PROCEEDINGS OF THE NEACRP SPECIALISTS' MEETING ON SHIELDING BENCHMARK CALCULATIONS

815.9

PARIS, JULY 1-2 1982

PART. I

LMFBR SHIELDING BENCHMARK

G. PALMIOTTI AND M. SALVATORES

OECD NUCLEAR ENERGY AGENCY

OECD/OCDE PARIS, 1983

NEACRP-L-263

Proceedings of the NEACRP Specialists' Meeting

on Shielding Benchmark Calculations

Paris, 1st and 2nd July 1982

LMFBR SHIELDING BENCHMARK

by G. Palmiotti and M. Salvatores

Abstract

The present document summarizes the results and discussions relating to the LMFBR shielding benchmark exercise proposed by NEACRP in the report which is given in Annex I and which indicates the specifications of the LMFBR shielding benchmark. The PWR shielding benchmark also discussed at the meeting, will be the subject of a separate document.

Six different organisations participated in the LMFBR benchmark exercise, and eight solutions were submitted. The list of participants and contributors is given in Annex II.

General Comments

At the NEACRP Specialists' Meeting on "Neutron Data and Benchmarks for Reactor Shielding", held in Paris in October 1980, a formal programme of work was agreed upon for the execution of shielding benchmark studies.

It was considered that the status of multigroup cross section sets used by different laboratories had changed significantly in recent years and that it would be of interest for an international intercomparison to take advantage of the recent improvements in calculational techniques and the developments of sensitivity and uncertainty methods.

Actually, the major achievements of the previous meetings of this series had been in stimulating the development of data sensitivity analysis tools and stressing the need for appropriate data uncertainty information, both for meaningful design parameter uncertainty analysis and for effective use of benchmark single-material propagation experiments.

For the present meeting, it was agreed to limit the scope to an inter-(comparison of the benchmark exercises. In the case of the LMFBR benchmark, the following quantities of interest were requested in the simplified 1D geometry:

- total, thermal equivalent and fast flux responses.
- steel damage dose
- activation rates of Na and Au
- fission rate of U-235
- neutron and **V**-heating

All these values were requested at several positions, in the proposed geometrical model, representative in particular of the end of the lateral shield and of the wall of the secondary heat exchanger. The results obtained by the participants are given in Part I of the present document.

Part II of the document gives the details of the analysis of the results, in particular using the sensitivity coefficients provided by the participants.

The main results and conclusions of the exercise can be summarised as follows:

- The spread of the calculated results are much reduced with respect to the results obtained in a similar exercise, and compared at the Specialists' Meeting in Vienna in 1976.
- The observed discrepancies are often related to calculations performed by different laboratories using the same data base with different strategies to produce multigroup data (elastic and inelastic matrix production, composition dependent resonance selfshielding, etc.). This means that, in this area, the methods play a relevant rôle, which is still to be clarified. Continuous Monte Carlo calculations can certainly give useful information. However,

since in particular resonance self-shielding algorithms are, in general, well established, the problem of data processing could be handled more satisfactorily in the future with a more appropriate use of existing algorithms.

- The sensitivity coefficients provided by the participants were in excellent agreement, even when different perturbation codes were used. Thus, the present 1D techniques can be used with confidence for experiment analysis or design studies.
- The method approximation effects (angular quadrature, Legendre Polynomial order, mesh size) are well understood in 1D deep penetration calculations. Here again, an excellent agreement was found among the participants.
- Concerning the uncertainty analysis, it was clear from the data provided and from the discussions held at the meeting that data uncertainties and their correlations are still, to a large extent, lacking. The old Schmidt data are still being used together with the preliminary compilation performed at ORNL by Drischler and Weisbin.

It seems that in this field the data needs of the shielding community should be stressed in defining priorities in new data file versions (ENDF/B) or in the setting up of new evaluated data files, as it is the case for the Joint Evaluated File (JEF). In particular, data formats and data uncertainty types should fit the needs of transport calculations. The type of uncertainties and of correlations needed for sensitivity analysis as indicated by McCracken at Vienna in 1976 could represent a useful guideline. Moreover, shielding-oriented test problems should be included in the usual physical file checking phases.

