUMUL YLDS OF 42 FP. 32PTS.CHM.YLD,2PTS.FRAC.IND.YLD.	Wagemans+TERM FISS CHARGED PRTCL DET Wagemans+MASS-ENERGY CORRELATIONS Wagemans+ ENERGY,TIELD HE4 PART 1PMT.FISSION FRAG AVERAGE MASS	Wagemans+ SUBBARRIER TERNRY YLDS.MDG	D'hondt+ REAC, TER A YIELDS.	.130 PTS. CHN TLDS. Maeck+Mass Spec.tbl of Tlds.	Maeck.MASS SPEC YLDS MEAS TBD	Chapman+ 136BA,136CS TBL CFD ENDF. Chapman+TBL.CUM.TLD.A=136,CFD ENDF .1 PT. CUM TLD. 136-BA.	Cottone+ SB-125,XE,CS,ND VOL.5.P.42.	Kiroumc+ CF252 FISS.SP. .5 PTs. CHW.TLD.	Maqvi+ 2 ENS. GRPHS. Maqvi-MASS Distribution,grph Naqvi-MASS Distribution,grph	Maqvi+ PRIMARY MASS YIELDS, DIAGRAM Maqvi+P. P.18 Prompt Frag Mass Muellet+ TBC,Prelim Grph 314PTS.Pri.And.Sec.Mass Yield.	Mueller+Primary Frag Mass Y,TBL,GRPH 180Pts.Fission Fragment Mass Yield	Koch. CUMULATIVE, MASS 125-152,TBL Koch+CUMUL FISS YIELDS A=125-152 Koch. Mass=125-152 28 PTS MASS=125-152	Lbov. TERN.H,T YLDS REL ALF YLD.TABL	Borisova+.YLDS OF M099 .English of YF 2 243	Ford+ COMP YLD. BIG-10, TOPST.	Ford+NFT COMPILATION.SEE LA-6129.NDG Ford+ Degraded Spec 11MASS YIELDS
7900 7800 7111	7707 7902 7710 7710 7710 7700	206	1006	1605 1110 1202	206/	209	1011	104	405	502	401	603 008 003	910 910 010 010	112 303	100 100 100 602	008	508 602	602	605 602
2 T 0	0 0 3 3 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		229 (6 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F38 7	147 8	B	146 7	133 8 004 8	52U 7	113 8		141		6 1 8 6 1 8 6 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	707	43 6	1	40
- 790	15 1901 10 1824.		12 651.	9 752.		*	723. 0-11		78 0016 974.	E)-1	4005 985.	4 8 6 6 6 7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	8 15)-2 6 661.	0 834.	9 2 9 2 155 C	6	20		
M (BG') G-52/ /A 29	A 26 CEM/1 DC(SH G-520 FOR20	JUELI	/A 34 FOR21	RABA1 /A 36 G-539 F0R21	JUELI	ANTWE	FOR10 P-105	N B S	L-517 IC0-1 Forio	NNDC (PL-P- FOR10	/C 3 DC (GE K-291	ANDC (ANDC (K-268 70821	(-322 0821	1-673 1-673 1-22 10821	- 2(2		6129	. 199'
	90004 21100 0721x	+ 79	4 N 4 N 4 N 4	0 2 2 4 0 2 8 8 0 4 1 4	* 79	C 82	4 K 20 H 20 H	c 11	5 5 5 5 5 5 5 5 5 7 5 5	A N	A KA	RELI RIEI Dagi		R KF		R YR-	T T T	R LA-	P ER
												10 10 10 1		vovo			vo	~	
													 	+ 0° 5			4.2+	1.4+	
	НАХИ	МХМ	HAXW HAXW	2.5-2 Maxw	MAXW	МХИ	F AST		FAST FAST FAST	FAST	55 T &	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 8 8 8 9 0 0 8 9 0 4 9	8.0+5 8.0+5	FAST Fast Fast Fast	1.4+7	4.0+5	2.5-2	FISS
		8 M	24 14 24 14	α . μ	8 M	14 m	. M M		N M M	**	84 84 17 10	***	4 M M M	N 16	****	U m	ы С	ы 5	ы С
	•	7	92	m m	•	40 .	-		アユア	v	en ee		-	10 01					~
	74298	74985	75009 75009	75262	74985	75596	31237		31237 31076 31074	65459	30568 30568	745057450574505	74541	75262 75923	75010 75010 77115 77115	73164	40697	32576	042841
	151	154	155 155	156	153	157	222		783 783 783	150	782 782	1111	1200	152 152	151 151 153	408	465	701	001
	~	2	~ ~	~ ~	2	7	A 1		 222	77 17	 >>	~~~~		~ ~ ~ ~	N N N N N	4	-		
	1 1	г - 1 В		11 **	L TR	1 1	L US	•	1 1 1 2 0 0 2 0 0 2 0 0	22 0	e us Su g	0000 0000		8 8 8 8 8 8		0	ບ ບ ~	su :	rsn :
	11	L IL	11	111111111111111111111111111111111111111	L IL	11	N H N			L I	K K K			K		KUI	KUI	LAS	LAS
		L.N.			L		82			LAN						N F Y	HF Y	NFY L1	NFY
	237	237	237	237	237	237	237 237		237233	237	237	237	237	237 237	237 237 237	237	237	237 16£0	237
		dN 6			d N D	an I				an .						4 1	4	NP 1	a n
	6 6 6 5 5 5 6	6) 6)	00	66 66	6) 6)	б С	9 E	•	000	61 61	66			6 165	99999 99999	6	6	. 93 Rid	5
222		10 10	1		56	46	202	592	527	11	61 1 61 1	1122		52 C 52 F		~	2 6 E		9 G
***		7 E			1		2 2 2 2	ΥE		11			10 40 40 14 14 14	TE(31	131	A E 6

YE63 [Rider 56FOR1

1

YE50 P 93 NP 237 NFY LAS USA 1 002 022179 3 M 9.0+6 1.5+7 J PR/B 137 814 6502 Leachman+ RLTV ANGDIST FISS-FRAG. YE82 U 93 NP 237 NFY LAS USA 1 003 022180 5 M 1.2+7 2.4+7 P WASH-1056 4 6503 Blumbrg.FISSION ANISOTROPY.NDG YE49 P 93 NP 237 NFY LAS USA 1 004 033595 3 E FISS J PR 156 1277 6704 Stein+ SI DETECT.CURVE YIELDS.ENERGY YE3 U 93 NP 237 NFY LIN CCP 4 477 749547 4 D 1.4+7 R INDC(CCP)-162 8106 No Np237 data. ENGLISH. OF BCDL-6 11 YE3 U 93 NP 237 NFY LIN CCP 4 477 749546 3 D 1.4+7 R BCDL-6 11 7709 Kondurov+ TERNARY TIELDS. TABLE. GRAPH YE7 P 93 NP 237 NFY LRL USA 1 781 314344 1 2 FISS J PR/C 23 1113 8103 Waldo+ TBLS. 87BR.137I YLDS. TE7 U P DOE-NDC-24 69 8104 Meyer+BR-87, I-137 YLDS.TBP PR/C. TE7 P 4 EXFOR12926.021 8602 .2 PTS. CUM YLD. 87-BR. 137-I. YE9 P 93 NP 237 NFY MCM CAN 1 150 624297 3 8 MAXW J JIN 35 2639 8909 Tracy+ CUMUL KR + XE YIELDS FAST YE9 [Rider 73TRA] YE9 U 93 NP 237 NFY MCM CAN 1 150 634434 5 E MAXW FAST P EANDC(CAN)-40 6909 thode+ MASS-SPEC.REL CUM KR+XE GIVEN YE9 P 93 NP 237 NFY MCM CAN 1 150 325668 6 E MAXW FAST 4 EXFOR13315. 8909 12 PTS, REL CUM YLD, KR.XE ISOT. TE66 P 93 NP 237 NFY NBS USA 1 701 325760 3 E PAST S NUREG/CP-0004 7710 Gilliam+ VOL3.P1289. BM FIELD. TE66 [Rider 77gil1 1 7866 11 P ERDA-NDC-9 186 7704 Gilliam+FISS YLDS.TBL.FP HL GVN. YE35 P 93 NP 237 NFY PAV ITY 2 001 575487 1 E PTLE Stella+ FISS YLD OF 17 MASS BETWEEN J JIN 31 3739 6912 TE35 {Rider 69stel, extension of 67ste(1,2,3) in Ricera Scientifa RIC. SCI 37 p347-359 (1967) 3 articles.] YE35 P 4 EXFOR21412. 8003 34PTS. CUM.YLDS TE38 U 93 NP 237 NPT PRA IND 3 407 731421 3 0 MAXW C 77PUNE 2 253 7712 Rao. ABST, NDG. A=131-136 FINE STRUCT 7 93 NP 237 NFY RI CCP 4 001 556582 3 M 1.4+7 C 68RIGA 196 6801 Adamov+ ABST.LONG-RANGE PARTICLES YL TE37 U 93 NP 237 NFY RI CCP 4 473 669097 3 E PILE JTP 15 860 7205 Petrzhak+ TBL REL XE YLDS.EPI-CD YE37 [Rider 72pet2 YE37 P 93 NP 237 NFY RI CCP 4 473 669098 J SNP 15 482 7211 . ENGL OF YF 15 860 4 E PILE TE37 P 4 EXFOR40019.002 7807 4 PTS, REL YLDS XE-131, 132, 134, 136 YE37 P 93 NP 237 NFY TIL CCP 4 478 751946 3 E FAST 1.4+7 C 80KTEV 3 171 8009 Teplykh+ MASS-SPEC.TBL REL XE-YIELDS YE37 U 93 NP 237 NFY TIL CCP 4 478 751947 3 E FAST 1.4+7 JTF 29 293 7902 Toplykh+ REL XE YLDS CFD. TABLE. GRAPH TE37 P 93 NP 237 NFY TIL CCP 4 478 751948 29 144 7902 4 E FAST 1.4+7 J SNP .ENGLISH OF TF 29 293. TE37 P 93 NP 237 NFY TIL CCP 4 478 755417 6 E FAST 4 EXFOR40545. REL YLDS FOR XE-131,132,134,136. 1.4+7 8009 YE32 P 93 NP 237 NFY TRM IND 3 414 900161 Ramaniah. BARC EXPTS.SURVEY TBL, GRPH 3 R PILE 24 137 8501 J PRM YE34 P 93 NP 237 NPY TRH IND 3 468 638263 3 E PILE J JIN 30 2305 6809 Namboodini+ TLD OF 20 NUCLIDE YE34 [Rider'68NAM1 - 1 YE34 P 93 NP 237 NFY TRM IND 3 001 552804 3 E PISS C 65SALZBU 1 439 6503 IVer.YLD OF VARIOUS ISOTOPS, TBL, GRPH YE34 [Rider 65IYE1] Preliminary study reported later as JIN 30 2305. 7 93 NP 237 CHG TRM IND 3 478 764321 3 E C 79MADRAS 2 228 7912 HAXW Manohar+ 1135, BA140 FRACT CUMUL, TBL U 93 NP 237 CHG TRM IND 3 478 764322 5 E MXXW P BARC-1114 74 8100 Manohar+ 1135, BA140 FCY, TBD, NDG 7 93 NP 237 NFY TRM IND 3 484 900275 3 E PILE C 85JAIPUR 2 28 8512 Reddy+ A=131-135 TE+I REL YLDS, TBL YE36 P 93 NP 237 NFY TRM IND 3 485 902442 3 E PILE J RCA 41 9 8700 Ramaswami+ EPI-CD.3 FP:FRACT CUM TLD YE36 P 93 NP 237 NFY TRM IND 3 485 903438 6 E PILE 4 EXFOR30765. 8711 FRACT CUMUL YLDS OF TE134, I135, XE138 YE54 P 93 NP 237 NFY TUE GER 2 150 749853 3 E 5.0+5 5.6+6 • 79JUELIC# F34 7905 Mueller+ PRIMARY+SECONDRY MASSES.NDG TE52 P 93 NP 237 NFY WAD USA 1 770 325145 3 E FAST JANS 13 868 7011 Mc Elroy+ PRELIM YLD 137CS. YE52 [Rider 70MCE1 1 TE52 N 93 NP 237 NFY ORL USA 1 768 325109 5 E Wechsler. PRIV COMM TO MC ELROY. FISS W WECHSLER 6800 YE52 [Rider 68wec1 1 YE52 P 4 EXFOR13239.002 8906 .1 PT. CUM TLD 140BA.

4 EXFORI3272.004 8908 .1 PT. CUN YLD, 137CS.

Key: P-Copy of reference ?-Unobtainable.

U-unseen, but believed unnecessary

W-unobtainable, Private communication.

References for Pu242 fission yields (from CINDA).

Ref element Q	lab cou A blk serial	H W Emin Emax	reference date	comments
TF16 D GA DH 343 M		3 F 69AF	7 88 106 776 8768	SHITLE WISS_PWP92V DISTB CPD YDTLTH
TE16 U 94 PU 242 N	FY ANL USA 1 001 033313	5 E SPON	• BAP 1 81 5606	ABST. B10
YE22 P 94 PU 242 N	FT ARK USA 1 768 325124	6 E SPON	J Earth and Planet Sci	.1et.3 1967/7/25 p89 in Rider 67Gan2
YE22 U 94 PU 242 N	FY ARK USA 1 768 709396	3 E SPON	• DA/B 29 319 6807	Ganapathy.RADIOCHEM,I131 132 133 135
YEZZ [Rider 68gan]]			
1522 U 94 PU 242 N	FT ARK USA 1 768 709397	JE SPON	R ORO-3235-11 6/01	Ganapatny+, MASS ILD DISTR A=131-135 Ganapathy 1131 122 133 134VID TBD DD
TE22 D 94 PU 242 N	PY ARK USA 1 768 325124	S B SPON	A EXPORT3233-7 6701	.4 PTS. CUM YLDS 132-1351 REL 1311.
		J BION		
YE74 P 94 PU 242 N	FT BRC FR 2 150 750026	3 E SPON	Р СБА-М-2214 8107	Yehia+SPON AND TH COMPARED, GRAPHS
				Streeterbal COLDH POLG STORD
- 1621 U 94 PU 242 N - 9231 D 64 DH 343 W	FI FEL CCP 4 476 039300 TV PPT CCD 4 476 673487		J IF 23 209 7002 T EWD 33 141 7603	PWGL OF VF 23 269
YE21 U 94 PU 242 W	PT PET CCP 4 470 072457	A E SPON	P TNDC(CCP) = 4A 7502	. ENGLISH OF YFI-17 3
TE21 U 94 PU 242 N	PT PEI CCP 4 150 638591	3 E SPON	R TFI-17 3 7408	D'vachenko+ TLD(FRAG MASS), TBL
YE21 U 94 PU 242 N	PT FEI CCP 4 150 617146	3 E SPON	J TF 17 696 7304	D'vachenko+ MASS-YLD+YLD(KIN-E), GRPH
TE21 P 94 PU 242 N	FY FEI CCP 4 150 629353	4 E SPON	J SNP 17 362 7310	ENGLISH OF YF 17 696
YE21 P 94 PU 242 N	FY FEI CCP 4 150 410887	6 E SPON	4 EXFOR40194.002 8407	42 PTS, FF-TLDS VS FF-MASS
			· · · · · · · · · · · · · · · · · · ·	
YE13 P 94 PU 242 N	FY FEI CCP 4 473 633973	3 E 1.0+6 3.5+6	C 73KIEV 3 270 7305	Vorod'evet FRAGM MASS-DISTR, GRAPH
1613 P 94 PU 242 N	FY FEI CCP 4 473 633974	3 E SPON	C 73KIEV 3 270 7305	VOTOD'EVA+ FRAGM-MASS DISTR,GRAPH
1613 F 94 PU 242 N	FI FEI CCP 4 4/3 8838/3	6 E /.U+5 3.3+6	4 EXFOR40284. /505	.PRIMARI FISS-FRAG IIEED AT SN-E GVN
YE14 P 94 PU 242 N	FY GEL 222 2 150 758409	3 E SPON	C 82ANTWER 737 8209	Allsert+ (+MOL) FRAG MASS+ENERG DIST
YE14 P 94 PU 242 N	FY GEL 222 2 150 754554	3 E SPON	J NP/A 380 1 61 8205	Allaert+COMPARED TO PU241 THERM FISS
YE14 U 94 PU 242 N	FY GEL ZZZ 2 150 760612	5 E SPON	P NEANDC(E)-2420 8303	Allaert+
TE14 P 94 PU 242 N	FY GEL ZZZ 2 150 758415	6 E SPON	4 EXFOR21788.006 8301	1PNT.FISSION FRAGS AVERAGE MASS
TE73 P 94 PU 242 N	PT GEL 222 2 151 772350	5 E SPOR	P INDC(EUR)-2028 8609	Wagamans+
TE73 P 94 PU 242 N	FY GEL 222 2 151 769186	5 E SPON	P INDC(EUR)19 40 8500	Schillebeeckt+PRENEUTRON FRAGM MASS
YE15 P 94 PU 242 N	FT GHT BLG 2 150 761274	1 E SPON	J PR/C 29 498 8402	Thierens+ GRAPHS
YE15 P 94 PU 242 N	FY GHT BLG 2 150 761275	6 E SPON	4 EXFOR21915.003 8407	1PNT.FISSION FRAG AVERAGE MASS
TE59 U 94 PU 242 N	PT INL USA 1 777 312397	3 E PAST	R ICP-1050-IV 7902	Naeck+MASS SPEC.TBLS FISS YLDS.
YE59 [Rider 79MAE1	1			
TE59 P 94 PU 242 N	FT INL USA 1 777 312398	3 E PAST	C 77NBS 146 7704	Maeck.MASS SPEC TLDS MEAS TBD.
YE59 P 94 PU 242 N	FT INL USA 1 777 312399	6 E 3.9+5 4.0+5	4 EXFOR10845. 8010	. 66 PTS.FISS YLDS.
		• • • • • •		
1657 P 94 PU 242 N	FY INL USA 1 783 312400	3 E FAST	S BNL-51778 133 8405	Chapman+ 1368A,136CS TBL CFD ENDF.
- 1657 U 94 PU 242 N	FT ING USA 1 783 310743	J B FAST	R ENICO-10016 8310	Chapman+TBL.CUM.ILD.A=136,CFD ENDF
1637 P 94 PU 242 N	FI INC USA 1 /03 310/51	O B FAST	4 EXFORIUS/4.008 8401	.1 PT. COM 1LD. 136-BA.
TE58 P 94 PU 242 N	FY ITU ZZZ 2 150 767492	3 E FAST	J RCA 29 2 61 8100	Roch. CUMULATIVE, MASS 125-152, TBL
YE58 U 94 PU 242 N	FY ITU 222 2 150 750104	3 E FAST	R EUR-6738 8009	Koch+CUMUL FISS YIELDS A=125-152
YE58 U 94 PU 242 N	FY KFK GER 2 150 696622	3 E FAST	R AERE-R-8753 7705	Koch+ TBL MASS YLDS GIVEN P 46.
TE58 P 94 PU 242 N	FY KFK GER 2 151 771159	6 E FAST	4 EXPOR21155.010 8602	28 PTS MASS=125-152
7 94 PU 242 N	FY KUR CCP 4 408 731652	3 C SPON	R YK- 2(29) 70 7800	Lboy. TERN.ALF ILDS COMPILED, TABLE
TE17 P 94 PU 242 N	FY LAS USA 1 001 030994	3 E SPON	J PR 126 1508 6205	Nobles. YIELD OF LONG RANGE FFRGM
YE19 P 94 PU 242 N	FY LAS USA 1 002 022191	3 E 6.5+5 8.0+6	J PR/B 137 809 6502	Simmons+REL ANG DIST FISS FRAG
		• • • • • • •		
163 U 94 PU 242 N 763 U 94 BH 343 W	FT LIN CCP 4 477 749639	J D SPON	R BCDL-6 11 7709	KONDUROV+ TERNARY MIELDS. TABLE, GRAPH
		. o oron		The state and a property of property of the state of the

.

YE7 P 94 PU 242 NPY LRL USA 1 761 314340 3 R PISS J PR/C 23 1113 8103 Waldo+ TBLS.&7BR.1371 YLDS. YET U 94 PU 242 NFY LRL USA 1 781 303675 MDG P DOE-NDC-24 69 8104 Hever+BR-87.1-137 YLDS.TBP PR/C. 5 E 4 EXPOR12926.026 \$602 YE7 P 94 PU 242 NPY LRL USA 1 781 319251 6 E FISS .2 PTS. CUN YLD. 87-BR. 137-1. YE20 U 94 PU 242 NFT MIF CCP 4 481 764515 3 E PAST J AE 54 404 8306 Gudkov+ GE-LI.TBL 29 TLDS A=85-149 J SJA 54 414 8312 YE20 P 94 PU 242 NFY MIF CCP 4 481 764516 ENGLISH OF AE 54 404 A R PAST YE20 P 94 PU 242 NFY MIF CCP 4 481 768602 4 EXFOR40678.002 8402 29 PTS. YIELDS 6 E FAST VE60 P 94 PH 242 NPT MOL BLG 2 150 774428 1 2 SPON B BLG-592 8611 Wagamans+ YE60 U 94 PU 242 NFY MOL BLG 2 150 774429 S BLG-596 124 8605 Schillebeeckx+ 5 E S PON De Raedt+ (+GEL) CHAIN YLDS. YE60 P 94 PU 242 NFY MOL BLG 2 150 756003 1 2 PTLE C \$2ANTWER 185 8209 TE60 P 94 PU 242 NFT MOL BLG 2 151 774431 6 2 SPON 4 EXFOR22070.006 8801 1. PT YE60 P 94 PU 242 NFY NOL BLG 2 151 774430 3 2 SPON B BLG-592 8611 Wagemans+ TE18 P 94 PU 242 NFY MUN GER 2 150 770602 2 8 1.5+7 J PR/C 30 934 8409 Winkelmann+ CUMUL.CHN YIELDS TE18 P 94 PU 242 NFT MUN GER 2 150 770601 4 EXFOR21983. 1602 145PTS CUMUL.CHN TIELDS 6 E 1.5+7

Key: P-copy

P-copy obtained. U-unseen,

U-unseen, but believed unnecessary

2-unobtainable.

-

References for Am243 fission yields (from CINDA).

Rof.	••	•	lem	ont	Q	lab	cou	λ	blk	serial	L H	W	Emin	Emas	t	re	fere	ence			date	comments
Y E 8	P	95	λM	243	NFT	GRE	FR	2	150	767740	51	E	2.5-2			c	8552	ANTA	1	333	8505	Caitucoli+ NDG. MASS-ENERGY CORREL.
TE12	P	95	λM	243	NFY	ILL	FR	2	150	739674	1	8	MXXW			J	NP/1	334	2	327	8002	Asghar+FP ENERGY CORRELATION, GRAPHS
TE12 TE12	P	95	λH λH	243	NFI	ILL	FR	2	150	74214	76	Ē	MAXW			4	EXF	DR215	45.	81	8102	2PTS.LIGHT AND HEAVY MASSES,AP
YELZ	P	95	лн	243	NFY	ILL	FR	2	151	744430	5 3	E	MAXW			J	NP/J	A 341	3	388	8006	Asgher+FAR-OUT ASIMMETRIC MASS
YE78 YE78	P U	95 95	- ХМ - ХМ	243 243	NFY NFY	ILL Mol	FR Blg	2 2	152 150	773931	L 5 3 5	E E	MAXW Maxw			P P	BLG- BLG-	-597 -584		138 148	8703 8604	De Ruytter+ ALPHA,TRITON EMISSION Wagemans+ ALPHA TRITON EMISSION
	7	95	AM	243	NFY	LIN	CCP	4	418	40895	1 3	R	+6	4	F7	J	TK	1988	1	24	8803	GUSOV+ YLD LI, BE, CALC CFD EXPT, GRPH
¥811	U	95	۸M	243	NFT	ORL	USA	1	786	321042	2 3	B	FAST			R	ORNI	L-626	6		8604	Dickens+ JOINT US/UK EXPT.DOUNREAY
YE11	U	95	AM	243	NFT	ORL	USA	1	786	321694	1 5	2	FAST			R	DOE-	-NDC-	43	145	8704	Dickens.NDG.SEE ORNL-6266.
YE11	P	[N]	АП В Р	243 rob1	ΠΓΥ ● π 5 '	with	rep	1 0 [(786 ted	yields	Dick	ens	FAST Gives	those	of	R U 8 (DOE-	*P*	NSE	: 96	8 8	DICKONS+ NDG. 705 ie NO AM-243 data see rider 86DIC2]

Key: P-Copy of reference.

U-unseen, but believed unnecessary.

?-unobtainable.

References for Cm243 fission yields (from CINDA).

comments	Dickens+ GRPH.TBL. Dickens.MDG.PR/C 34,702 .78 CUM YLDS.	Mertiman. ABST.ORML/TM-9049 Mertiman. 12 CUM. TIELDS. Mertiman. 12 CUM. TIELDS. Mertiman. 12 CUM. TIELDS. Breederland.NDG ABST ORNL-TM-8168 Breederland.NDG.23 CUMUL.TLDS. Breederland.NDG.23 CUMUL.TLDS. Dabbs+NDG.ANAL TBD.TBP. Dickens+ JOINT US/UK EXPT.DOUNREAT Dickens+ NDG.SEE ORNL-6266. Dickens+ NDG.SEE ORNL-6266. Dickens+ NDG.SEE ORNL-6266. Dickens+ NDG.SEE ORNL-6266. Dickens+ NDG.SEE ORNL-6266. Dickens+ NDG.SEE ORNL-6266.	
date	8608 8704 8708	88602 88602 88204 8204 8104 8104 82004 82004 8004 8005 83004	
	722 146 .002	4 9 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
reference	J PR/C 34 R DOE-NDC-43 4 Exforiato2	$\begin{array}{c} \textbf{P} & \textbf{ORML} \\ \textbf{P} & \textbf{ORML} \\ \textbf{P} & \textbf{ORML} \\ \textbf{P} & \textbf{ORML} \\ \textbf{P} & \textbf{DOR} \\ \textbf{R} \\ \textbf{P} & \textbf{DOR} \\ \textbf{R} \\ $	
Emax		다. 8 9 1 1 1	
Emin	МАХИ Махи Махи	2000 200 2000 2	
A H	M N 14 M N 16		
serial .	320552 321752 322699	319605 311180 308381 308381 306251 303870 321043 321753 321753 322195 322195 322295	
blk	700	7387 7381 7381 7386 7386 7387 7387 7387 7387	
A UV	4 44		
ŭ	333		
-			
به د	444		
	8 8 8 8		
•	6 6 6	8 000000000000 00000000000000000000000	
:	A 5 A		
8 e f			

P-Copy of reference U-unseen, but believed unnecessary

Көу:

References for Am242m fission yields (from CINDA).

Ref.	••	٠	1 • m	ent	Q	lab	cou	λ	blk	serial	R	W	Emin	Emax	reference	date	comments
Y E 6	P	95	AM	242	NPT	LAS	USA	1	001	054858	3	E	PILE		J PR/C 3 1333	7103	Wolfsberg+ 35 CHN YLDS, XE+KR CUMULT
TE6	U	95	λM	242	NFY	LAS	USA	1	001	325126	5	E	PILE		R LA-DC-12142	7006	Wolfsberg+
YE6	P	95	۸M	242	NFY	LAS	USA	1	001	325618	6	2	PILE		4 EXFOR13295.002	8908	.36 PTS. R-VAL REL 2350 + CUM YLDS.
YE6	P	95	AM	242	NFY	LAS	USA	. 1	001	325619	6	E	PILE		4 EXFOR13295.003	8908	.1 PT. R-VAL REL 2350 + IND YLD
YE6	P	95	AM	242	NFY	LAS	USA	1	001	325620	6	E	PILE		4 EXFOR13295.004	8908	.11 PTS. FRACT CUM YLDS, KR,XE ISOT.
YE5	P	95	AM	242	NFY	LAS	USA	1	701	312314	3	E	2.5-2		J PR/C 30 195	8407	Ford+IND.YLD.(133M,G),(135M,G)XE
YE5	P	95	ХM	242	NFY	LAS	USA	1	701	325566	6	E	2.5-2		4 EXFOR12895.011	8409	.6 PTS. FR IND YLDS, 133,135XE.
YE3	P	95	۸M	242	NFY	LIN	CCP	4	473	763469	4	E	PILE		J SNP 20 248	7503	.ENGLISH OF YF 20 461
YE3	U	95	λM	242	NFY	LIN	CCP	- 4	473	763468	3	E	PILE		J TF 20 461	7409	Vorob'ev+ TOF, MAG-SPEC, YLD Z=2-8, TBL
YE3	U	95	AM	242	NFY	LIN	CCP	- 4	473	636928	3	E	MXXW		C 73MUNICH 1 716	7308	Vorob'ev+ META. Z=1-8 MASS-SPEC, NDG
YE3	P	95	AM	242	NFY	LIN	CCP	4	473	763467	- 3	E	PILE		C 73KIEV 3 298	7305	Vorob'ev+ YLDS FOR H-3 TO C-14, TABLE
YE3	U	95	AM	242	NPY	LIN	CCP	- 4	477	749346	- 4	D	MXXW		R INDC(CCP)-162	8106	.ENGLISH, EXCERPT TRANSL OF BCDL-6 11
YE3	P	95	۸M	242	NFT	LIN	CCP	- 4	477	763470	6	E	MXXW		4 EXFOR40503.005	8006	TERNARY YLDS, LITERAT DATA RENORMALZD
YE3	U	95	۸M	242	NFY	LIN	CCP	- 4	477	749345	3	D	MYXM		R BCDL-6 11	7709	Kondurov+ TERNARY YLDS, TABLES, GRAPHS
YE3	P	95	λM	242	NFY	LIN	CCP	4	477	703843	3	D	MYXM		C 77KIEV 3 258	7704	Kondurov+ LIGHT PART YLDS,GRAPHS
YE7	P	95	۸M	242	NFY	LRL	USA	1	781	319255	6	£	FISS		4 EXFOR12926.028	8602	.2 PTS. AM242M. CUM YLD,87-BR, 137-I
TE7	U	95	λМ	242	NFY	LRL	USA	1	781	303677	5	2	NDG		P DOE-NDC-24 69	8104	Meyer+BR-87,1-137 YLDS.TBP PR/C.
YE7	P	95	ХM	242	NFY	LRL	USA	1	781	314338	3	E	FISS		J PR/C 23 1113	8103	Waldo+ TBLS.87BR,137I YLDS.
YE9	P	95	λM	242	NFY	MCM	CAN	1	773	325675	6	E	PILE		4 EXFOR13315.	8909	.6 PTS. REL CUM YLD, KR,XE ISOT
TE9	P	95	ХM	242	NFY	MCM	CYN	1	773	709119	3	E	PILE		J JIN 35 82639	7308	Tracy+ CUMUL KR + XE YIELDS
YE9	U	95	AM	242	NFY	MCM	CAN	1	773	709120	5	E	MXXW		P EANDC(CAN)-32	6701	Thode+ YLDS OF STABLE KR+XE ISOTOPES
YE2	₽	95	λM	242	NFT	MIP	CCP	4	484	400195	6	8	MAXW		4 EXFOR40869.	8509	32 PTS CUM FIS YLD, 4 PTS IND FIS YLD
TE 2	U	95	λM	242	NFY	MIF	CCP	- 4	484	768729	3	2	MXXW		J YF 41 573	8503	Gudkov+ FISS PROD YIELDS FOR AM242M
YE2	P	95	хM	242	NFY	MIP	CCP	4	484	400001	4	E	MYXM		J SNP 41 365	8503	.ENGLISH OF YF 41 573.
YE1	P	95	۸M	242	NFY	MUN	GER	2	001	574719	3	E	MAXW		C 69VIENNA 951	6907	Weinlaender.PPR72. META AM242,YLD(A)
YE38	U	95	λM	242	NFY	PRA	IND	3	407	731427	3	D	MXXW		C 77PUNE 2 253	7712	Rao. ABST, NDG. A=131-136 FINE STRUCT
1 277	U	95	۸M	242	NFY	USP	BZL	3	473	637010	3	B	MYXM		C 73MUNICH 1 588	7308	Fontenla+ PROMPT+ISOM AVG FRGM-MASS

Key:

З 4

P-Copy obtained.

U-unseen, but believed unnecessary.

.
TABLE 6

ы 5

References for Cm245 fission yields (from CINDA).

Ref element Q 1	b cou A blk serial	A W Emin Smax	reference date	conments
YE28 P 96 CM 245 NFT A	NL USA 1 001 041691	3 E PILE	J PR 161 1192 6709	Von Gunten+ TIELD VS MASS CURVE
TE28 P	J		4 EXPOR13230.002 8906	.37 PTS. CUN YLDS.
YE28 P			4 EXFOR13230.003 8906	.2 PTS. IND YLDS 66RB, 136CS.
1827 P 96 CH 245 NPT A	NL USA 1 150 629572	3 E PILE	C 73ROCH 2 19 7308	Unik+ PROMPT YLDS,MASS DISTRIB,GRPHS
TE27 U 96 CM 245 NPT A	NL USA 1 150 670025	5 E MAXW	P. USNDC-9 30 7312	Unik+. CURVE OF FRAG MASS DIST GIVEN
1827 P 96 CH 245 NFI A	NL USA 1 150 670026	S E RAXW	BAP 18 627 7304	UNIR+. HASS+MASS/E CORRELATS. NDG
TE55 P 96 CM 245 NPT 1	LL FR 2 150 749813	3 E HAXW	* 79JUELIC# F33 7905	Asghar+ GRPH MASS-DIST.SHELL EFFECTS
TE29 P 96 CM 245 NPT 1	LL FR 2 151 767789	1 E 2.5-2	C 855ANTA 1 385 8505	Roczon+ GRPH CFD OTHER EXPT.
187 P 96 CM 245 NPY 1	RL USA 1 781 314337	3 E FISS	J PR/C 23 1113 8103	Waldo+ TBLS.\$7BR,1371 YLDS.
TE7 U 96 CH 245 NFY I	RL USA 1 781 303678	5 E NDG	P DOE-NDC-24 69 8104	Meyer+BR-87, I-137 YLDS. TBP PR/C.
YE7 P 96 CH 245 NFY I	RL USA 1 781 319253	6 E FISS	4 EXFOR12926.029 8602	.2 PTS. CUM YLD, 87-BR, 137-I.
7860 P 96 CM 245 NFT P	DL BLG 2 150 755826	3 E PILE	C 82ANTWER 185 8209	De Raedt+ (+GEL) CHAIN YLDS.
TE30 P 96 CM 245 NFT C	RL USA 1 780 303204	3 E MAXW	J PR/C 23 1 331 8101	Dickens+CUMUL, CHAIN FISS ILDS.CFD.
YE30 U			P DOE-NDC-24 124 \$104	Dabbs+NDG.SEE PR/C 23 P.331.
YE30 U			P DOE-NDC-24 125 8104	Dickens+ABST.SEE PR/C 23 P.331 1/81.
YE30 U			P DOE-NDC-19 133 8005	DADDS+GREATER THAN 80 ISOTOPES.NDG
7830 P			4 EXFOR10962.002 8106	.97 PTS. CUM VID.
TE30 P			4 EXFOR10962.003 8106	.1 PT. IND YLD CS136.
TE30 P			4 EXFOR10962.004 8106	.66 PTS. CHN YLD.
YE38 U 96 CM 245 NPY 1	RA IND 3 407 731429	3 D MAXW	C 77PUNE 2 253 7712	Rao. ABST, NDG. A=131-136 FINE STRUCT
TE79 P 96 CM 245 NPT 5	AH IND 3 408 720186	5 T MAXW	P BARC-990 44 7809	Chatteriee+ NDG.DOUBL-CORE CFD SPONT
TE79 U 96 CM 245 NFT 5	AH IND 3 408 731447	5 T HAXW	C 77PUNE 2 235 7712	Chatterjee+ ABSTRACT,NDG
TE23 P 96 CM 245 NPT 5	RL USA 1 001 057621	3 E PILE	J PR/C 4 505 7108	Troutner+.TE132,134 FRACT CUMUL ILDS
YE23 [Rider 71TRO2 YE23 D			A TTTOD13294 002 8908	2 PTC PRACT CHM VINC 132 134TE
				· · · · · · · · · · · · · · · · · · ·
YE24 P 96 CH 245 NPT 5	RL USA 1 150 617752	3 E HAXW	J JIN 34 2109 7207	Herbour+ TLD OF 21 MASS CHAINS
YE24 P	1		J PR/C 10 769 7408	Harbour+ XE135 YIELD, TBL, GRPH.
TE24 U	•		R DP- MS-73-29 7300	Harbourt. XE135 PRACTNL INDEPEND TLD
YE24 P			4 EXFOR13320.003 8909	.1 PT. FRACT IND YLD, 135XE.
YE24 P			4 EXFOR13325.002 8909	.21 PTs. CUM/CHAIN YLD, 135XE.
1832 P 96 CM 245 NPT 1	RM IND 3 414 900118	3 R PILE	J PRM 24 137 8501	Ramaniah. BARC EXPTS.SURVEY TBL,GRPH
TE25 P 96 CH 245 NFT 1	RM IND 3 474 737855	3 E MAXW	J JIN 41 1649 7912	Ramaswami+ R-VALUE (U-235).TBL,GRAPH
IB49 L RIGHT /JRAM4 YE25 V	3		P BARC-900 87 7600	Remessani+ 17MASS YLDS.CFD.TBL+GRPH
YE25 U			P BARC-872 104 7600	Ramaswami+ PRELIM.RESULTS
YE25 P			4 EXFOR30437.002 8002	.19 FISS-PROD R-VALUES AND YIELDS
YE80 U 96 CM 245 CHG 1	RM IND 3 477 763849	3 E MAXW	P BARC-1114 72 8100	Datta+ FRACT CUN YLD 2R95.BA140.TBL
TE80 P 96 CM 245 CHG	RM IND 3 477 743547	3 E MAXW	J PR/C 21 1411 8004	Datta+ FRACT YLDS 1135, BA140, ZP. TBLS
YE80 U 96 CM 245 CHG	RM IND 3 477 763848	3 E MAXW	C 79MADRAS 2 228 7912	Manohar+ I135, BA140 FRACT CUM, ZP, TBL
YE80 U 96 CM 245 CHG 1	RM IND 3 477 731844	3 E MAXW	P BARC-974 72 7800	Manohar+ FRAC CUM YLD M099,BA140.TBL