The relation of the theoretical benchmark to experimental benchmarks was only partially discussed. In this respect, possible motivations for future specialists' meetings have also been discussed. It was generally agreed that the use of the experimental benchmark to improve shielding design calculations is still a field of high interest. However, the following points should be considered to define appropriate strategies to benefit from the experimental benchmarks:

- According to the conclusions of the present meeting, standard data processing procedures should be defined and their related uncertainty stated.
- Data uncertainty variance-covariance matrix information should be made available in appropriate formats for the major isotopes of interest for shielding (0-16, Na, SS isotopes, etc.) in the principle evaluated data files.
- The present experimental benchmarks (in Fe) should be made available in standard format, including experimental results reduced to 1D models (i.e. with calculated corrections from the actual geometry to 1D model, to be specified), and this to allow a more generalised use of them. Moreover, the new planned experimental benchmark results (propagation in Na, EURACOS), should be made available within a reasonable time delay (mid-1983).

91080004

- 3

- Data adjustment and consistency procedures should be compared and analysed to define their applicability to shielding design needs.

91080043

The above mentioned topics seem to represent the fields in which most progress should be made in the near future, and their discussion, in a reasonable delay of time (about two years), should allow effective progress towards a substantial improvement of the present methods and data used in shielding design calculations and predictions.

PART I

BENCHMARK RESULTS

The data origin of eight data sets used by the participants is t	he following:
VITAMIN-E : ORNL generated 174 group cross-section data based	on ENDF/B-V.
VITAMIN-C : ORNL generated 171 group cross-section data based	on ENDF/B-IV.
RADHEAT : 100n - 20 gamma group library, based on ENDF/B- and POPOP-4 library $(n \rightarrow \gamma)$, processed by the R/ system of JAERI.	IV (neutrons), ADHEAT-V3 code
BABEL : 113n - 36 gamma group library, based on ENDF/B-IV the MCC2-PN code system, generated at CEA.	, processed by
PROPANE-D _O : Shielding formulaire developed with the collabo (France) and ENEA (Italy), based on 45 energy on neutrons and derived from BABEL.	ration of CEA jroup data for
PROPANE-D ₁ : Adjusted version of the previous formulaire, propagation experiments performed jointly by CEA	using neutron and ENEA.
EURLIB : EURLIB-3, as used by the UK.	
UKAEA : UKNDL processed in 100-group EURLIB structure with $\phi = \left[E \Sigma(E) \right]^{-1}$ and other isotopes with $\phi = E^{-1}$	I Fe weighted
The following tables are provided:	
TABLES 1-3 : Major response function values as required.	
TADLES A Compiliation profinition in the le computer in	

: Sensitivity coefficients in the 15 energy group structure by isotope : Fe, Cr, Ni, Na in lateral shield, Na in Sodium tank. ABLES 4-8 These are region integrated sensitivity coefficients 5, 5 and S_{+} for **Z**absorption, **Z**scattering (elastic + inelastic), and for the sum of the two Σ 's. The elastic contribution includes only the P_ component. The sensitivity coefficients are for the following responses:

 $- \phi_{tot}$ at mesh 62 and 187.

- ø 100 KeV at mesh 62.

: Sensitivity of ϕ_{tot} at mesh 62 to angular source values. TABLE 9

TABLES 10-19 : 15 group cross-section values (Σ_a and Σ_s) supplied by the different participants.

TABLES 20-44 : Results of the folding cross-section differences obtained from Tables 10-19 with the sensitivity coefficients S_a, S_s and S_t of Tables 4-8. There is one table for each isotope (Fe, Cr, Ni, Na) and one table of summary, and one set of tables for the following cases: (VITAMIN-E)-(BABEL), (RADHEAT)-(BABEL), (VITAMIN-C)-(BABEL), (PROPANE-D1)-(PROPANE-D₀) and **9 170 PROPE** (VITAMIN-C).