YE\$0 YE\$0 YE\$0 YE\$0	U U U P	96 96 96 96	CM CM CM CM	245 245 245 245	CHG CHG CHG CHG	TRM TRM TRM TRM	IND IND IND IND	3 3 3 3	477 477 477 477	7339 7510 7369 7369	587 540 527 286	3 5 5 6	11111	MAXW Maxw Maxw Maxw	C P P 4		77 PUNE BARC-1 BARC-9 EXFOR3	126 90 1 0510	249 8 11 5.003	7712 8106 7809 7909	Singh+ PRAC CUM Y M099,1135.DATA+PIG Datta+ 1135,BA140,GAUSS'N WID GIVEN Datta+ ABST,NDG.A=99,135 CHARGE DIST .PRACT CUMUL YLD M0-99,I-135
YE26 TE26 YE26 YE31	P U P P	96 96 96 96	CM CM CM	245 245 245 245	NPT NPT NPT NPT	TRM TRM TRM TRM	IND IND IND IND	3 3 3 3	480 480 480 487	758 751 760 904	782 642 792 972	356	E E E	NYXA Nyxa Nyxa Nyxa	J P 4 J	1	RCA BARC-1 Exfor3 EP/A 3	30 126 0631 31	11 10 1. 335	8200 8106 8211 8811	RAMASWAMI+ ABSOL YLDS 14 FISPROD, TBL Iyer+ EXPT COMPLETED.MASS YLDS.TBL ABSOLUTE YIELDS OF 14 FISS PRODUCTS Naik+ 1132N,G ISOMERIC YLDRATIO, TBL

Key: P

P-Copy of reference

U-unseen, but believed unnecessary

TABLE 7

Delayed neutron references for experiment and summation calculations.

KEY: references NC are calculated by summation, NE are experimental. p-photocopied. X-seen. U-unseen, believed unimportant. ?- unobtainable.

37

Ref. element Q lab cou A blk serial	HW Emin En	ax reference date comments
NC1 P 95 AM 242 NUD LAS USA 1 701 325696 NC1 P 95 AM 242 NUD LAS USA 1 701 325696 NC1 X 95 AM 242 NUD LAS USA 1 701 324945 NC1 P 95 AM 242 NUD LAS USA 1 700 324847 NC1 P 95 AM 242 NUD LAS USA 1 700 311837	3 D 2.5-2 3 D 2.5-2 3 D 2.5-2 3 D 2.5-2 3 D 2.5-2 3 D 2.5-2	R LA-UR-88-4118 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. J NSE 103 129 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. R LA- 11534 8904 Brady.CALC BEH Thesis. C 88JACKHO 3 229 8809 England+ TBL. 6 GROUP PARAMETERS. S BNL-51778 33 8405 England+ TBL. 242-M TARGET.
NE1 P 95 AM 242 NUD LRL USA 1 780 319238 NE1 P 95 AM 242 NUD LRL USA 1 780 305372 NE1 U 95 AM 242 NUD LRL USA 1 780 303174 NE1 P 95 AM 242 NUD LRL USA 1 780 314331 NE1 U 95 AM 242 NUD LRL USA 1 780 301296 NE1 U 95 AM 242 NUD LRL USA 1 780 301297	6 E FISS 3 E NDG 3 M NDG 1 M FISS 5 M NDG 5 M NDG	4 EXFOR12962.013 8602 .6 PTS. AM-242M.PARTL D/DE.6 HL GRPS * ANS 39 1 879 8111 Waldo+GRPH YLD VS FCN Z,A OF CN * DA/B 41 41471 8010 Waldo+EMISSION YLD MEAS AND CALC.NDG J PR/C 23 1113 8103 Waldo+GRPHS,TBLS NEUT.GROUPS P DOE-NDC-19 101 8005 Waldo+BETA-DELAY YLDS MEAS,CALC.TBL. P UCID-18577 19 8003 .EQUIVALENT TO DOE-NDC-19 MAY,1980.
NC4 P 95 AM 242 NUD WIN UK	MAXM FAST	W Priv Comm M.F.James Calulation of total dn.
NC1 P 95 AM 243 NUD LAS USA 1 701 325697 NC1 P 95 AM 243 NUD LAS USA 1 701 325696 NC1 X 95 AM 243 NUD LAS USA 1 701 324946 NC1 P 95 AM 243 NUD LAS USA 1 700 324848 NC1 P 95 AM 243 NUD LAS USA 1 700 311839	3 D FAST 3 D 2.5-2 3 D FAST 3 D FAST 3 D FAST 3 D FAST	J NSE 103 129 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. R LA-UR-88-4118 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. R LA- 11534 8904 Brady.CALC BEHAVIOR FROM PRECURSORS. C 88JACKHO 3 229 8809 England+ TBL. 6 GROUP PARAMETERS. S BNL-51778 33 8405 England+ TBL.
NC4 P 95 AM 243 NUD WIN UK NC4 P 96 CM 243 NUD WIN UK	MAXM FAST Maxm Fast	W Priv Comm M.F.James Calulation of total dn. W Priv Comm M.F.James Calulation of total dn.

.

NC1 P 96 CM 245 NUD LAS USA 1 701 325696 3 D 2.5-2 R LA-UR-88-4118 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. NC1 P 96 CM 245 NUD LAS USA 1 701 325702 3 D 2.5-2 J NSE 103 129 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. NC1 X 96 CM 245 NUD LAS USA 1 701 324951 3 D 2.5-2 Brady, CALC BEHAVIOR FROM PRECURSORS. R LA- 11534 8904 NC1 P 96 CM 245 NUD LAS USA 1 700 324854 3 D 2.5-2 C 88JACKHO 3 229 8809 England+ TBL. 6 GROUP PARAMETERS. NC1 P 96 CM 245 NUD LAS USA 1 700 311877 3 D 2.5-2 S BNL-51778 33 8405 England+ TBL. 4 EXFOR12962.014 8602 .6 PTS. PARTL D/DE. 6 HL GRPS. NE1 P 96 CM 245 NUD LRL USA 1 780 319239 6 E FISS NE1 P 96 CM 245 NUD LRL USA 1 780 305377 3 E NDG * ANS 39 1 879 8111 Waldo+GRPH YLD VS FCN Z, A OF CN J PR/C 23 1113 8103 Waldo+GRPHS, TBLS NEUT. GROUPS NE1 P 96 CM 245 NUD LRL USA 1 780 314332 1 M FISS * DA/B 41 41471 8010 Waldo+EMISSION YLD MEAS AND CALC.NDG NE1 U 96 CM 245 NUD LRL USA 1 780 303176 3 M NDG P DOE-NDC-19 101 8005 Waldo+BETA-DELAY YLDS MEAS.CALC.TBL. NE1 U 96 CM 245 NUD LRL USA 1 780 301389 5 M NDG P UCID-18577 19 8003 .EOUIVALENT TO DOE-NDC-19 MAY, 1980. NE1 U 96 CM 245 NUD LRL USA 1 780 301390 5 M NDG NC4 P 96 CM 245 NUD WIN UK W Priv Comm M.F.James Calulation of total dn. MAXM FAST NE2 P 93 NP 237 NUD FEI CCP 4 473 407915 6 E 4.0+5 1.2+6 4 EXFOR40353.002 8312 9 DATA LINES.YLDS OF DEL NS .DATA AT 9 ES GVN NE2 P 93 NP 237 NUD FEI CCP 4 473 689118 6 E 4.0+5 1.2+6 4 EXFOR40303. 7602 NE2 U 93 NP 237 NUD FEI CCP 4 473 727241 3 E 4.0+5 5.1+6 R INDC(CCP)-51 7500 Maksyutenko+ 10H-L GROUPS, YLD(E) TBL NE2 U 93 NP 237 NUD FEI CCP 4 473 645462 5 E 4.0+5 1.2+6 R INDC(CCP)-65 7412 .P1. ENGL OF YFI-19,3 NE2 U 93 NP 237 NUD FEI CCP 4 473 645463 5 E 4.0+5 1.2+6 R YFI-19 3 7412 Maksyutenko+ REL GROUP-YLDS(N-E), TBL NE2 P 93 NP 237 NUD FEI CCP 4 473 638133 4 E 4.0+5 1.2+6 J SNP 19 380 7410 . ENGLISH OF YF 19 748 NE2 U 93 NP 237 NUD FEI CCP 4 473 639870 3 E 4.0+5 1.2+6 J YF 19 748 7404 Maksyutenko+ REL GROUP-YLDS.TBL+GRPH NC1 P 93 NP 237 NUD LAS USA 1 701 325696 3 D 2.5-2 R LA-UR-88-4118 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. NC1 P 93 NP 237 NUD LAS USA 1 703 325706 3 D FAST 1.4+7 J NSE 103 129 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. NC1 X 93 NP 237 NUD LAS USA 1 703 324955 3 D FAST 1.4+7 R LA- 11534 8904 Brady. CALC BEHAVIOR FROM PRECURSORS. NC1 P 93 NP 237 NUD LAS USA 1 700 324863 3 D FAST C 88JACKHO 3 229 8809 England+ TBL. 6 GROUP PARAMETERS. NC1 P 93 NP 237 NUD BNW USA 1 700 314239 3 D FISS J NSE 87 181 8406 Reeder+TBL.CFD ENDF/B, EVALS. NC1 P 93 NP 237 NUD LAS USA 1 700 311893 3 D FAST S BNL-51778 33 8405 England+ TBL. NC1 P 93 NP 237 NUD LAS USA 1 700 310191 3 D FAST J NSE 85 139 8310 England+DELAYED YLDS, AVG SPECTRA E'S NC1 P 93 NP 237 NUD LAS USA 1 700 306517 3 D FAST * ANS 41 567 8206 England+TBL.6 DECAY GP.FRACTIONS NC1 P 93 NP 237 NUD LAS USA 1 778 301125 3 T 1.0+6 C 79KNOX 800 7910 England+CALC CFD EVAL, EXPTS.TBL. NC1 P 93 NP 237 NUD OKL USA 1 150 708845 3 T FAST 1.4+7 * ANS 28 750 7806 L1aw+NUD CALC.TBL.CFD.

4 FXF0R12962.007 8602 Waldo+.6 PTS. PARTL D/DE. 6 HL GRPS. NE1 P 93 NP 237 NUD LRL USA 1 780 319232 6 E FISS NE1 P 93 NP 237 NUD LRL USA 1 780 314325 1 M FISS J PR/C 23 1113 8103 Waldo+GRPHS.TBLS NEUT.GROUPS NE1 U 93 NP 237 NUD LRL USA 1 780 303169 3 M NDG * DA/B 41 41471 8010 Waldo+EMISSION YLD MEAS AND CALC.NDG NE7 P 93 NP 237 NUD MIF CCP 4 488 410788 3 E FAST J AE 66 100 8902 Gudkov+ REAC.YLD OF 6 N-GROUPS.TBL NE7 2 93 NP 237 NUD MIF CCP 4 487 410787 3 E FAST 1.5+7 R MIF-058-88 8809 Gudkov+ REAC.DELAY N-PRECURS YLD.TBL NE3 P 93 NP 237 NUD MIP ITY 2 150 753757 3 E FAST J NSE 80 3 379 8203 Benedett1+ TBL.GRPH. CFD EXPT.GPS.TO NE3 U 93 NP 237 NUD MIL ITY 2 150 745238 5 E FAST W CESANA 8010 Cesana+ TABLE. (Within Exfor) 4 EXF0R21644.003 8008 1PNT, TOTAL NUD. NE3 P 93 NP 237 NUD MIL ITY 2 150 743875 6 E FAST P INDC(NDS)-113 8006 Cesana+ LONGCOUNTER+GELI. NE3 P 93 NP 237 NUD MIL ITY 2 150 743874 1 E FAST NC3 P 93 NP 237 NUD SWR SWD 2 150 753766 3 T 5.0+5 J NSE 80 2 238 8202 Rudstam.GP.AVG.FROM NUCL.DATA C 88MITO 885 8805 Tachibana+. GROSS TH. DN-YIELD IN TBL NC2 P 93 NP 237 NUD WDA JPN 2 150 775679 3 T FAST NC4 P 93 NP 237 NUD WIN UK W Priv Comm M.F.James Calulation of total dn. MAXM FAST R YK- 38(3) 29 8000 Sluchevskava+ REL+ABS YLD, ESPEC, TBLS 2 94 PU 242 NUD FEI CCP 4 409 749642 3 R FAST NE5 P 94 PU 242 NUD LAS USA 1 002 653563 6 E 6.4+5 1.3+6 4 EXFOR10117.009 7407 4PTS. NE5 P 94 PU 242 NUD LAS USA 1 150 636650 3 R 1.0+5 1.5+7 S IAEA-169 3 377 7400 Evans. TBL YLD.AT 3 ES+FAST FISSION NE5 P.94 PU 242 NUD LAS USA 1 002 653562 1 E 6.4+5 1.3+6 J NSE 50 80 7301 Evans+REVISED NUD DATA.TBLS. NE5 P 94 PU 242 NUD LAS USA 1 002 062816 3 E 7.0+5 1.3+6 J NSE 47 311 7203 Krick+SPRSDD.DATA REVISED. NC1 P 94 PU 242 NUD LAS USA 1 701 325696 3 D 2.5-2 R LA-UR-88-4118 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. NC1 P 94 PU 242 NUD LAS USA 1 701 325717 3 D FAST J NSE 103 129 8910 Brady+CALC BEHAVIOR FROM PRECURSORS. NC1 X 94 PU 242 NUD LAS USA 1 701 324966 3 D FAST R LA- 11534 8904 Brady.CALC BEHAVIOR FROM PRECURSORS. NC1 P 94 PU 242 NUD LAS USA 1 700 324883 3 D FAST C 88JACKHO 3 229 8809 England+ TBL. 6 GROUP PARAMETERS. NC1 P 94 PU 242 NUD LAS USA 1 700 316231 1 D FAST C 85SANTA 1 739 8505 England+ TBL. CFD ENDF-5, OTHR EVAL. NC1 P 94 PU 242 NUD BNW USA 1 700 314236 3 D FISS J NSE 87 181 8406 Reeder+TBL.CFD ENDF/B, EVALS. NC1 P 94 PU 242 NUD LAS USA 1 700 311920 3 D FAST S BNL-51778 33 8405 England+ TBL.CFD ENDF/B-V. NC1 P 94 PU 242 NUD LAS USA 1 700 310196 3 D FAST J NSE 85 139 8310 England+DELAYED YLDS, AVG SPECTRA E'S NC1 P 94 PU 242 NUD LAS USA 1 700 306516 3 D FAST * ANS 41 567 8206 England+TBL.6 DECAY GP.FRACTIONS

NC1 P 94 PU 242 NUD LAS USA 1 778 301127 3 T 1.0+6 C 79KNOX 800 7910 England+CALC CFD EVAL, EXPTS.TBL. NC1 P 94 PU 242 NUD OKL USA 1 150 708849 3 T FAST * ANS 28 750 7806 Liaw+NUD CALC.TBL.CFD. NE6 P 94 PU 242 NUD LAS USA 1 707 069152 3 E 1.5+7 * ANS 13 760 7011 East+.NEUT ABUNDANCES+HALF-LIVES. NE1 P 94 PU 242 NUD LRL USA 1 780 319236 6 E FISS 4 EXFOR12962.011 8602 .6 PTS. PARTL D/DE. 6 HL GRPS. NE1 P 94 PU 242 NUD LRL USA 1 780 305371 3 E NDG • ANS 39 1 879 8111 Waldo+GRPH YLD VS FCN Z, A OF CN NE1 P 94 PU 242 NUD LRL USA 1 780 314329 1 M FISS J PR/C 23 1113 8103 Waldo+GRPHS, TBLS NEUT. GROUPS * DA/B 41 41471 8010 Waldo+EMISSION YLD MEAS AND CALC.NDG NE1 U 94 PU 242 NUD LRL USA 1 780 303173 3 M NDG NE7 ? 94 PU 242 NUD MIF CCP 4 487 410888 3 E 1.5+7 R MIF-058-88 8809 Gudkov+ C-W. DELAY N-PRECURS YLDS, TBL NC3 P 94 PU 242 NUD SWR SWD 2 150 753770 3 T 5.0+5 J NSE 80 2 238 8202 Rudstam.GP.AVG.FROM NUCL.DATA NC2 P 94 PU 242 NUD WDA JPN 2 150 775741 3 T FAST 885 8805 Tachibana+.GROSS TH.DN-YIELD IN TBL C 88MITO NC4 P 94 CM 242 NUD WIN UK FAST W Priv Comm M.F.James Calulation of total dn.

Table 8

Experimental $\overline{\nu}_d$ values (per 100 fissions).

Nuclide	Ref.	Value from experiment	Weighted. Mean.	internal error	external error	Chi- test	,
237-NP-93F	NEO1 NEO3	1.0680E+00 +/- 9.8000E-02 1.2200E+00 +/- 3.0000E-02	1.2070E+00	2.8686E-02	4.2544E-02	13.81	
242-PU-94F	NEO5 NEO1	1.5000E+00 +/- 5.0000E-01 1.9700E+00 +/- 2.3000E-01	1.8879E+00	2.0895E-01	1.7844E-01	39.31	
242-AM-95T	NE01	6.8800E-01 +/- 4.5000E-02					
245-CM-96T	NE01	5.9200E-01 +/- 3.9000E-02					

Table 9

Nuclide	Ref.	Value from summation.	Wt. mean from experiments.
237-NP-93F	NCO1 NCO2 NCO3 NCO4	1.1400E+00 +/- 1.2000E-01 1.3100E+00 +/- 5.0000E-01 1.2000E+00 +/- 1.5000E-01 1.1812E+00 +/- 8.6000E-02	1.2070 +/- 0.05
237-NP-93H	NC01	9.7000E-01 +/- 1.1000E-01	
237-NP-93T	NCO4	1.1779E+00 +/- 1.4600E-01	
242-PU-94F	NC01 NC02 NC03 NC04	1.4300E+00 +/- 1.4000E-01 1.3920E+00 +/- 5.0000E-01 1.2400E+00 +/- 1.3000E-01 1.8183E+00 +/- 1.4000E-01	1.8879 +/- 0.18
242-AM-95F	NC04	5.6540E-01 +/- 9.2000E-02	
242-AM-95T	NCO1 NCO4	7.8000E-01 +/- 9.0000E-02 6.1210E-01 +/- 8.3000E-02	0.688 +/- 0.05
243-AM-95F	NCO1 NCO4	8.0000E-01 +/- 9.0000E-02 8.6610E-01 +/- 1.1800E-01	· · · · · · · · · · · · · · · · · · ·
243-AM-95T	NCO4	8.7010E-01 +/- 1.4300E-01	
243-CM-96T	NC04	2.0910E-01 +/- 4.4000E-02	
243-CM-96F	NCO4	2.2970E-01 +/- 6.6000E-02	
245-CM-96T	NCO1 NCO4	6.4000E-01 +/- 9.0000E-02 4.7650E-01 +/- 8.3000E-02	0.592 +/- 0.04
245-CM-96F	NCO4	4.8870E-01 +/- 1.0900E-01	

 v_{d} values from summation calculations (per 100 fissions).

APPENDIX A:

Data tables of fission product yields.

LIST OF CONTENTS:

TABLE	Nuclide	Neutron Energy, Yield type.
A1.1	Np237	Fast, cumulative yleids.
A1.2	Np237	High, cumulative yields.
A1.3	Np237	Thermal, cumulative yields.
A1.4	Np237	Fast, fractional cumulative yields.
A1.5	Np237	Thermal, fractional independent yields.
A1.6	Np237	Fast, fractional independent yields.
A1.7	Np237	Fast, ternary yields.
A1.8	Np237	High, ternary yields.
A1.9	Np237	Thermal, ternary yields.
A2.1	Pu242	Fast, cumulative yields.
A2.2	Pu242	High, cumulative yields.
A2.3	Pu242	Spontaneous, cumulative yields.
A2.4	Pu242	Spontaneous, cumulative yields relative to I-131.
A3.1	Am242m	Thermal, fractional independent yields.
A3.2	Am242m	Thermal, ternary yields relative to He-4.
A3.3	Am242m	Fast, cumulative yields.
A3.4	Am242m	Thermal, cumulative yields.
A4.1	Cm243	Fast, cumulative yields.
A4.2	Cm243	Thermal, cumulative yields.
A5.1	Cm245	Fast, cumulative yields.
A5.2	Cm245	Thermal, cumulative yields.
A5.3	Cm245	Thermal, fractional cumulative yields.
A5.4	Cm245	Thermal, fractional independent yields.
A5.5	Cm245	Thermal, independent isomeric splitting ratio

In the tables chain yields are shown as, for example, '101-CH-0' for the chain yield of mass 101.

Weighted averages are only shown where 2 or more experimental measurements exist. Where only one measurement exists, the single measurement itself is recommended. It is stressed that for global calculations where many fission yields values are to be used, a dataset which has been adjusted for conservation laws is recommended, eg as in UKFY2. A1.1 Np237

Cumulative Yield data table for Np237 Fast neutron fission.

									2 2 2 2 2 2 2 2 2 2 2		
Ch1- test			34.58		36.81	0.00		58.76	43.45	1 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
external error	1 2 2 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		6.0000E-03	- 4 5 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.0000E-03	7.6631E-02		2.4706E-03	1.0500E-02	****	
Internal error			6.3640E-03		7.7782E-03	1.6629E-02		4.5555E-03	1.3435E-02	- - - - - - - - - - - - - - - - - - -	
Weighted. Mean.					 7.6900E-01	9.8062E-01	:	 9.5012E-01	1.3065E+00		•
Cumulative Yield and experimental error.	2.6500E-01 +/- 9.0000E-03	4.7560E-01 +/- 8.0000E-03	4.8000E-01 +/- 9.0000E-03 4.9200E-01 +/- 9.0000E-03	7.0550E-01 +/4.0000E-02	7.6200E-01 +/- 1.1000E-02 7.7600E-01 +/- 1.1000E-02	9.9690E-01 +/- 1.7000E-02 6.2000E-01 +/- 8.0000E-02	8.4705E-01 +/- 3.0479E-01	9.4800E-01 +/- 6.0000E-03 9.5300E-01 +/- 7.0000E-03	1.2960E+00 +/- 1.9000E-02 1.3170E+00 +/- 1.9000E-02	1.5540E+00 +/- 2.2000E-01	2.0100E+00 +/- 1.4000E-01
Ref.	YE34	YE09	YE59 YE59	YE09	YE59 YE59	YE09 YE41	YE83	YE59 YE59	YE59 YE59	YE07	YE41
Nucl 1 de	83-BR-35	83-KR-36	83-CH- 0	84-KR-36	84-CH- 0	85-KR-36	85-KR-36M	85-CH- 0	86-CH- 0	87-BR-35	87-KR-36

87-CH- 0	YE59 YE59	1.7270E+00 +/- 1.2000E-02 1.7280E+00 +/- 1.2000E-02	1.7275E+00	8.4853E-03	5.0000E-04	95.30
88-KR-36	YE41 YE83	1.7900E+00 +/- 3.7000E-01 1.8867E+00 +/- 3.2298E-01	1.8449E+00	2.4332E-01	4.7907E-02	84.39
88-CH- 0	YE59 YE59	2.1890E+00 +/- 2.8000E-02 2.2110E+00 +/- 2.8000E-02	2.2000E+00	1.9799E-02	1.1000E-02	57.85
89-SR-38	YE34 YE63	2.0400E+00 +/- 8.0000E-02 1.4560E+00 +/- 1.3000E-01	1.8796E+00	6.8133E-02	2.6067E-01	0.01
90-CH- 0	YE59 YE59	3.2980E+00 +/- 5.2000E-02 3.3660E+00 +/- 5.2000E-02	3.3320E+00	3.6770E-02	3.4000E-02	35.51
91-SR-38	YE34 YE41	4.0400E+00 +/- 1.0300E-01 3.7200E+00 +/- 2.1000E-01	3.9779E+00	9.2476E-02	1.2652E-01	17.13
91-Y -39	YE83	4.3094E+00 +/- 4.2363E-01	-			
91-CH- 0	YE59 YE59 YE61	3.8950E+00 +/- 8.3000E-02 3.9240E+00 +/- 5.4000E-02 3.4000E+00 +/- 3.0000E-01	3.9039E+00	4.4757E-02	7.7150E-02	22.64
92-SR-38	YE41 YE83	3.7800E+00 +/- 1.6000E-01 4.6743E+00 +/- 4.6779E-01	3.8737E+00	1.5139E-01	2.7384E-01	7.05
92-Y -39	YE41	3.3700E+00 +/- 2.3000E-01	-			
92-CH- 0	YE59 YE59 YE61	4.4490E+00 +/- 6.4000E-02 4.5020E+00 +/- 9.1000E-02 3.7000E+00 +/- 4.0000E-01	4.4536E+00	5.1907E-02	1.0168E-01	14.68

				1 1 1 2 2 2 3 3				
81.69	69.08	2.78	58.85	39.54	0.45		23.65	50.72
1.3020E-02	2.1980E-02	4.5534E-01	2.1997E-02	5.4435E-02	4.0275E-01		6.7721E-02	2.6496E-02
5.6231E-02	5.5250E-02	1.2098E-01	4.0654E-02	6.4052E-02	1.0366E-01		3.9882E-02	3.9947E-02
 5.1261E+00	5.1114E+00	5.8371E+00	 5.6544E+00	5.5078E+00	6.5420E+00	:	 6.1076E+00	6.1170E+00
5.1070E+00 +/- 1.0000E-01 5.1350E+00 +/- 6.8000E-02	5.0970E+00 +/- 6.6000E-02 5.1450E+00 +/- 1.0100E-01	5.3697E+00 +/- 3.2059E-01 5.1200E+00 +/- 4.1000E-01 6.0500E+00 +/- 2.5000E-01 7.2070E+00 +/- 5.6000E-01 5.9300E+00 +/- 3.0000E-01 5.5670E+00 +/- 2.8000E-01 6.1974E+00 +/- 3.2298E-01	5.6760E+00 +/- 5.8000E-02 5.6760E+00 +/- 5.7000E-02	5.4730E+00 +/- 7.6000E-02 5.5930E+00 +/- 1.1900E-01	6.9500E+00 +/- 1.6500E-01 5.6900E+00 +/- 3.1739E-01 6.3700E+00 +/- 1.7000E-01 7.0350E+00 +/- 7.0000E-01 6.3800E+00 +/- 3.2000E-01	6.9989E+00 +/- 4.2363E-01	6.0780E+00 +/- 5.6000E-02 6.1310E+00 +/- 5.7000E-02 7.2000E+00 +/- 7.0000E-01	6.0910E+00 +/- 5.6000E-02
YE59 YE59	YE59 YE59	YE35 YE41 YE43 YE63 YE66 YE66 YE67 YE83	YE59 YE59 YE59	YE59 YE59	YE34 YE35 YE41 YE63 YE66	YE83	YE59 YE59 YE61	YE59
93-CH- 0	94-CH- 0	95-ZR-40	95-CH- 0	96-CH- 0	97 - ZR - 40	97-NB-41	97 - CH- 0	98-CH- 0

99-M0-42	YE34 YE35 YE83	6.9800E+00 +/- 4.0000E-01 6.3870E+00 +/- 3.7565E-01 5.8319E+00 +/- 3.4958E-01	6.3481E+00	2.1557E-01	4.6668E-01	9.60
100-CH- 0	YE59 YE59	6.5150E+00 +/- 6.4000E-02 6.5910E+00 +/- 6.5000E-02	6.5524E+00	4.5604E-02	3.7995E-02	40.48
101-CH- 0	YE59 YE59	6.1180E+00 +/- 1.5500E-01 6.2260E+00 +/- 5.3000E-02	6.2147E+00	5.0149E-02	3.3063E-02	50.97
102-CH- 0	YE59 YE59	5.8260E+00 +/- 1.4800E-01 5.9260E+00 +/- 4.9000E-02	5.9161E+00	4.6517E-02	2.9837E-02	52.12
103-RU-44	YE34 YE41 YE43 YE66 YE67 YE83	4.0400E+00 +/- 2.7000E-01 4.7400E+00 +/- 6.4000E-01 5.7500E+00 +/- 2.9000E-01 5.8900E+00 +/- 3.0000E-01 6.0800E+00 +/- 3.1000E-01 5.8965E+00 +/- 3.4958E-01	5.4083E+00	1.3159E-01	8.0459E-01	0.00
104-CH- 0	YE59 YE59	4.1620E+00 +/- 1.0600E-01 4.2310E+00 +/- 3.7000E-02	4.2235E+00	3.4933E-02	2.1469E-02	53.88
105-RU-44	YE41	2.9400E+00 +/- 1.9000E-01				
105-RH-45	YE34 YE83	2.7500E+00 +/- 1.6400E-01 3.1519E+00 +/- 3.2298E-01	2.8324E+00	1.4623E-01	1.6224E-01	26.72
106-RU-44	YE34 YE83	1.5600E+00 +/- 2.0000E-02 1.8867E+00 +/- 3.0591E-01	1.5614E+00	1.9957E-02	2.1268E-02	28.66
106-CH- 0	YE59 YE59	2.3130E+00 +/- 2.6000E-01 2.6250E+00 +/- 1.6600E-01	2.5346E+00	1.3991E-01	1.4151E-01	31.18

•

•

		YE35 YE63	1.1493E-01 +/- 3.0007E-01 1.7170E-01 +/- 5.0000E-02				
	112-PD-46	YE34	7.2000E-02 +/- 3.0000E-03				
	113-AG-47	YE34	4.5000E-02 +/- 3.0000E-03				
	115-CD-48	YE35	4.9929E-02 +/- 3.0001E-01				
·	115-CD-48G	YE83	3.4097E-02 +/- 3.0003E-01	-		,	
	115-CD-48T	YE34 YE63	4.1000E-02 +/- 1.0000E-03 3.6400E-02 +/- 1.3000E-02	4. 0973E-02	9.9705E-04	3.5176E-04	72.42
	121-SN-50	YE34	4.7000E-02 +/- 1.3000E-03				
	125-SN-50	YE34 YE63	1.2600E-01 +/- 3.0000E-03 1.4700E-01 +/- 1.5000E-02	1.2681E-01	2.9417E-03	4.0385E-03	16.98
48	125-SB-51	YE71 YE83	1.5800E-01 +/- 8.0000E-03 1.7150E-01 +/- 3.0024E-01	1.5801E-01	7 . 9972E-03	3.5946E-04	96.41
	125-CH- 0	YE58 YE59 YE59 YE59	9.0000E-02 +/- 9.0000E-03 8.0000E-02 +/- 9.0000E-03 9.2000E-02 +/- 1.0000E-02	8.7018E-02	5.3689E-03	5.2770E-03	61.69
	126-CH- 0	YE58	1.5000E-01 +/- 1.5000E-02	************			
	127-SB-51	YE34 YE63 YE83	9.1600E-01 +/- 4.0000E-02 4.1900E-01 +/- 4.0000E-02 3.2183E-01 +/- 3.0095E-01	6.6447E-01	2.8160E-02	2.4950E-01	0.00
	127-CH- 0	YE58	3.3000E-01 +/- 3.3000E-02				

· •

129-SB-51	YE41	1.0700E+00 +/- 1.1000E-01				
129-TE-52	YE34	2.6000E+00 +/- 1.0000E-01				
129-1 -53	YE83	1.6726E+00 +/- 3.0479E-01				
129-CH- 0	YE58	1.5200E+00 +/- 1.5200E-01				
130-SB-51	YE41	6.4000E-01 +/- 1.3000E-01				.
130-CH- 0	YE58	2.3700E+00 +/- 2.3700E-01				
131-TE-52	YE41	7.1000E-01 +/- 8.0000E-02		* * 4 * 8 * 2 * 2 * 8 * 4 *		
131-1 -53	YE35 YE41 YE83	3.2689E+00 +/- 3.9947E-01 3.7400E+00 +/- 2.3000E-01 4.3633E+00 +/- 3.4958E-01	3.8044E+00	1.7315E-01	3.6451E-01	10.91
131-XE-54	YE09 YE71	3.6260E+00 +/- 2.0000E-02 3.2500E+00 +/- 1.6000E-01	3.6202E+00	1.9846E-02	4.6277E-02	1.97
131-CH- 0	YE58 YE59 YE59 YE59	4.2070E+00 +/- 4.2070E-01 3.6800E+00 +/- 6.1000E-02 3.7590E+00 +/- 6.1000E-02	3.7246E+00	4.2909E-02	6.3171E-02	33.83
132-TE-52	YE34 YE35 YE41 YE63	6.3300E+00 +/- 3.6000E-02 6.3308E+00 +/- 3.6463E-01 3.6800E+00 +/- 2.3000E-01 5.5650E+00 +/- 5.6000E-01	6.2644E+00	3.5328E-02	4.0462E-01	0.00
132-1 -53	YE83	5.6817E+00 +/- 4.6779E-01	•			
132-XE-54	YE71	4.8600E+00 +/- 2.4000E-01	• • •			

		14.15			83.46		78.89		85.63	20.44	0.00
		5.1928E-01			2.3983E-02		9.7051E-02		1.9871E-02	2.8545E-01	9.6214E-01
		2.6256E-01			3.9879E-02		3.6243E-01		3.5668E-02	2.2491E-01	2.2014E-01
		7.1363E+00	:		6.7042E+00		6.2104E+00		7.4954E+00	6.4885E+00	6.0792E+00
5.0340E+00 +/- 3.6000E-02 5.0620E+00 +/- 3.5000E-02 5.1000E+00 +/- 5.0000E-01	3.6800E+00 +/- 3.4000E-01	6.0478E+00 +/- 6.2333E-01 7.4600E+00 +/- 3.5000E-01 7.1784E+00 +/- 5.1511E-01	6.4152E+00 +/- 1.0000E-01	6.9600E+00 +/- 3.5000E-01	6.8700E+00 +/- 6.8700E-01 6.6820E+00 +/- 5.6000E-02 6.7260E+00 +/- 5.7000E-02	3.6800E+00 +/- 6.6000E-01	6.0500E+00 +/- 7.0000E-01 6.2691E+00 +/- 4.2363E-01	7.1442E+00 +/- 3.1000E-02	7.9370E+00 +/- 7.9370E-01 7.4940E+00 +/- 5.1000E-02 7.4950E+00 +/- 5.0000E-02	6.3500E+00 +/- 2.5000E-01 7.0767E+00 +/- 5.1511E-01	5.0400E+00 +/- 3.2403E-01 6.9700E+00 +/- 3.0000E-01
YE59 YE59 YE61	YE41	YE35 YE41 YE83	YE09	YE71	YE58 YE59 YE59	YE41	YE41 YE83	YE09	YE58 YE59 YE59	YE41 YE83	YE35 YE41
	133-TE-52	133-I -53	133-XE-54	133-CS-55	133-CH- 0	134-TE-52	134-I -53	134-XE-54	134-CH- 0	135-1 -53	135-XE-54

135-CH- 0	YE58 YE59	7.5100E+00 +/- 7.5100E-01 7.5460E+00 +/- 5.9000E-02 7.6240E+00 +/- 6.1000E-02	7.5835E+00	4.2341E-02	3.9137E-02	65.23
136-XE-54	YE09 YE71	6.6388E+00 +/- 4.4000E-02 6.5900E+00 +/- 3.3000E-01	6.6379E+00	4.3614E-02	6.3930E-03	88.35
136-BA-56	YE57	6.1800E-02 +/- 1.5000E+00				
136-CH- 0	YE58 YE59 YE59 YE59	6.5900E+00 +/- 6.5900E-01 6.8350E+00 +/- 5.1000E-02 6.8450E+00 +/- 5.0000E-02	6.8394E+00	3.5651E-02	1.4403E-02	92.16
137-I -53	YE07	2.4360E+00 +/- 5.0000E-01			***	
137-CS-55	YE52 YE63 YE66 YE83	6.4000E+00 +/- 1.0000E+00 6.5420E+00 +/- 6.5000E-01 6.5000E+00 +/- 3.2000E-01 6.5204E+00 +/- 4.6779E-01	6.5052E+00	2.3768E-01	2 . 9678E-02	99.95
137-CH- 0	YE58 YE59 YE59	6.2030E+00 +/- 6.2030E-01 6.3620E+00 +/- 5.0000E-02 6.4290E+00 +/- 5.1000E-02	6.3942E+00	3.5645E-02	3.5203E-02	61.41
138-CS-55	YE41	6.4800E+00 +/- 6.3000E-01				
138-CH- 0	YE58 YE59 YE59 YE59	6.2900E+00 +/- 6.2900E-01 6.2090E+00 +/- 4.6000E-02 6.2420E+00 +/- 4.5000E-02	6.2260E+00	3.2126E-02	1.6796E-02	87.23
139-BA-56	YE41 YE83	5.1100E+00 +/- 6.2000E-01 6.1555E+00 +/- 4.2363E-01	5.8227E+00	3.4978E-01	4.8700E-01	16.38