	· · · · · · · · · · · · · · · · · · ·	TOTAL	FLUX		NA-23(1),GAMMA)					
DATA SET	MESH 20	MESH 62	NESH 124	MESH 187	MESH 20	MESH 62	MESH 124	MESH 187		
VITAEC	3.430E+12	6.079E+08	3.836E+06	3.795E+03	5.759E+10	1.766E+07	4.534E+05	7•938E+02		
VITAMC	3.584E+12	6.736E+08	4.063E+06	3.641E+03	4.522E+10	1.584E+07	4.276E+05	5.884E+021		
FADHEAT	3.497E+12	0.001E+08	3.606E+06	3.303E+03	4.504E+10	1.430E+07	3.737E+05	5+208E+021		
BABEL	3.200E+12	4.270E+081	2.440E+06	2.100E+03	4.400E+10	1.040E+07	2.320E+05	2.910E+02		
PROPD0	3.250E+12	4.3705+081	2.620E+06	2.580E+ <u>0</u> 31	4.400E+10	1.060E+07	2.350E+05	3.400E+021		
PROPD1	3.590E+12	6.230E+081	4.3102+06	5.350E+03	4.810E+10	1.470E+07	3.740E+05	6.730E+02		
EURLIB	3.710E+12	1+090E+09	8.300E+06	1.160E+04	4.870E+10	3.050E+07	1.540E+06	3.620E+031		
UKAEA	4.060E+12	1.110E+091	1.280E+06	7.940E+03	5.470E+10	2.760E+07	8.070E+05	1+330E+03		
MEAN	 3.541E+12	6.961E+081	3.807E.+06	5.039E+03	4.842E+10	1.770E+071	5.553E+05	1+020E+03		
ST. DEV.	 2.704E+11	2.643E+08	2+077E+06	3.224E+03	5.133E+09	7.460E+06	4.363E+05	1+099E+03		

י ס י

· .	1 . 	FLUX > 1	100 KEV	1 -				1 1 1
DATA SET	MESH 20	HESH 62	MESH 124	MESH 187	MESH 20	MESH 62	MESH 124	
VITAMC	 .3+301E+11	1.070E+07	4.644E+01	1.036E-03	1•256E+14	7.957E+09	9.169E+06	1+445E+04
VITAME	3.340E+11	1.117E+07.	7.712E+01	3.625E-03	1.276E+14	8.524E+09	8.662E+06	1.185E+04
RADHEAT	3.050E+11	9.725E+061	2•241E+01	3.889E-05	1.479E+14	8.409E+09	7+829E+06	1.+077E+04
BABEL	-2.580E+11	5.400E+061	1.930E+01	3.910E-04	1.180E+14	5.700E+09	6.240E+06	7.420E+03
PROPD0	2.760E+11	6.600E+061	1.640E+01	1.400E-04	1.250E+14	5.950E+09	6.420E+06	8.710E+03
PROPD1	3.010E+11	8.700E+061	2.600E+01	2.350E-04	1.370E+14	8.190E+09	1.040E+07	1.730E+04
EURLIB	4.280E+11	2.920E+071	4.970E+01	4.480E-051	1.420E+14	1.650E+10	3.190E+07	7.450E+04
UKAEA :	4.030E+111	1.920E+071	2.280E+01	2.150E-05 	1+37.0E+14 	1.290E+10	1.670E+07	2.740E+04
MEAN	3.294E+11	 1.259E+071	 3.502E+01	 6.915E-04	 1.325E+14	 9.266E+091	1.216E+07	2.155E+04
ST. DEV.	5.918E+101	7.893E+061	2.105E+01	1.2325-03	1.004E+13	3.653E+001	8+630E+06	2.230E+04