•

	YE59	5.8160E+00 +/- 1.9300E-01					
140-CS-55	YE65	5.4100E+00 +/- 2.0000E-01			·		
140-BA-56	YE41 YE43 YE52 YE63 YE66 YE67	6.4000E+00 +/- 2.8000E-01 5.7900E+00 +/- 2.9000E-01 5.8000E+00 +/- 1.0000E+00 5.8550E+00 +/- 6.0000E-01 5.7400E+00 +/- 2.9000E-01 5.6500E+00 +/- 2.9000E-01	- 5.8994E+00	1.3840E-01	2.9018E-01	49.39	
140-LA-57	YE41	6.0800E+00 +/- 2.7000E-01					
140-CH- 0	YE58 YE59 YE59 YE59 YE61	5.5930E+00 +/- 5.5930E-01 5.4730E+00 +/- 4.2000E-02 5.5010E+00 +/- 3.7000E-02 5.9000E+00 +/- 6.0000E-01	- 5.4899E+00	2.7700E-02	2.4037E-02	86.07	
141-CE-58	YE34 YE35 YE83	4.9700E+00 +/- 2.3400E-01 6.2835E+00 +/- 3.1739E-01 6.7537E+00 +/- 3.4958E-01	5.7298E+00	1.6581E-01	7.8064E-01	0.00	
141-CH- 0	YE58	5.0470E+00 +/- 5.0470E-01	-				
142-LA-57	YE41 YE83	4.2600E+00 +/- 2.0000E-01 4.7198E+00 +/- 5.1511E-01	4.3202E+00	1.8644E-01	1.5514E-01	40.53	
142-CH- 0	YE58 YE59 YE59 YE59	4.5430E+00 +/- 4.5430E-01 4.9150E+00 +/- 3.3000E-02 4.9270E+00 +/- 3.8000E-02	4.9190E+00	2.4 879E-02	2.1459E-02	68.94	
143-CE-58	YE34 YE35 YE41	3.6000E+00 +/- 7.4000E-01 5.2189E+00 +/- 3.2059E-01 3.3900E+00 +/- 2.6000E-01	4.3634E+00	1.7017E-01	9.1670E-01	0.00	

• .

5 2

.

143-ND-60	YE71	5.0400E+00 +/- 2.5000E-01				
143-CH- 0	YE58 YE59 YE59 YE59	4.5470E+00 +/- 4.5470E-01 4.7000E+00 +/- 3.5000E-02 4.7300E+00 +/- 3.6000E-02	4.7141E+00	2.5057E-02	1.7583E-02	78.18
144-CE-58	YE34 YE35 YE63 YE83	2.3500E+00 +/- 1.3000E-02 4.7762E+00 +/- 3.4007E-01 4.6390E+00 +/- 5.0000E-01 4.6121E+00 +/- 3.2298E-01	2.3587E+00	1.2976E-02	1.4241E-01	0.00
144-ND-60	YE71	4.4600E+00 +/- 2.2000E-01				
144-CH- 0	YE58 YE59 YE59	4.0070E+00 +/- 4.0070E-01 4.1590E+00 +/- 2.9000E-02 4.1890E+00 +/- 3.0000E-02	4.1730E+00	2.0822E-02	1.7285E-02	70.85
145-ND-60	YE71	3.7000E+00 +/- 1.8000E-01				
145-CH- 0	YE58 YE59 YE59 YE59	3.3500E+00 +/- 3.3500E-01 3.4840E+00 +/- 2.4000E-02 3.5060E+00 +/- 2.5000E-02	3.4942E+00	1.7290E-02	1.3266E-02	74.50
146-ND-60	YE71	2.9800E+00 +/- 1.5000E-01				. ·
146-CH- 0	YE58 YE59 YE59 YE59	2.7270E+00 +/- 2.7270E-01 2.8000E+00 +/- 2.0000E-02 2.8160E+00 +/- 2.1000E-02	2.8074E+00	1.4462E-02	9.0495E-03	82.22
147-ND-60	YE34 YE35 YE63 YE83	1.7300E+00 +/- 2.5000E-01 3.0240E+00 +/- 3.3161E-01 2.4510E+00 +/- 3.0000E-01 2.4526E+00 +/- 3.0591E-01	2.3165E+00	1.4603E-01	4.7218E-01	1.51

.

5 Vi

》는 2000년에 100년에 93.84 42.20 3.85 85.18 28.15 77.87 27.82 3.6418E-03 3.7622E-01 1.2745E+00 6.3560E-03 4.4950E-03 9.8636E-01 7.0520E-03 3.9941E-03 8.4097E-01 2.2124E-01 1.7764E-01 7.1170E-01 4.2334E-03 6.7409E-03 4.5156E-03 1.7398E+00 1.0216E-02 1.2363E+00 1.8183E-01 2.8229E-03 4.5747E-01 9.8000E-01 +/- 2.2000E-01 1.7886E+00 +/- 3.2298E-01 2.2220E+00 +/- 1.8000E-02 .2700E+00 +/- 9.0000E-03 1.2790E+00 +/- 9.0000E-03 1.7710E+00 +/- 3.2771E-01 1.0400E+00 +/- 5.0000E-02 L.6800E+00 +/- 1.6800E-01 L.7400E+00 +/- 1.5000E-02 L.2730E+00 +/- 1.2730E-01 .7400E+00 +/- 1.4000E-02 9.6000E-01 +/- 9.6000E-02 1.0080E+00 +/- 3.0368E-01 6.5204E-01 +/- 3.2298E-01 6.4300E-01 +/- 6.4300E-02 .5000E-01 +/- 4.5000E-02 9.9000E-01 +/- 1.0000E-02 7.0700E-01 +/- 6.0000E-03 7.1700E-01 +/- 6.0000E-03 4.7258E-01 +/- 3.0149E-01 9.8300E-01 +/- 1.0000E-02 .5300E-01 +/- 4.0000E-03 4.6200E-01 +/- 4.0000E-03 YE35 YE59 YE58 YE59 YE41 YE83 **YE59 YE59** YE59 **YE58** YE71 **YE35** YE58 **YE83 YE58 YE83** YE59 **YE59 YE58** YE59 YE59 **res**9 YE59 148-CH- 0 149-ND-60 149-PM-61 149-CH- 0 150-ND-60 150-CH- 0 151-CH- 0 151-PM-61 152-CH- 0 153-PM-61 .

				유부학회 유유학 위원 유유학 유민준		
				6.9000E-02 +/- 3.0000E-02	YE34	159-60-64
				9.4000E-02 +/- 3.0000E-02	YE34	157-EU-63
14.21	1.4663E-03	9.9875E-04	9.0073E-02	9.0000E-02 +/- 1.0000E-03 1.1940E-01 +/- 2.0000E-02	YE34 YE63	156-EU-63
7.71	2.5000E-03	1.4142E-03	1.8550E-01	1.8300E-01 +/- 2.0000E-03 1.8800E-01 +/- 2.0000E-03	YE59 YE59	154-CH- 0
				1.8400E+00 +/- 9.0000E-02	YE71	154-ND-60

Cumulative Tield data table for Mp237 Righ energy neutron fission.

Nuclide	Rof.	Cumulative Tield and	Weighted.	internal	external	chi-
		experimental error.	Mean.	• T T O T	+ L L O L	test
91-SR-38	YE33	2.71006+00 +/- 2.50006-01				
93-Y - 39	YE33					
97-28-40	YE33					
99-M0-42	YE33					
105-RH-45	YE33					
109-PD-46	YE33					
111-AG-47	YE33					
112-PD-46	YE33					
115-CD-48T	YE33	1.23006+00 +/~ 5.00006-02				
127-SB-51	YE33		11 11 11 11 11 11 11 11 11 11 11 11 11			
131-1 -53	YE33	3.55005400 +/- 5.90005-01				
131-X•-54	YE37	4.01205+00 +/- 8.20005-01				
132-TE-52	YE33	4.29006+00 +/- 7.40006-01				
134-Xe-54	YE37					
136-X+54	YE37	4.99345+00 +/- 1.00005+00				
139-BA-56	YE33	4.84006+00 +/- 3.50006-01				
140-81-56	YE33	4.89006+00 +/- 3.50006-01				
143-CE-56	YE33	3.60006+00 +/- 7.40006-01				
147-MD-60	TE33	1.73006+00 +/- 2.50006-01				
153-SM-62	YE33	3.20005-01 +/- 2.50005-02				
157-EU-63	TE33	9.40006-02 +/- 3.00006-02				
159-GD-64	YE33	6.90008-02 +/- 3.00008-02				
		机电子 化合金化合金 化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化				

Cumulative Yield data table for Np237 Thermal neutron fission.

Nuclide	R•f.	Cumulative Yield and experimental error.	Weighted. Mean.	internal error	external error	Chi- test =====
83-KR-36	TE09	4.5700E-01 + / - 1.9600E-01				*******
######################################	TE09	9.50705-01 +/- 2.80005-02	*********			*******
A5-CH- 0	YE45	1.0400E+00 +/- 8.0000E-02				
	1643		*************	******		*******
88-CH- 0	TE45	2.2400E+00 +/- 1.7000E-01	***************			*******
91-CH- 0	YE45	3.6700E+00 +/- 2.6000E-01				
92-CH- 0	YE45	4.1800E+00 +/- 2.4000E-01				
93-CH- 0	¥E45	4.8000E+00 +/- 4.5000E-01				
94-CH- 0	YE45	5.0200E+00 +/- 5.5000E-01		**************		
95-CH- 0	TE45	5.7200E+00 +/- 4.4000E-01	₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		₽₩₽₩ ₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
97-CH- 0	YE45	5.8800E+00 +/- 2.9000E-01	******		************	
99-CH- 0	YE45	6.6500E+00 +/- 3.7000E-01	**************			*******
101-CH- 0	YE45	6.8000E+00 +/- 6.2000E-01			***********	*******
103-CH- 0	TE45	5.8700E+00 +/- 4.3000E-01	*************	**************		
104-CH- 0	YE45	3.8900E+00 +/- 2.9000E-01		************		
#=====================================	YE45	2.6000E+00 +/- 2.5000E-01	*************			
115-CH- 0	********	1.3100E-02 +/- 1.2000E-03	****	*************	******	*******
	*******		*************			
12/-CH- U			*************			*******
129-CH- 0	TE45 Reesseer	9.9000E-01 +/- 1.3000E-01	***********		******	
131-XE-54	¥E09 	2.8940E+00 +/- 5.0000E-02				
131-CH- 0	YE45	3.51002+00 +/- 2.80002-01	*************			
132-CH- 0	YE45	4.3000E+00 +/- 3.4000E-01				
133-CH- 0	YE45	6.5500E+00 +/- 3.6000E-01				
134-XE-54	YE09	7.0520E+00 +/- 1.3000E-01				
134-CH- 0	YE45	6.6200E+00 +/- 5.5000E-01				
135-CH- 0	YE45	7.7700E+00 +/- 3.5000E-01				
136-XE-54	YE09	6.7940E+00 +/- 1.3000E-01	∎£₽₩₽₩₩₩₩₩₩₩₩₩₩₩	************	*****	· = = = = ≠ ≠ ≠ ≠ ≠
			*****	*******		

6.1400E+00 +/- 4.7000E-01 6.1100E+00 +/- 4.0000E-01 5.0300E+00 +/- 4.0000E-01 5.1000E+00 +/- 3.7000E-01 1.7000E+00 +/- 2.5000E-01 8.1000E-01 +/- 1.2000E-01 1.2000E-01 +/- 4.0000E-02 6.2300E+00 +/- 3.8000E-01 2.8700E+00 +/- 3.6000E-01 2.5700E+00 +/- 2.1000E-01 TE45 141-CH- 0 149-CH- 0 138-CH- 0 140-CH- 0 146-CH- 0 147-CH- 0 151-CH- 0 156-CH- 0 142-CH- 0 143-CH- 0

Np237

A1.4

Fractional Cumulative Yield data table for Mp237 Past neutron fission.

.

Nuclide	Ref.	Fractional Cumulative Tield and experimental error.	Weighted. Mean	internal	external error	chi-
134-TE-52	TE36					
135-1 -53	YE36					
138-XE-54	YE36	8 8 500 E-01 +/- 8 4000 E-02				
		● 決制的 新闻 化化酶 化间隙 机动物 化间的分子 计分子分子 化合物 化合物 化合物				

i i paoi	

.

.

•					
R¢f.	Practional Independent Tield and experimental error.	Weighted. Mean.	internal error	external error	Chi- test
YE45	3.2600E-01 +/- 7.4000E-02	************	****************	*******	
YE45	1.0200E-01 +/- 1.8000E-02				
YE63 YE75	1.4330E-03 +/- 1.0000E-04 2.0760E-03 +/- 1.2000E-04	1.6965E-03	7.6822E-05	3.1623E-04	0.00
	R • f . 	Ref. Fractional Independent Yield and experimental error. YE45 3.2600E-01 +/- 7.4000E-02 YE45 1.0200E-01 +/- 1.8000E-02 YE63 1.4330E-03 +/- 1.0000E-04 YE75 2.0760E-03 +/- 1.2000E-04	Ref. Fractional Independent Yield and experimental error. Weighted. Mean. YE45 3.2600E-01 +/- 7.4000E-02 YE45 1.0200E-01 +/- 1.8000E-02 YE63 1.4330E-03 +/- 1.0000E-04 YE75 2.0760E-03 +/- 1.2000E-04	Ref. Fractional Independent Yield Weighted. internal and experimental error. Mean. error YE45 3.2600E-01 +/- 7.4000E-02 YE45 1.0200E-01 +/- 1.8000E-02 YE63 1.4330E-03 +/- 1.0000E-04 YE75 2.0760E-03 +/- 1.2000E-04	Ref. Fractional Independent Yield Weighted. internal external and experimental error. Mean. error error YE45 3.2600E-01 +/- 7.4000E-02 YE45 1.0200E-01 +/- 1.8000E-02 YE63 1.4330E-03 +/- 1.0000E-04 YE75 2.0760E-03 +/- 1.2000E-04

Fractional Independent Yield data table for Np237 Thermal neutron fission.

Np237 A1.6

Fractional Independent Yield data table for Mp237 fast neutron fission.

test	• FFOF	Mean.	and experimental error.	• DTT 3 DU
		Weighted.	Fractional independent field	

A1.7

Ternary yield data table for Mp237 for Fast fission.

Nuclid.	Rof.	Ternary yield and	Weighted.	internal	external	chi-
		experimental error.	Mean.	+ <i>L'</i> 0 <i>L</i>	error	test
			化复数化物化物的			
C . 20. 4						

Np237

Ternary yield data table for Np237 for High energy fission.

Nuclide	Ref.	Ternary yield and experimental error.	Weighted. Mean.	internal error	external error	Chi- test ******
4-HE- 2	YE42	2.4470E-01 +/- 1.9000E-02				
1-H - 1	YE42	1.9580E-02 +/- 5.0000E-03				
3-H - 1	YE42	3.4260E-02 +/- 7.0000E-03				

A1.9

Ternary yield data table for Np237 for Thermal fission.

					**************************************	***************************************
				非非常有有有有有不可能的的。""你们就是这些的时候,我们就是这些问题,我们就是这些问题,我们就是这些问题,我们就是这些问题,我们就是这些问题,我们就是这些问题,		
test	<pre>%</pre>		Mean.	experimental error.		
chi-	external	internal	Weighted.	Ternary yield and	Ref.	Nuclide

.

Cumulative Tield data table for Pu242 Fast neutron fission.

Nuclide	Rof.	Cumulative Yield and experimental errors	Weighted. Mean	internal error	external error	Ch1- + + + + + + + + + + + + + + + + + + +
83-CH- 0	TE 59	1.79008-01 +/- 1.00008-03				
84-CH- 0	1659 1	3.44008-01 +/- 2.00008-03				
65-KR-36M	TE 20	3.70008-01 +/- 4.00008-02				
85-CH- 0	TE 59	3.23006-01 +/- 5.00006-03				
86-CH- 0	TE59	5.42005-01 +/- 4.00005-03				
67~88~35	TE07	8.23205-01 +/- 1.58805-01				
87-KR-36	TE 20	1.47006400 4/- 2.30008-01				
87-CH- 0	TE59	6.23005-01 +/- 1.10005-02				
88~KR-36	TE20	7.70008-01 +/- 1.00008-01				
88-CH- 0	TE59	8.36008-01 +/- 7.00008-03				
90-HD-0	159	1.36208+00 +/- 1.20008-02				
80-10 80-10	TE 20	1.77008400 4/- 1.40008-01			# # # # # # # # # # # # # # # # # # #	
91-CH- 0	1259	1.80708+00 +/- 4.80008-02				
92-58-38	TE 2 0	1.93006+00 +/- 1.10006-01				
92-1-39	TE 20	2.15008+00 +/- 2.50008-01				
92-CH- 0	1659	2.17605+00 +/- 5.60005-02			.	
93-Y -39	TE 20	3.32005+00 +/- 6.00005-01				
93-CH- 0	1859	2.8190E+00 +/- 7.2000E-02				
94-63-0	1259	3.13408+00 +/- 8.10008-02				
95-2R-40	TE 20	3.24008+00 +/- 3.80005-01				
9 2 - CH - 0	TE 59	3.6310E+00 +/- 3.6000E-02				
96-CH- 0	6531	4.29205+00 +/- 1.10005-01				
97-ZR-40	TE20	4.78006+00 +/- 3.20006-01				
97-CH- 0	TE59	4.4500E+00 +/- 4.1000E-02				
98-CH- 0	1659	4.84205+00 +/- 4.30005-02				
100-CH- 0	¥659	6.0990E+00 +/- 5.9000E-02				
101-CH- 0	TE59	6.0280E+00 +/- 3.3500E-01				
102-CH- 0	TE59	6.4760E+00 +/- 3.6000E-01				
104-TC-43	TE20	5.5200E+00 +/- 5.5000E-01				

.

				02-03 45.61			0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				 				45-03 90.45		ISE-03 92.05		178-01 0.75			542-03 88.34			19E-03 94.50		
				33E-03 2.000									= R H H H H H H H H H H H H H H H H H H		838-02 2.877		728-02 3.490		35E-02 1.159	- - - - - - - - - - - - - - - - - - -		69E-02 7.47(805-02 2.964		
				08-02 2.68)1E+00 2.39(298+00 3.49		578+00 4.33			37 2 +00 5.09	- F F F F F F F		215+00 4.29		
1	1			906-5 9	2	2					2		2		2 3.089		1 4.492		1 6.785			0 7.503	1	1	0 6.982 2		
+/- 3.7800E-0	+/- 4.30006-0	+/- 4.700E-0	+/- 3.2800E-0	+/- 3.000E-0 +/- 6.000E-0	+/- 3.5000E-0	+/- 6.8000E-0	+/- 4.1000E-0	+/- 1.0800E-0	+/- 7.4000E-0	+/- 2.1400E-0	+/- 7.000E-0	+/- 3.84008-0	+/- 6.0000E-0	+/~ 2.1000E-0	+/- 6.3300E-0 +/- 2.4000E-0	+/- 3.80005-0	+/- 8.81005-0 +/- 3.50005-0	+/- 4.2005-0	+/- 1.2920E-0 +/- 4.6000E-0	+/- 7.8000E-0	+/- 3.8000E-0	+/- 1.4580E+0 +/- 5.1000E-0	+/- 3.8000E-0	+/- 4.1000E-0	+/- 1.4200E+0 +/- 4.3000E-0	+/- 4.40005+0	
6.84405+00	6.9200E+00	7.48005+00	5.80605+00	6.0000E-02 5.5000E-02	1.75006-01	3.40005-01	6.30005-01	5.40008-01	2.23005+00	1.07002+00	7.10005-01	1.9200E+00	4.10005-01	3.19005+00	3.1650E+00 3.0890E+00	4.64002+00	4.4050E+00 4.4930E+00	7.04005+00	6.82705+00	6.7500E+00	6.83006+00	7.2900E+00 7.5040£+00	6.8300E+00	00+30066.9	7.0800E+00 6.9820E+00	8.10005-03	
7659	TE20	TE 20	TE59	7858 7858 7859	7650	1858	YE20	1653	TE20	TESB	M 1520	TES8	M 7620	TE20	TE58 TE59	TE20	TE58 TE59	**************************************	TESS TESS	TE 20	¥20	YE58 Ye59	YE20	TE20	TE58 TE59	TES7	
104-CH- 0	105-RU-44	105-RH-45	106-CH- 0	125-CH- 0	126-CH- 0	127-CH- 0	128-SN-50	128-CH- 0	129-53-51	129-CH- 0	130-55-51	130-CH- 0	131-75-529	131-1 -53	131-CH- 0	132-1 -53	132-CH- 0	133-I -53	133-CH- 0	134-TE-52	134-1 -53	134-CH- 0	135-I -53	135-XE-54	135-CH- 0	136-BA-56	

				4.3000E-01 +/- 4.0000E-03	YE59 *******	154-CH- 0
00.00	2.35388-02	5.65798-03	7.78312-01	8.4500E-01 +/- 1.7000E-02 7.7000E-01 +/- 6.0000E-03	YE58 YE59 Seese	152-CH- 0
91.03	7.8829E-04	6.99595-03	9.97036-01	1.02008+00 +/- 2.04008-01 9.97008-01 +/- 7.00008-03	YE58 YE59 ####################################	151-CH- 0 ####################################
92.99	1.14285-03	1.2984E-02	1.32795+00	1.3050E+00 +/- 2.6100E-01 1.3280E+00 +/- 1.3000E-02	YE59	150÷CH- 0
90.78	1.15756-03	9.99546-03	1.6020E+00	1.64005+00 +/- 3.28005-01 1.60205+00 +/- 1.00005-02	TE58 TE59	149-CH- 0
	n Fi N N N N			1.5100E+00 +/- 1.4000E-01	TE20	149-10-60
91.32	1.7433E-03	1.5987E-02	2.01795+00	1.97508+00 +/- 3.94008-01 2.01808+00 +/- 1.60008-02	TE58 TE59	148-CH- 0
99.17	1.7686E-04	1.69895-02	2.3800E+00	2.37508+00 +/- 4.80008-01 2.38008+00 +/- 1.70008-02	7858 7859	147-CH- 0
94.92	1.21085-03	1.8990E-02	2.92205+00	2.8850E+00 +/- 5.8000E-01 2.9220E+00 +/- 1.9000E-02	YE58 Ye59	146-CH- 0
92.01	2.20425-03	2.19885-02	3.40695+00	3.34008+00 +/- 6.68008-01 3.40708+00 +/- 2.20008-02	YE58 Ye59	145-CH- 0
88.55	4.02915-03	2.79645-02	4.2849E+00	4.16508+00 +/- 8.33008-01 4.28508+00 +/- 2.80008-02	TE58 TE59	144-CH- 0
91.33	3.48005-03	3.19805-02	4.59795+00	4.5000E+00 +/- 9.0000E-01 4.5980E+00 +/- 3.2000E-02	TE58 Te59	143-CH- 0
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.9500E+00 +/- 3.000E-01	TE20	143-CK-58
98.46	1.09795-03	5.68938-02	4.6371E+00	4.6550E+00 +/- 9.3100E-01 4.6370E+00 +/- 5.7000E-02	TE58 Te59	142-CH- 0
				4.6300£+00 +/- 3.7000£-01	TE 20	142-LA-57
				5.25508+00 +/- 1.05108+00	TES8	141-CH- 0
85.26	1.26145-02	6.7882E-02	5.5607E+00	5.77508+00 +/- 1.15508+00 5.56008+00 +/- 6.80008-02	7258 7259	140-CH- 0
				6.4900E+00 +/- 7.8000E-01	¥620	140-LA-57
*				6.7000E+00 +/- 6.9000E-01	Y 5 2 0	140-84-56
99.15	1.30785-03	1.23362-01	6.0671E+00	6.0800E+00 +/- 1.2200E+00 6.0670E+00 +/- 1.2400E-01	7658 7659	139-CH- 0
				5.8700E+00 +/- 3.7000E-01	¥20	139-BA-56
98.02	1.70605-03	6.68955-02	6.2191E+00	6.2500E+00 +/- 1.2500E+00 6.2190E+00 +/- 6.9000E-02	7858 7859	138-CH- 0
98.10	1.04475-03	4.3973E-02	6.34002+00	6.3100E+00 +/- 1.2620E+00 6.3400E+00 +/- 4.4000E-02	YE58 YE59	137-CH- 0
				3.55256+00 +/- 1.57006+00	TE07	137-I -53

Cumulative Yield data table for Pu242 High energy neutron fission.

Nuclide	Ref.	Cumulative Yield and experimental error.	Weighted. Nean	internal error	external	Chi- test
*********				********	********	******
85-KR-36M	YE18	6.7200E-01 +/- 7.1000E+00		· · · · · · · · · · · · · · · · · · ·		
87-KR-36	TE18	9.9300E-01 +/- 7.6000E+00				
88-KR-36	YE18	1.1600E+00 +/- 8.1000E+00	*************			
89-RB-37	YE18	1.3300E+00 +/- 1.1000E+01		************		******
91-SR-38	YE18	2.1100E+00 +/- 7.1000E+00	*******			
91-T -39M	YE18	2.0300E+00 +/- 7.9000E+00				
92-SR-38	YE18	2.2600E+00 +/- 1.3000E+01				
92-7 -39	TE18	2.4900E+00 +/- 1.2000E+01				
93-Y -39	YE18	2.6000E+00 +/- 1.3000E+01	***************		**************	
94-Y -39	YE18	2.7900E+00 +/- 1.0000E+01			▝▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖	*******
95-2R-40	YE18	3.3700E+00 +/- 8.9000E+00	*************	**********	*==================	
97-ZR-40	YE18	4.2300E+00 +/- 7.5000E+00	***************	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		
97-NB-41	YE18	4.2200E+00 +/- 7.1000E+00				
99-M0-42	YE18	4.9700E+00 +/- 7.2000E+00		***********		
99-TC-43M	YE18	4.7000E+00 +/- 7.4000E+00				
101-TC-43	YE18	5.0400E+00 +/- 9.9000E+01			***********	
103-RU-44	YE18	5.6400E+00 +/- 7.9000E+01	*********		**************	1995223439
104-TC-43	YE18	5.4500E+00 +/- 1.2000E+01	**********	***************************************		
105-RU-44	YE18	5.5800E+00 +/- 7.5000E+00			****************	*******
105-RH-45	YE18	5.4200E+00 +/- 7.9000E+00				
107-RH-45	YE18	3.8000E+00 +/- 1.0000E+01		·····································		
109-PD-46	YE18	2.5300E+00 +/- 8.6000E+00	********	°≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈		
111-PD-46M	YE18	9.4000E-05 +/- 6.4000E+01	*********		■■==================================	
111-AG-47	YE18	2.2000E+00 +/- 1.1000E+01				
112-PD-46	YE18	1.9200E+00 +/- 7.2000E+00				
113-AG-47G	YE18	1.6000E+00 +/- 1.0000E+01			**************	*********
115-CD-48M	YE18	0.0000E+00 +/- 3.5000E+01	*************		***********	********
115-CD-48G	YE18	1.1200E+00 +/- 1.3000E+01				
**************	********	ヰ゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠		************	*************	********

$\begin{array}{c} 5.2700 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		132-I -53 133-TE-52M 133-I -53 133-I -53 134-I -53 135-I -53 135-I -53 135-S5 138-CS-55 138-CS-55 138-CS-55 140-EA-56 140-EA-57 141-CE-56
5.0000E+01 +/- 9.1000E+00	YE18	138-cs-55
4.9300E+01 +/- 7.7000E+00	YE18	139-BA-56
5.1000E+01 +/- 8.7000E+00	7610	135-1 -53
5.5200E+01 +/- 8.9000E+00	7610	
$1.4300\pm00 + 10 + 7 - 1.3000\pm01$ $5.5200\pm01 + 7 - 7.2000\pm00$ $5.6600\pm01 + 7 - 7.6000\pm00$ $5.9900\pm01 + 7 - 1.2000\pm01$	7518 7518 7518 7518	133-TE-52H 133-1 -53 133-XE-54 133-XE-54
3.9100E+00 +/- 6.1000E+00	TE18	131-1 -53
4.5600E+00 +/- 7.4000E+00	TE18	132-15-52
5.2700E+00 +/- 5.3000E+00	TE18	132-1 -53
1.4200E+00 +/- 1.2000E+01	YE18	130-58-51G
2.4000E+00 +/- 1.3000E+01	YE18	131-58-51
1.5900E+00 +/- 1.0000E+01	YE18	131-75-52M
2.0000E+00 +/- 1.0000E+01	YE18	129-58-51
2.1600E+00 +/- 1.0000E+01	YE18	129-TE-52
1.3000E+00 +/- 1.7000E+01 1.2900E+00 +/- 2.0000E+01 6.7800E-01 +/- 1.1000E+01	YE18 YE18 YE18	128-5N-50 128-5N-50 128-58-51A 128-58-510
1.20008-01 +/- 6.0008+01	Y518	126-58-516
1.66008+00 +/- 1.10008+01	Y518	127-58-500
1.87008+00 +/- 1.12008+01	Y518	127-58-51
6.5800E-01 +/- 2.000 \$401	1618	121-5N-50G
6.8400E-01 +/- 1.6000E+01	1618	125-5N-50G
1.3500E+00 +/- 1.8000E+01	1618	125-5B-51
1.51008-01 +/- 2.00008+01 	7819 7819	

•

143-CE-58 TE18 3.6600E+01 +/- 7.1000E+00 144-CE-58 TE18 3.1900E+01 +/- 8.4000E+00 3.1900E+01 +/- 8.4000E+00 2.1800E+01 +/- 8.7000E+00 1.6100E+01 +/- 9.9000E+00 TELS TE18 149-ND-60 146-PR-59

ł

9.1500E+01 +/- 9.7000E+00 TE18 151-PM-61

.

,
A2.3 Pu242

Ternary yield data table for Pu242 for Spontaneous fission.

Nuclide	Ref.	Ternary yield and experimental error.	Weighted. Mean.	internal error	external error	chi- tèst
	2 TE 17	2.73905-01 +/- 2.18005-02				

Pu242

Cumulative yield data table for Pu242 for Spontaneous fission, relative to I-131.

Nuclide	Ref.	Cumulative yield and experimental error.	Weighted. Mean.	internal error	external	Chi-

 131-1 -53	YE22	1.0000E+00		*************	************	********
 132-1 -53	TE22	5.0000E+00 +/- 7.0000E-01		*************	₽\$\$\$\$\$\$ 2 \$ 2 \$ 2 \$ 4 \$ * \$	
 133-I -53	¥E22	5.3000E+00 +/- 7.0000E-01	******			******
 134-I -53	YE22	6.7000E+00 +/- 1.0000E+00	*************		**************	*******
 135-I -53	YE22	4.9000E+00 +/- 8.0000E-01		**************	**************	****

Nuclide Chi-Ref. Fract. independent vield Weighted. internal external and experimental error. test Mean. error error ---------------------______ ----~~~~~~~~~~ 132-1 -53 YE02 4.3000E-02 + / - 1.4000E-02133-XE-54G XE05 1.6400E-03 + / - 1.3000E-04133-XE-54M YE05 4.7100E-03 +/- 4.9000E-04 ****** 133-XE-54T YE05 6.4000E-03 +/- 4.1000E-04 134-I -53 TE02 4.1000E-01 + / - 2.4000E-015.0000E-02 +/- 7.5000E-03 135-XE-54G YE05 _____ _____ 135-XE-54M YE05 8.6900E-02 +/- 5.4000E-03 4.66798-03 1.04316-03 82.32 135-XE-54T YE02 1.3000E-01 +/- 4.0000E-02 1.3888E-01 YE05 1.3900E-01 +/- 4.7000E-03 136-CS-55 TE06 1.0500E-02 +/- 1.3000E-03 140-LA-57 YE02 6.5000E-02 + /- 2.0000E-02

Fractional independent yield data table for Am242m Thermal fission.

Ternary yield data table for Am242m for Thermal fission, relative to He-4 yield.

Nuclide	Ref.	Relative ternary yield	Weighted.	internal	external	chi-
		kiid experisentai error. Akenterestatentakeeseese				
**************************************	YE03	6.2000E-02 +/- 6.000E-03				
		1.0000E+00 +/- 0.0000E+00				
6-HE- 2	T 503					
7-LL- 3	YE03	8.2000E-04 +/- 2.6000E-04				
	TE03					
9-11-3	7603	6.4000E-04 +/- 1.3000E-04				
- - 28 - 6	TEO3	7.50002-04 +/- 1.50002-04				
10-BE-4	TE03					
14-C - 6	YE03	1.4500E-03 +/- 1.5000E-04				
学教科的自然的分别的复数形式		目的目标分化用在分子机关化并分子分子的分子分子的分子的分子的分子				

A3.3

Cumulative Yield data table for Am242m Fast neutron fission.

Nuclide	Ref.	Cumulative Tield and experimental error.	Weighted. Mean.	internal error	external	chi-
87-BR-35	TE07	7.3059E-01 +/- 9.2100E-02				
127		1 112000 1 1 112000 1 .				

15/-I ->3 IEU7 2.436VE+VV +/- 2.300VE-DI

Cumulative yield data table for Am242m for thermal fission.

Nuclide	Ref.	Cumulative Yield and experimental error	Weighted.	internal	external	chi-
83-88-35	7206	2.1100E+00 +/- 4.0000E-01				
83-KR-36	TE09	2.0870E-01 +/- 4.0000E-02				
64-BR-35	7E06	3.21005-01 +/- 5.00005-02			# 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
85-KR-36	TE09	3.5310E-01 +/- 7.0000E-02				
86-KR-36	YE09	4.81505-01 +/- 9.00005-02	· · · · · · · · · · · · · · · · · · ·	***		
88-KR-36	7 Z O 2	9.50006-01 +/- 2.90006-01				
89-SR-38	YE06	9.95008-01 +/- 1.50008-01				
90-58-38	YE06	1.1860E+00 +/- 1.8000E-01				
91-58-38	TE02	2.57006+00 +/- 4.50006-01				
91-T - 39	TE06	1.4610E+00 +/- 2.1000E-01				
92-SR-38	YE02 YE06	2.09006+00 +/- 2.20006-01 1.73006+00 +/- 2.60006-01	1.93985+00	1.6794E~01	1.7752E-01	29.05
92-7 -39	TE02	2.2200E+00 +/- 2.2000E-01				
93-Y -39	TE06	2.13908+00 +/- 3.20008-01			****	
95-28-40	YE06	2.76508+00 +/- 4.15008-01				的科学和同时对
97-28-40	TE06	3.60008+00 +/- 5.44008-01		计相信的有其实的数字的数字的		11 11 11 11 11 11 11
99-M0-42	TE06	4.51002+00 +/~ 6.80002-01				
101-M0-42	YE0 2	8.0005+00 +/- 1.6005+00				同刻教育 教育教育
101-TC-43	TE 02	7.70006+00 +/- 2.70006+00				
103-RU-44	TE06	5.86702+00 +/- 8.80005-01				# 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
104-TC-43	YE02	3.52002+00 +/- 4.30005-01			"我想我想到我我们的村间我的呢!	
105-RU-44	YE02	6.97002+00 +/- 7.70002-01		算過時的异葉素和發展的目的 .		
105-RH-45	YE02	7.40002+00 +/- 1.10002+00				
109-PD-46	YEO6	2.66005+00 +/- 5.30005-01	****			9 9 9 9 9 9
111-46-47	YE06	2.10002+00 +/- 6.00002-01			***	
112-AG-47	YE06	7.3450E-01 +/- 2.0000E-01				# # #
115-CD-48G	YE06	5.90006-02 +/- 9.00006-03			1月月日前前前方有有有有有有有有	
115-CD-48M	7806 ********	4.1300E-02 +/- 7.0000E-03				
						机时间相同机机

				3.0960E+00 +/- 4.6000E-01	YE06	144~CE~58
16.21	6.25748-01	4.47552-01	4.11405+00	4.30008+00 +/- 5.30008-01 4.99008+00 +/- 7.70008-01 3.66708+00 +/- 5.50008-01	TE02 TE02 TE02 YE06	142-EA-57 143-CE-58
				4.3160E+00 +/- 6.5000E-01	YE06	141-CE-58 ************************************
				5.2600E+00 +/- 5.1000E-01	YE02	140-LA-57
				4.9800E+00 +/- 5.2000E-01	YE02	140-84-56
31.64			5.05706+00	6.2000E+00 +/- 1.3000E+00 4.7160E+00 +/- 7.1000E-01	TE02 TE06	139-BA-56
		r 1		6.0000E+00 +/- 2.4000E+00	YE02	138-XE-54
				4.96908+00 +/- 7.5000g-01	TE06	137-cs-55
				9.7090E+00 +/- 7.8000E-01	YE09	136-XE-54
				4.4100E+00 +/- 3.7000E-01	YE02	135-XE-54
		3.06655-01	4.37375+00	4.19008+00 +/- 3.30008-01 5.53608+00 +/- 8.30008-01	YE02 Ye06	135-1 -53
				8.1760E+00 +/- 6.5400E-01	YE09	134-XE-54
23.08	5.18632-01	4.32835-01	5.7335 E +00	6.10002+00 +/- 5.30002-01 4.99962+00 +/- 7.50002-01	7502 7506	134-,1 -53
				6.2000E+00 +/- 6.5000E-01	YE02	134-TE-52
34.20	4.6973E-01	4.9437E-01	5.33642+00	5.78008+00 +/- 6.80008-01 4.83908+00 +/- 7.20008-01	TE02 TE06	133-I53
				4.4600E+00 +/- 5.9000E-01	TE02	133-TE-52
				5.1100E+00 +/- 4.0000E-01	YE02	132-1 -53
	. 6 9 7 8 5 - 0 1		4.35056+00	4.84008+00 +/- 3.80008-01 3.43408+00 +/- 5.20008-01	YE02 YE06	132-TE-52
				3.7050E+00 +/- 2.9600E-01	TE09	131-XE-54
				2.6510E+00 +/- 4.0000E-01	YE06	131-I -53
				2.6900E+00 +/- 5.0000E-01	YE02	131-58-51
				6.5000E-01 +/- 8.0000E-02	Y E O 2	130-SB-51
				1.56008+00 +/- 5.60008-01	YE02	129-SB-51
		•		3.90002-01 +/- 1.80005-01	TE02	128-SB-51
				3.000E-01 +/- 6.000E-02	YE02	128-SM-50
				9.5000E-02 +/- 1.5000E-02	TE06	125-SB-51
	有有有的的有些的情况。		11.11.21.11.11.11.11.11.11.11.11.11.11.1	6.5000E-02 +/- 1.0000E-02	TE06	125-SM-50
				1.5100E-02 +/- 3.0000E-03	YE06	121-58-50

1.3680E+00 +/- 2.0500E-01 1.5400E-02 +/- 5.0000E-03 2.0160E+00 +/- 3.0000E-01 9.7900E-01 +/- 1.5000E-01 6.2760E-01 +/- 1.0000E-01 2.2700E-01 +/- 4.0000E-02 1.2830E-01 +/- 2.6000E-02 TE06 YE06 TE06 YE06 YE06 YE06 TE06 147-ND-60 149-PM-61 161-TB-65 151-PM-61 156-EU-63 153-SM-62 157-EU-63

Cumulative Yield data table for Cm243 Fast neutron fission.