1

TABLE 2

9108000S

	 Th	ERMAL EQUIN	ALENT FLUX	 	1 CO-59(1),GAMMA) 1					
DATA SET	MESH 20	MESH 62	MESH 124	MESH 187	MESH 20	MESH 62	MESH 124	1 MESH 187 1		
VITAMC	7.300E+10	2.995E+071	1.031E+06	1.690E+03	2.162E+13	4.807E+09	3.421E+07	4•283E+041		
VITAME	7.482E+10	3.103E+071	9.608E+05	1.364E+03	2.201E+13	5.213E+09	3.721E+07	4.241E+04		
RADHEAT	4.585E+091	6.481E+06	4.475E+05	7.156E+02	2.078E+13	4.589E+09	3.322E+07	3•734E+041		
BABEL	6.200E+10	1.630E+07	3.870E+05	4.780E+021	1.990E+13	3.410E+09	2.260E+07	2.350E+04		
PROPD0	6.200E+10	1.700E+07	3.920E+05	5.600E+02	2.020E+13	3.470E+091	2.390E+07	2.760E+04		
PROPD1	6.720E+10	2.350E+071	6.260E+05	1.110E+03	2.200E+13	4.950E+09	4.060E+07	5.490E+04		
EURLIB	7.420E+10	5.250E+071	2.770E+06	6.470E+03	2.180E+13	8.500E+09	1.230E+08	2.570E+05		
UKAEA	 7.630E+10	4.520E+071	1.460E+06	2.410E+03	2.430E+13	8.620E+09	7.210E+07	9.550E+04		
*****	 -									
MEAN	 6.176E+10	2.774E+071	1.009E+06	1.850E+03	2.158E+13	5.445E+09	4.835E+07	7•264E+04		
ST. DEV.	2.379E+10	1.535E+07	8.051E+05	1.975E+03	1+372E+12	2.032E+091	3.383E+07	7+775E+04		
***	 					********				