Nuclide	Ref.	Cumulative field and	Weighted.	internal	externel	chi-
		experimental error.	Mean.	eror	error	test
		有非非非非常有有非常有有有有有的。我们们们也是不可以不可能有可能的。				
95-ZR-40	YE11	3.2200E+00 +/- 3.3000E-01				
125-SB-51	TELL	2.1500E-01 +/- 2.6000E-02				

137-CS-55 TE11 6.7600E+00 +/~ 6.6000E-01 Estimate from empirical function, used to normalise T37-CS-55 TE11 6.7600E+00 +/~ 6.6600E-01 Estimate from empirical function, used to normalise

4.8400E+00 +/~ 5.3000E-01 **TELL** 141-CE-58

3.7000E+00 +/- 4.000E-01 YELL 144-CE-58

Cumulative Tield data tables for Cm243 Thermal neutron fission.

Nuclide	Ref.	Cumulative Tield and ernerimental error	Weighted.	internal	external error	chi-
89-RB-37	TE10	1.24005+00 +/- 3.20005-01				
91-SR-38	TE10	1.45008+00 +/- 1.40008-01				
91-T -39M	YE10	8.40008-01 +/- 8.00008-02				
92-52-38	YE10	1.45002+00 +/- 2.60002-01				
96-20-20	YE10	1.76002+00 +/- 2.00005-01				
94-52-38	YE10	1.88002+00 +/- 2.20002-01				# Hill Hill Hill Hill Hill Hill Hill Hil
94-Y -39	TE10	2.34008+00 +/- 3.90008-01		-		
95-ZR-40	TE10	2.31005+00 +/- 2.20005-01			1	N M M M M M
95-MB-41G	7510	2.81005+00 +/- 2.50005-01				
97-ZR-40	t elo	3.77006+00 +/- 3.20005-01				
97-78-416	TE10	3.70005+00 +/- 3.20005-01				
98-NB-41M	YE10	3.70005-01 +/- 4.00005-02				
99-M0-42	¥510	4.6400E+00 +/- 4.0000E-01	# 4 8 8 19 19 19 19 19 19 19 19 19 19 19 19 19		11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
99-TC-43M	YE64 YE10	5.4100E+00 +/- 4.2000E-01 5.1700E+00 +/- 7.4000E-01	5.3515E+00	3.6527E-01	1.0303E-01	77.79
101-M0-42	YE10 YE64	5.79008+00 +/- 8.30008-01 5.49008+00 +/- 1.20008+00	5.6929E+00	6.8262E-01	1.40352-01	83.71
101-TC-43	YE10	6.5300E+00 +/- 7.2000E-01				
102-TC-43G	YE10	6.58008+00 +/- 1.39008+00				
102-TC-43M	YE10	4.00005-02 +/- 4.00005-02				
103-TC-43	¥610	5.40002+00 +/- 1.29002+00				
103-RU-44	TE10	6.0800E+00 +/- 5.1000E-01	-			
104-TC-43	TE10	7.02008+00 +/- 5.90008-01				
105-TC-43	7810 7864 7864	5.5400E+00 +/- 4.7000E-01 6.5900E+00 +/- 1.0000E+00 7.6400E+00 +/- 8.8000E+01	6.0917E+00	3.8297E-01	8.32185-01	9.43
105-RU-44	1610 YE10	6.1300E+00 +/- 6.2000E-01 6.4100E+00 +/- 6.0000E-01	6.2746E+00	4.3116E-01	1.39925-01	74.55
105-RH-45G	TE10	6.52005+00 +/- 5.40005-01				
106-TC-43	YE10 YE64	5.1000E+00 +/- 5.9000E-01 6.8400E+00 +/- 6.4000E-01	5.8994E+00	4.33796-01	8.6713E-01	4.56

50.05	1.1363E-02	9.99978-02	8.0521E-01	8.0000E+01 +/- 1.1000E-01 8.3000E-01 +/- 2.4000E-01	TE10 Te10	136-1 -53M
				6.8000E-01 +/- 2.1000E-01	¥ E 1 O	136-I -53G
				7.2000E-01 +/- 6.0000E-02	YE10	135-XE-54M
83.55	8.79126-02	4.2349E-01	6.08102+00	6.14008+00 +/- 5.10008-01 5.95008+00 +/- 7.60008-01	YE64 YE10	135-XE-540
			3.86505+00	3.8300E+00 +/- 4.0000E-01 3.9000E+00 +/- 4.0000E-01	YE10 YE10	135-1 -53
				1.91006+00 +/- 1.9000E-01	TK10	134-1 ~53M
				5.1700E+00 +/- 4.4000E-01	TELO	133-1 -53G
				4.34008+00 +/- 3.80008-01	TE10	132-I -53G
				4.5000E+00 +/- 4.1000E-01	TE10	132-TE-52
				7.4000E-01 +/- 1.2000E-01	TELO	132-58-51
				3.3500E+00 +/- 2.8000E-01	YE10	131-I -53
				1.1700E+00 +/- 1.1000E-01	TELO	131-TE-52M
79.12	3.73705-02	1.41185-01	2.11995+00	2.1000E+00 +/- 1.6000E-01 2.1900E+00 +/- 3.0000E-01	7264 7210	131-TE-52G
***					1510	131-58-51
37.48	7.3846E-02	8.32055-02	9.3923E-01	1.0500E+00 +/- 1.5000E-01 8.9000E-01 +/- 1.0000E-01	7610 7610	130-58-51M
89.45	2.6008 E -02	5.5085E-02	9.05055-01	8.9000E-01 +/- 9.0000E-02 8.9000E-01 +/- 9.0000E-02 9.5000E-01 +/- 1.1000E-02	7510 7510 7510	130-58-516
				2.6008-01 +/- 9.0008-02	Y E 1 O	130-SN-50G
0) 11 11 11 11 11 11					YE10	129-58-516
					YE10	128-SB-51M
				2.1000E-01 +/- 2.0000E-02	TELO	128-58-510
				3.40002-01 +/- 8.00002-02	TE10	######################################
			\$	**************************************	TE10	######################################
				**************************************		115-18-49M
				2.12008+00 +/- 3.10008-01	YELO	112-40-47
			***	4.34005+00 +/- 6.60005-01	TE10	109-RH-45
49.60			3.52822400	4.18005+00 +/- 1.18005+00 3.19002+00 +/- 8.50005-01	YE10 YE64	108-RU-44
60.32	2.6845E-01	5.1642E-01	5.64546+00	6.22008+00 +/- 1.22008+00 5.52008+00 +/- 5.70008-01	YE10 YE64	107-RH-45
				6.06002+00 +/- 1.72002+00	TE10	107-RU-44

136-CS-55G	7210 7510 7510	4.8000E-01 +/-	- 5.00005-02 - 5.00005-02	4.5500E-01	3.53552-02	2.50008-02	47.95
# # # # # # # # # # # # # # # # # # #	TE10 TE10 TE64	3.32008+00 +/- 3.56008+00 +/- 2.94008+00 +/-	. 4.70005-01 • 4.10005-01 • 4.10005-01	3.1443E+00	1.94355-01	2.6331E-01	39.94
139-X6-54	7610	1.97005+00 +/-	. 3.6008-01			t : : : : : : : : : : : : : : : : : : :	
139-03-55	TE10	6.32005+00 +/-					
139-BA-56	7210 7264 7264	6.2200E+00 +/-	2.10005+00 1.79005+00	6.48095+00	1.3623E+00	3.06095-01	82.22
140-CS-55	TE 10	2.71005+00 +/-					
140-BA-56	TE10	4.91005+00 +/-	4.10005-01				
140-LA-57	7610 7610	4.9400E+00 +/- 5.1400E+00 +/-	. 4.70005-01 . 5.10005-01	5.03198+00	3.4562E-01	9.96672-02	77.31
141-84-56	7510 7564 7264	4.8400E+00 +/- 5.0600E+00 +/-	7.1000E-01 5.1000E-01	4.98515+00	4.14215-01	**************************************	80.13
142-BA-56	1210	2.54002+00 +/-					
143-CE-56	TE10	3.93006+00 +/-		7			
144-LA-57	TELO	3.13002+00 +/-	3.90005-01				
145-BA-56	TELO	3.24005+00 +/-	4.20005-01			自己的现在分词 网络拉拉马马拉拉	
146-BA-56	YE10	2.26008+00 +/-	4.50008-01	, , , , , , , , , , , , , , , , , , ,	"其首帝的情况的书书书书书书书书		
146-CE-58	TE64	2.45008+00 +/-	4.30005-01				
147-30-60	7610	1.94005+00 +/-	2.1006-01				

A5.1 Cm245

Cumulative Tield data table for Cm245 Fast neutron fission.

chi-			
external			
internel error			
Weighted. Mean			
Cumulative Tield and experimental error.	5.2500E-01 +/- 6.9000E-02		"我我我的我的我的我我的我们我的我们都是我们的我们的我们的我们
R•f.	YE07		
Nuclide	87-BR-35	137-1 -53	

Cumulative Tield data table for Cm245 Thermal neutron fission.

Nuclide	Røf.	Cumulative Yield and experimental error.	Weighted. Mean.	internal error	external error	Chi- test

77-AS-33	YE28	5.0000E-03 +/- 1.2000E-03				
83-BR-35	YE28	2.3000E-01 +/- 5.0000E-02				
84-BR-35	YE30	2.9000E-01 +/- 9.0000E-02				
85-KR-36M	¥ E 2 4	2.9000E-01 +/- 2.0000E-02				
87-KR-36	YE30	5.0000E-01 +/- 4.0000E-02				
88-KR-36	YE24 YE30	6.1000E-01 +/- 4.0000E-02 5.8000E-01 +/- 6.0000E-02	6.0077E-01	3.3282E-02	1.3846E-02	67.74
89-RB-37	YE30	8.2000E-01 +/- 9.0000E-02				
89-SR-38	YE25 YE28	8.3090E-01 +/- 8.0000E-02 8.5000E-01 +/- 1.0000E-01	8.3835E-01	6.2470E-02	9.3171E-03	88.14
90-KR-36	YE30	8.3000E-01 +/- 2.1000E-01	**=======			
90-SR-38	YE28	1.0800E+00 +/- 1.5000E-01				
91-SR-38	YE24 YE25 YE30 YE26	1.1100E+00 +/- 2.0000E-02 9.4570E-01 +/- 9.5000E-02 1.1800E+00 +/- 6.0000E-02 9.8000E-01 +/- 6.9000E+00	1.1104E+00	1.8606E-02	3.8815E-02	22.59
91-Y -39	YE28 YE30	1.2700E+00 +/- 3.0000E-01 6.8600E-01 +/- 2.3000E-02	6.8941E-01	2.2933E-02	4.4512E-02	5.23
92-SR-38	TE24 TE30 TE26	1.2500E+00 +/- 1.1000E-01 1.3100E+00 +/- 1.5000E-01 1.2800E+00 +/- 1.0990E-01	1.2745E+00	6.9026E-02	2.2697E-02	94.74
93-5R-38	YE30	9.3000E-01 +/- 2.0000E-01			***************	*******
93-7 -39	YE24 YE30	1.7500E+00 +/- 1.1000E-01 1.9300E+00 +/- 1.9000E-01	1.7952E+00	9.5197E-02	7.80505-02	41.23
94-SR-38	YE30	1.5200E+00 +/- 1.4000E-01		*****************		
94-7 -39	YE30	1.6100E+00 +/- 1.1000E-01				
95-zr-40	YE24 YE25 YE28 YE30	2.3600E+00 +/- 6.0000E-02 2.2211E+00 +/- 2.4000E-01 2.4000E+00 +/- 3.0000E-01 2.3500E+00 +/- 1.9000E-01	2.3533E+00	5.4722E-02	3.1928E-02	95.23
95-NB-41	TE30	2.2800E+00 +/- 7.0000E-02				
97-ZR-40	YE24 YE25 YE28 YE30	3.0000E+00 +/- 6.0000E-02 2.9760E+00 +/- 1.5000E-01 3.1000E+00 +/- 3.5000E-01 2.8400E+00 +/- 1.1000E-01	2.9282E+00	4.1468E-02	1.6303E-01	0.86

	7E30 7E26	2.99005+00 +/- 9.0000 2.40005+00 +/- 1.4900	E-02 E-01			
99-MB-41	T E30	2.34005+00 +/- 1.8000	======================================		"我儿孩 网络称对林园林 计算合	
99-M0-42	7528 7530 7526	4.18008+00 +/- 4.0000 4.10008+00 +/- 1.3000 4.05008+00 +/- 2.4000	E-01 4.0956E+00 E-01 E-01	1.0991E-01	3.14285-02	66*56
99-TC-43M	TE 24	4.0900E+00 +/- 1.2000	E-01	•		
101-M0-42	¥530	5.70006+00 +/- 5.2000	s : : : : : : : : : : : : : : : : : : :			
102-M0-42	1530	5.8000E+00 +/- 1.2000	# # # # # # # # # # # # # # # # # # #	##RUNEERANNOF ##		
103-TC-43	TE30	7.00005+00 +/- 1.6000	*******			
103-RU-44	4224 4225 4225 4230	5.85002+00 +/- 4.2000 6.43202+00 +/- 7.0000 6.27002+00 +/- 9.0000 6.18002+00 +/- 1.9000	 5.14605+00 5-01 5-01 5-01	1.6519E-01	1.39655-01	9 9 9 9
104-TC-43	YE30	6.6700£+00 +/- 4.2000	***************************************			
105-RU-44	YE28 YE30 YE30 YE26	5.78005+00 +/- 1.2000 6.53005+00 +/- 2.5000 6.64005+00 +/- 3.1000 6.39005+00 +/- 4.0260	5+00 6.52265+00 6-01 6.52285+00 6-01 8.00	1.73376-01	1.38236-01	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
105-RH-45	TE30 TE26	6.0300E+00 +/- 3.2340	E-01 5.9669E+00 E-01	2.37215-01	6.96565-02	76.90
106-TC-43	TE30	5.3200E+00 +/- 5.3000	# 3 # 6 # 4 # # # # = = = = = = = = = = = = = =			
106-RU-44	YE28	5.7500E+00 +/- 1.4000	E+00			
106-RH-45	TE 30	5.70002+00 +/- 4.0000	E-01			
107-RH-45	1230	5.50008+00 +/- 5.0000				
08-RU-44	TE30	5.50008+00 +/- 1.4000		学家 计 11 月 月 12 日 天 年 月 11 日 月 12 日 月 11 日 11 1		
09-RH-45	7 E 3 O	3.7300E+00 +/- 5.2000	K # 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
09-PD-46	TE28	5.2300E+00 +/- 6.0000	E-01			
11-AG-47	TE25 TE28 TE30	6.59508+00 +/- 2.1000 3.63008+00 +/- 7.0000 3.70008+00 +/- 9.0000	8+00 3.84675+00 5-01 5-01	5.34366-01		26.9E
12-PD-46	¥528	1.60005+00 +/- 4.0000	kt foo all see	ŶŖĬŬĨĦĦŴŶŶŶŎĿĹĬĬIJ.		
112-AG-47	YE30	3.42005+00 +/- 4.3000	5-01			
1 3 - A G - 4 7G	YE 28	2.02002+00 +/- 5.0000	z # # # # # # # # # # # # # # # # # # #			
114-CD-46	YE30	1.8000E+00 +/- 7.0000	= = = = = = = = = = = = = = = = = = =			
15-cD-48	YE25 YE28 YE30	5.1540E-01 +/- 6.00001 4.1000E-01 +/- 7.00001 5.7000E-01 +/- 3.00001	E-02 5.3998E-01 5-02 5-02	2.50555-02	5.38376-02	1 6.6
.21-SN-50	YE25 YE28	**************************************	■■===================================			5.34

[']85

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	123-SN-50	TE 28	5.4000E-02 +/- 1.2000E-02				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	125-SM-50	TE 25 TE 28	2.3000E-01 +/- 2.0000E-02 6.0000E-02 +/- 1.5000E-02	1.21205-01	1.2000E-02	8.1600E-02	00.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	125-SB-51	TE 28	7.10005-02 +/- 1.50005-02				
	127-SN-50	TE30	4.40008-01 +/- 7.00008-02				
111850 1212950 12150	127-58-51	TE25 TE28 TE30	4.31208-01 +/- 3.00008-02 5.70008-01 +/- 9.00008-02 4.26008-01 +/- 3.40008-02	4.37225-01	2.1824E-02	3.3282E-02	31.26
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	128-57-50	TE30					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	128-58-516	YE30	9.00005-02 +/- 1.00005-02				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	128-SB-51M	TE30	5.90008-01 +/- 4.00008-02				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	129-58-51	TE30	1.06002+00 +/- 1.20005-01	*******			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	129-58-516	TE26	1.42008+00 +/- 3.00008-01				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	129-75-52	YE28	1.48002+00 +/- 2.00005-01				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	130-58-516	TE30	7.99008-01 +/- 4.20008-02				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	130-SB-51M	YE30	9.40008-01 +/- 1.00008-01				
131-TE-52M TE30 9.3000E-01 $+/ 7.000E-02$ $2.9524E+00$ $3.6434E-02$ $9.545E-02$ 12.01 131-I -53 TE24 $2.9000E+00$ $+/ 0.000E-02$ $2.9524E+00$ $3.6434E-02$ $9.545E-02$ 12.01 131-I -53 TE26 $2.7000E+00$ $+/ 1.000E-01$ $1.910E+00$ $-1.000E-01$ $1.200E+00$ $-1.000E-01$ $1.200E-02$ $5.3659E-02$ 5.669 122-51 TE30 $1.9400E+00$ $+/ 1.000E-01$ $1.8971E+10$ $9.1704E-02$ $5.3659E-02$ 56.69 131-TE-51 TE30 $1.9400E+00$ $+/ 1.000E-01$ $1.000E+01$ $1.000E+01$ $1.1301E-02$ $9.3659E-02$ $5.3659E-02$ 5.669 131-TE-51 TE23 $4.000E+00$ $+/ 1.000E+01$ $1.000E+01$ $1.000E+01$ $1.000E+01$ $1.000E+01$ $1.100E-02$ $3.1309E-02$ $5.3659E-02$ 5.669 131-TE-51 TE30 $4.100E+00$ $+/ 1.000E+01$ $1.000E+01$ <td>131-58-51</td> <td>TE30</td> <td>2.24008+00 +/- 2.4008-01</td> <td></td> <td></td> <td></td> <td></td>	131-58-51	TE30	2.24008+00 +/- 2.4008-01				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	131-TE-52M	YE30	9.30008-01 +/- 7.00008-02				
TE25 $3.03605+00$ $+-5.0000E-01$ TE28 $3.10005+00$ $+-6.0000E-01$ TE20 $2.82005+00$ $+-1.0000E-01$ TE30 $2.82005+00$ $+-1.0000E-01$ TE30 $1.94005+00$ $+-1.2000E-01$ TE25 $1.94005+00$ $+-1.2000E-01$ TE26 $3.4268E-02$ $5.3659E-02$ TE27 $4.10005+00$ $+-1.2000E-01$ TE28 $4.1005+00$ $+-1.2000E-01$ TE29 $4.1005+00$ $+-1.2000E-01$ TE20 $3.73005+00$ $+-1.2000E-01$ TE20 $4.1005+00$ $+-1.2000E-01$ TE21 $4.1005+00$ $+-1.2000E-01$ TE23 $4.1005+00$ $+-2.2000E-01$ TE29 $4.1005+00$ $+-1.1000E-01$ TE29 $4.1005+00$ $+-1.1000E-01$ TE21TE30 $4.1000E+00$ TE23TE30 $2.7200E+00$ TE24 $4.1000E+00$ TE29 $4.1000E+00$ TE21TE30TE21TE30TE21TE30TE23TE30TE24 $4.100E+00$ TE25TE30TE30 $2.0000E+01$ TE28 $5.3000E+00$ TE29 $5.300E+00$ TE20 $5.3000E+00$ TE20 $5.3100E+00$ TE20 $5.3000E+00$ TE20	131-I -53	TE24	2.90008+00 +/- 8.0000E-02	2.9524E+00	3.64345-02	9.85455-02	12.01
TE30 $2.0200\pm00 + -1.7000E-01$ $1.8971E+00$ $9.3704E-02$ $5.5659E-02$ 56.69 $132-EB-51$ TE30 $1.9400E+00 + -1.7000E-01$ $1.8971E+00$ $9.3704E-02$ $5.3659E-02$ 56.69 $132-TE-52$ TE25 $1.9400E+00 + -1.200E-01$ $1.8971E+00$ $9.3704E-02$ $5.3659E-02$ 56.69 $132-TE-52$ TE25 $1.900E+00 + -1.200E-01$ $3.9286E+00$ $3.4268E-02$ $8.3699E-02$ 20.05 $132-TE-52$ TE26 $3.7900E+00 + -1.2000E-01$ $1.000E-01$ $1.1000E-01$ $1.1000E-01$ $1.100E-01$ $132-TE-520$ TE30 $4.1000E+00 + -1.2.3000E-01$ $1.1000E-01$ $1.1000E-01$ $1.1000E-01$ $133-TE-520$ TE30 $2.000E+00 + -1.1.000E-01$ $1.1000E-01$ $1.1000E-01$ $1.1000E-01$ $133-TE-520$ TE30 $2.000E+00 + -1.1.000E-01$ $1.1000E-01$ $1.1000E-01$ $1.1000E-01$ $133-TE-520$ TE30 $5.2000E+00 + -1.1.000E-01$ $5.4890E+00$ $6.9485E-022$ $8.5484E-02$ 67.91 $133-TE-520$ TE28 $5.2000E+00 + -1.1.000E-01$ $5.4890E+00$ $5.2100E+00 + -1.1.000E-01$ $5.4890E+00$ $6.9485E-022$ $6.7.91$ $133-TE-524$ TE28 $5.3200E+00 + -1.1.000E-01$ $5.4890E+00$ $5.3200E+00 + -1.1.000E-01$ $5.4890E+00$ $6.9485E-022$ $6.7.91$ $133-TE-524$ TE28 $5.3200E+00 + -1.1.000E-01$ $5.3200E+00 + -1.1.000E-01$ $5.4890E+00$ $6.9485E-022$ $6.7.91$ $133-TE-54$ TE28 $5.3200E+00 + -1.1.0000E-01$ $5.4890E+00$ $6.9485E-022$ $6.7.9$		YE25 YE28	3.0360E+00 +/- 5.0000E-02 3.1800E+00 +/- 4.0000E-01				
132-5B-51 TE30 1.8300E+00 $+-$ 1.5000E-01 1.8971E+00 9.3704E-02 5.3659E-02 56.69 132-TE-52 TE24 4.1000E+00 $+-$ 9.0000E-01 3.9286E+00 3.4268E-02 8.3809E-02 20.05 132-TE-52 TE23 4.1000E+00 $+-$ 9.0000E-01 3.9286E+00 3.4268E-02 8.3809E-02 20.05 132-TE-52 TE26 4.1000E+00 $+-$ 1.000E-01 1.1000E-01 1.113-TE-52M TE20 5.2200E+00 $+-$ 1.0000E-01 1.111 1.111 1.111 1.1000E+00 $+-$ 1.0000E-01 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.1111 <td< td=""><td></td><td>TE30 TE26</td><td>2.82008+00 +/- 8.00008-02 2.78008+00 +/- 1.70008-01</td><td></td><td></td><td></td><td></td></td<>		TE30 TE26	2.82008+00 +/- 8.00008-02 2.78008+00 +/- 1.70008-01				
132-TE-52TE244.1000E+00 $+/-$ 9.0000E-023.9286E+003.4268E-028.3809E-0220.05TE253.8870E+00 $+/-$ 4.0000E-013.4268E-028.3809E-0220.05TE263.7900E+00 $+/-$ 2.3000E-011.0000E-011.1000E-01TE263.7900E+00 $+/-$ 1.0000E-011.1000E-011.1000E-01133-TE-520TE304.1600E+00 $+/-$ 1.6000E-011.6000E-01133-TE-52MTE302.0000E+00 $+/-$ 1.6000E-011.4190E+00133-TE-52MTE302.7200E+00 $+/-$ 1.6000E-015.4890E+00133-TE-52MTE302.7200E+00 $+/-$ 1.6000E-015.4890E+00133-TE-52MTE305.5200E+00 $+/-$ 1.6000E-015.4890E+00133-TE-52MTE245.5200E+00 $+/-$ 1.6000E-015.4890E+00133-TE-52MTE265.5200E+00 $+/-$ 1.6000E-015.4890E+00133-TE-52MTE265.5200E+00 $+/-$ 1.6000E-015.4890E+00133-TE-52MTE265.5200E+00 $+/-$ 1.6000E-015.4890E+00133-TE-54TE265.3210E+00 $+/-$ 1.0000E-015.4890E+00133-TE-54TE255.3210E+00 $+/-$ 1.0000E-015.4890E+00133-TE-54TE255.3210E+00 $+/-$ 1.0000E-01	:=====================================	TE30 TE30 TE30	1.8300£+00 +/- 1.5000£-01 1.9400£+00 +/- 1.2000£-01 1.9400£+00 +/- 1.2000£-01				56.69
TZ25 $3.8870E+00$ $4.4.000E-01$ TZ28 $4.4100E+00$ 4 $8.0000E-01$ TZ26 $3.7900E+00$ 4 $10.000E-01$ TZ26 $3.7900E+00$ 4 $2.0000E-01$ 132-I -53 TZ30 $4.1600E+00$ 4 133-TE-52GTZ30 $4.1600E+00$ 4 $1.3000E-01$ 133-TE-52MTZ30 $2.0000E+00$ 4 $1.0000E-01$ 133-TE-52MTZ30 $2.7200E+00$ 4 $1.6000E-01$ 133-TE-52MTZ30 $2.7200E+00$ 4 $1.6000E-01$ 133-TE-52MTZ30 $2.7200E+00$ 4 $1.6000E-01$ 133-TE-52MTZ30 $5.2200E+00$ 4 $1.6000E-01$ TZ26 $5.2200E+00$ 4 $1.0000E-01$ $5.4890E+00$ $6.9485E-02$ TZ26 $5.3210E+00$ 4 $1.0000E-01$ $5.4890E+00$ 4 TZ26 $5.3210E+00$ 4 $1.0000E-01$ $5.4890E+00$ 4 TZ26 $5.3210E+00$ 4 $1.0000E-01$ $5.4890E+00$ 4	132-75-52	TE24	4.10008+00 +/- 9.00008-02	3.92862+00	3.42682-02	8.3809E-02	20.05
TE20T		7625 	3.88705+00 +/- 4.00005-02				
132-I -53 TE30 4.1600E+00 +/- 1.3000E-01 133-TE-52d TE30 2.0000E+00 +/- 1.6000E-01 133-TE-52M TE30 2.7200E+00 +/- 1.6000E-01 133-TE-52M TE30 2.7200E+00 +/- 1.6000E-01 133-TE-52M TE30 2.7200E+00 +/- 1.6000E-01 133-TE-52M TE26 5.5200E+00 +/- 1.6000E-01 133-TE-52M TE26 5.2300E+00 +/- 1.6000E-01 133-TE-54 TE25 5.3210E+00 +/- 1.0000E-01		7626 7626	4.01002400 +/- 9.00005-01 4.01002400 +/- 1.10002-01 3.79002400 +/- 2.30002-01				
133-TE-524 TE30 2.0000E+00 +/- 1.6000E-01 133-TE-52M TE30 2.7200E+00 +/- 1.6000E-01 133-T -53 TE24 5.5200E+00 +/- 8.0000E-02 TE28 6.0100E+00 +/- 1.6000E-01 TE30 5.3900E+00 +/- 3.2000E-01 TE26 5.2800E+00 +/- 3.2000E-01 133-TE-54 TE25 5.3210E+00 +/- 1.0000E-01		TE30	4.1600E+00 +/- 1.3000E-01				
133-TE-52M TE30 2.7200E+00 +/- 1.6000E-01 133-I -53 TE24 5.5200E+00 +/- 8.0000E-02 5.4890E+00 6.9485E-02 8.5484E-02 67.91 TE28 6.0100E+00 +/- 7.0000E-01 TE26 5.2800E+00 +/- 3.2000E-01 TE26 5.2800E+00 +/- 1.0000E-01 133-XE-54 TE25 5.3210E+00 +/- 1.0000E-01	133-75-52G		######################################	"有门背帮何利自然的故事"	同剂就装装放 计特别分词 计分子	"我有我有些我的意味!	
133-I -53 YE24 5.5200E+00 +/- 8.0000E-02 5.4890E+00 6.9485E-02 8.5484E-02 67.91 YE28 6.0100E+00 +/- 7.0000E-01 YE30 5.3900E+00 +/- 1.6000E-01 YE26 5.2800E+00 +/- 3.2000E-01 133-XE-54 YE25 5.3210E+00 +/- 1.0000E-01	133-TE-52M	TE30	2.72008400 +/- 1.60008-01				
TE28 0.0100E400 +/- /.0000E-01 TE30 5.3900E400 +/- 1.6000E-01 TE26 5.2800E400 +/- 3.2000E-01 133-TE-54 TE25 5.3210E400 +/- 1.0000E-01	133-1 -53	YE24	5.52008+008+0008+02	5.4890E+00	6.9485E-02	8.54845-02	67.91
IEZ® >.2800€+00 +/- 3.2000€-01 133-XE-54 YE25 → 5.3210€+00 +/- 1.0000€-01			5.39008400 +/- 1.60008-01 5.39008400 +/- 1.60008-01				
I33-XE-54 TE25 5.3210E+00 +/- 1.0000E-01 Absessessessessessessessessessessessesses		1540					
	137-X5-54 ***************	YE25 ###########	5.3210E+00 +/- 1.0000E-01 #3#2##################################	밝혔다. 600 100 100 100 100 100 100 100 100 100			

5.6000E+00 +/-
6.4500£+00 +/-
6.06005+00 +/-
1.3800E+00 +/-
1.8000£+00 +/-
1.5300€+00 +/-
1.2000E+00 +/-
4.9000E+00 +/-
6.1500E+00 +/- 7.8900E+00 +/-
4.7800E+00 +/- 4.8300E+00 +/-
6.01005+00 +/- 5.71005+00 +/- 5.90005+00 +/-
4.8000E+00 +/-
6.8000E+00 +/-
5.5200E+00 +/- 6.1000E+00 +/-
5.36008+00 +/- 5.43808+00 +/- 5.70008+00 +/- 5.39008+00 +/- 5.41008+00 +/-
5.32008+00 +/- 5.58008+00 +/-
4.01002+00 +/-
5.1000&+00 +/- 5.0562&+00 +/- 5.2000&+00 +/- 5.3800&+00 +/-
4.2400E+00 +/-
4.8400E+00 +/- 4.6700E+00 +/- 4.5900E+00 +/-

2.51	9.5000E-02	4.2426E-02	3.45008-01	2.5000E-01 +/- 6.0000E-02 4.4000E-01 +/- 6.0000E-02	Y 528 Y 530	156-50-63
	1日日前前月前前前前前前前前前			1.2000E+00 +/- 3.0000E-01	¥528	153-SM-62
				6.7000E-01 +/- 5.4000E-01	¥830	153-PM-61
				1.4000E+00 +/- 7.0000E-01	YĘ30	152-PM-61
63.59	3.6928E-02	7.79895-02	1.18845+00	1.3500E+00 +/- 3.5000E-01 1.1800E+00 +/- 8.0000E-02	YE28 YE30	151-PM-61
3.97	9.20006-02	4.47218-02	1.10402+00	1.1500E+00 +/- 5.0000E-02 9.2000E-01 +/- 1.0000E-01	YE30 Ye30	151-MD-60
				1.9700E+00 +/- 4.0000E-01	YE28	149-PM-61
				1.94005+00 +/- 1.50005-01	TE30	149-00-60
				2.03005+00 +/- 5.00005-01	TE28	147-PM-61
0.03	1.85068-01	4.05548-02	2.3057E+00	2.1800E+00 +/- 5.0000E-02 2.5340E+00 +/- 1.2000E-01 2.6000E+00 +/- 5.0000E-01 2.3300E+00 +/- 1.7000E-01 2.6300E+00 +/- 1.0000E-01	1624 1624 1625 1626 1626 1630	147-RD-60
10.87	3.2635E-01	2.03435-01	2.42695+00	1.97008400 +/- 3.50008-01 2.66008400 +/- 2.50008-01	YE30 YE30	146-PR-59
74.22	9.5429E-02	2.9012E-01	2.80995+00	2.68008+00 +/- 4.90008-01 2.88008+00 +/- 3.60008-01	7530 7530	146-CE-58
				3.04005+00 +/- 2.70005-01	TE30	145-CE-58
				3.30008+00 +/- 7.00008-01	TE28	144-CE-58
				4.31002+00 +/- 3.10005-01	TE30	144-LA-57
				4.48908+00 +/- 6.00085-02 3.85008+00 +/- 6.00008-01 4.40008+00 +/- 2.40008-01 4.28008+00 +/- 3.20008-01	TE25 TE28 TE30 TE26	

Cm245

Fractional Cumulative Yield data table for Cm245 Thermal neutron fission.

Nuclide	Ref.	Fractional Cumulative Yield and experimental error.	Weighted. Mean.	internal error	external error	Chi- test
99-M0-42	YESO	9.6900E-01 +/- 8.0000E-03		*********	*********	*****
132-TE-52	¥E23	9.4000E-01 +/- 1.0000E-02				
134-TE-52	YE23	5.6000E-01 +/- 8.0000E-02				
135-1 -53	YESO	9.5100E-01 +/- 1.4000E-02				
140-BA-56	YE80	9.6900E-01 +/- 6.0000E-03				

Independent yield data table for Cm245 Thermal neutron fission.

Nuclide	Ref.	Independent Tield and experimental error.	Weighted. Mean.	internal error	external error	chi- test
86-RB-37	YE 28	6.2000E-05 +/- 1.5000E-05				
135-XE-54	TE 24	1.15408+00 +/- 1.35808-01				
136-CS-55G	TE 28 TE 30	1.6000E-01 +/- 3.0000E-02 1.2500E-01 +/- 6.0000E-03	1.2635E-01	5.8835E-03	6.7308E-03	25.26
			计算机分词 计计算机 计算机 计算机	医黄疸管浆 计并分数 的复数分词		化的复数形式机械

Isomeric independent yield splitting ratio data table for Cm245 Thermal neutron fission.

				**************************************	reserves YE31	132-I -53
				· · · · · · · · · · · · · · · · · · ·		
test		ertor	Mean.	experimental error.		
ch1-	external	internal	Weighted.	splitting ratio and	Rof.	Nuclide

Splitting ratio = Independent yield of metastable state / { sum of metastable and ground state yields).