	U-235 (N,F)		. Х- не	ATING	M-HEATING	
MESH 20	MESH 62	MESH 124	MESH 187	MESH 20	MESH 62	MESH 20	MESH 62
6.252E+13	1.762E+101	3.682E+08	5.551E+05	1.545E-02	4.585E-06	2.374E-04	2.921E-08
6.566E+13	1.981E+10	4.072E+08	5.464E+051	1.568E-02	4.988E-06	2.443E-04	3-229E-08
6.962E+131	1.952E+10	3.830E+08	5.006E+051	1.354E-02	3.981E-06	1.731E-04	9.596E-091
5.440E+13	1.220E+10	2.430E+08	3.010E+05	1.600E-02	3.9305-061	2.270E-04	2.650E-08
5.460E+13	1.230E+10	2.460E+08	3.510E+05	1.640E-02	4.000E-06	2.370E-04	2.720E-08
5.960E+13	1.730E+10	3.940E+08	6.190E+05	1.750E-02	4.790E-061	2.600E-04	3.810E-03
6.780E+13	3.760E+10	1.620E+09	3.820E+061	0.0	0.0	0•0	0.0
7.210E+13	3.330E+10	8.010E+08	1•270E+06 	0•0	0.0	0.0	0.0
6.329E+13	2.121E+10	 5.578E+08	9.954E+051	1.576E-02I	4.379E-06	2.298E-04	2.715E-08
6.681E+12	9.323E+091	4.629E+081	1.179E+061	1.306E-03	4.661E-071	2•985E-051	9.•583E-09
	MESH 20 6.252E+13 6.566E+13 6.962E+13 5.440E+13 5.460E+13 5.960E+13 6.780E+13 7.210E+13 6.329E+13 6.681E+12	U-235 (MESH 20 MESH 62 6.252E+13 1.762E+10 6.566E+13 1.981E+10 6.962E+13 1.952E+10 5.440E+13 1.220E+10 5.460E+13 1.230E+10 5.960E+13 1.730E+10 6.780E+13 3.760E+10 7.210E+13 3.330E+10 6.329E+13 2.121E+10 6.681E+12 9.323E+09	U-235(N,F) MESH 20 MESH 62 MESH 124 6.252E+13 1.762E+10 3.682E+08 6.566E+13 1.981E+10 4.072E+08 6.962E+13 1.952E+10 3.830E+08 5.440E+13 1.220E+10 2.430E+08 5.460E+13 1.230E+10 2.460E+08 5.960E+13 1.730E+10 3.940E+08 6.780E+13 3.760E+10 1.620E+09 7.210E+13 3.330E+10 8.010E+08 6.329E+13 2.121E+10 5.578E+08 6.681E+12 9.323E+09 4.629E+08	U-235 (N,F) MESH 20 MESH 62 MESH 124 MESH 187 6.252E+13 1.762E+10 3.682E+08 5.551E+05 6.566E+13 1.981E+10 4.072E+08 5.464E+05 6.962E+13 1.952E+10 3.830E+08 5.006E+05 5.440E+13 1.220E+10 2.430E+08 3.010E+05 5.460E+13 1.230E+10 2.460E+08 3.510E+05 5.960E+13 1.730E+10 3.940E+08 6.190E+05 6.780E+13 3.760E+10 1.620E+09 3.820E+06 7.210E+13 3.330E+10 8.010E+08 1.270E+06 6.329E+13 2.121E+10 5.578E+08 9.954E+05 6.681E+12 9.323E+09 4.629E+08 1.179E+06	U-235 (N,F) X-HE MESH 20 MESH 62 MESH 124 MESH 187 MESH 20 6.252E+13 1.762E+10 3.682E+08 5.551E+05 1.545E-02 6.566E+13 1.981E+10 4.072E+08 5.464E+05 1.568E-02 6.962E+13 1.952E+10 3.830E+08 5.006E+05 1.354E-02 5.440E+13 1.220E+10 2.430E+08 3.010E+05 1.6600E-02 5.460E+13 1.230E+10 2.460E+08 3.510E+05 1.640E-02 5.960E+13 1.730E+10 3.940E+08 6.190E+05 1.750E-02 6.780E+13 3.760E+10 1.620E+09 3.820E+06 0.0 7.210E+13 3.330E+10 8.010E+08 1.270E+06 0.0 6.329E+13 2.121E+10 5.578E+08 9.954E+05 1.576E-02 6.681E+12 9.323E+09 4.629E+08 1.179E+06 1.306E-03	U-235 (N,F) J-HEATING MESH 20 MESH 62 MESH 124 MESH 187 MESH 20 MESH 62 6.252E+13 1.762E+10 3.682E+08 5.551E+05 1.545E+02 4.585E+06 6.252E+13 1.981E+10 4.072E+08 5.464E+05 1.568E+02 4.988E+06 6.962E+13 1.952E+10 3.830E+08 5.006E+05 1.354E+02 3.981E+06 5.440E+131 1.220E+10 2.430E+08 3.010E+05 1.600E+02 3.930E+06 5.460E+131 1.230E+10 2.460E+08 3.510E+05 1.640E+02 4.000E+06 5.960E+131 1.730E+10 3.940E+08 6.190E+05 1.750E+02 4.790E+06 6.780E+131 3.760E+10 1.620E+09 3.820E+06 0.0 0.0 7.210E+131 3.330E+10 8.010E+08 1.270E+06 0.0 0.0 6.329E+131 2.121E+10 5.578E+08 9.954E+05 1.576E+02 4.379E+06 6.681E+12 9.323E+09 4.629E+08 1.179E+06 1.306E+03 4.661E+07	U-235 (N,F) X-HEATING M-HEATING MESH 20 MESH 62 MESH 124 MESH 187 MESH 20 MESH 62 MESH 20 6.252E+13 1.762E+10 3.682E+08 5.551E+05 1.545E-02 4.585E-06 2.374E-04 6.566E+13 1.981E+10 4.072E+08 5.464E+05 1.568E-02 4.988E-06 2.443E-04 6.962E+13 1.952E+10 3.830E+08 5.006E+05 1.354E-02 3.981E-06 1.731E-04 5.440E+13 1.220E+10 2.430E+08 3.010E+05 1.600E-02 3.930E-06 2.270E-04 5.440E+13 1.230E+10 2.460E+08 3.510E+05 1.640E-02 4.000E-06 2.370E-04 5.960E+13 1.730E+10 3.940E+08 6.190E+05 1.750E-02 4.790E-06 2.600E-04 6.780E+13 3.760E+10 1.620E+09 3.820E+06 0.0 0.0 0.0 7.210E+13 3.330E+10 8.010E+08 1.270E+06 0.0 0.0 0.0 6.329E+13 2.121E+10 5.578E+08 9.954E+05 1.576E-02 4.379E-06 2.298E-04 6.681E+12 9.

TABLE 3

4 	F	AST FLUX 62	ة بر 1	ŤC	TAL FLUX 62	2 I TOT		TAL FLUX 18	37 i
GROUP	ABSORPT.	SCATTER	TOTAL	ALSORPT .	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL
1	-2.881E-03	-1.161E-01	-1.139E-01		-3.003E-02	-3.094E-02	-9.634E-04	-3.223E-02	-3.320E-02
2	-2.636E-03	-3.636E-01	-3.663E-01	-8,370E-04	-9.267E-02	-9.350E-02	-8.867E-04	-9,958E-02	-1.005E-01
3	-2.562E-03	-1.043E+00	-1.045E+00	-7.218E-04	-2.1168-01	-2.123E-01	-7.695E-04	-2.308E-01	-2.315E-01
4	-1.344E-02	-2.419E+00	-2.432E+00	-3.491E-03	-4.558E-01	-4.593E-01	-3.733E-03	-4.988E-01	-5.025E-01!
5	1 -1.015E-02	-1,169E+00	-1.179E+00	1-3.506E-03	-2.596E-01	1-2.631E-01	-3.705E-03	-2.821E-01	-2.855E-01
6	1-1.363E-02	-1.839E+00.	 -1.853E+00	1-5.725E-03	-4.500E-01	I-4.557E-01	002E-03	-4.875E-01	-+•935E=01
7	1 1-1.569E-02	-1.803E±00	 -1+819E+00	1 1-8.087E-03	-4.771E-01	1-4.851E-01	-8.445E-03	I 1-5.159E+01	 -5.243E-01
8	1 1-8.328E-04	-2.2716-01	 -2+280E-01	1 1-2,197E-03	-1.571E-01	l-1.593E-01	 -2.238E-03	1-1.656E-01	1-1.578E-01
9	0.0	1 1 0.0	1 0.0	1 1-7.542E-02	1-2.044E+00	-2.120E+00	 -7.886E-02	I-2.224E+00	1-2-303E+001
10	10.0	0.0	0.0	 -1.927E-02	-5.062E-01	1-5.255E-01	 -1.744E-02	-4,919E-01	1-5.094E-01
11	10.0	0.0	/ 0.0	1-1.678E-02	-2.203E-01	-2.371E-01	/ -1.459E-02	1-2.039E-01	1-2.185E-01;
12	1 0.0	1 1 0 0	1 [00	1-2,734E-02	1-1.875E-01	1-2.149E-01	1 1-2.243E-02	-1.533E-01	1-1.758E-01
13	0.0	10.0	0.0	1-1.787E-01	/ -4.301E-01	1-6.088E-01	1-1.492E-01	1-4.360E-01	1-5.8528-01;
. 14	1 0.0		1 0.0	1 1-1.704E-01	1 1-4.919E-01	1-6.624E-01	1-1.182E-01	1-3.404E-01	-4.586E-01
15	1 0.0	1 0.0	1 0 0	/ -1.009E-01	1 1-4.865E-02	-1.496E-01	 -1.251E-01	8.510E-02	1-4.002E-02
	; . ~~~~~~~~~~	 	 	; {	 	: }	 	 	
SUM	1-6.183E-02	1-8.979E+00	1-9.041E+00	1-0.143E-01	-0.063E+00	-6.677E+00	-5.526E-01	-6+077E+00	-6.6302+001

10 -

		· · · · ·		•						
	[] F	AST FLUX 6	2 '	1 T 1 T	OTAL FLUX 6	2	 	OTAL FLUX 1	87 i	
GROUP	I ABSORPT.	SCATTER.	Ι Ι Ι ΤΟΤΛL	ABSORPT.	SCATTER.	TOTAL	I ABSORPT.	SCATTER.	TOTAL	
	 -2.643E-04	1-2.873E-02	-2.899E-02	-8.340E-05	I-7.480E-03		-8.837E-05	-6.023E-03	-8.111E-03	• .
2	 -2.842E-04	-1.060E-01	 -1.063E-01	 -9.023E-05	 -2.688E-02	 -2.697E-02	1 1-9.559E-05	-2.889E-02	-2.899E-02	
3	l -1.429E-03	 -3.174E-01	 -3.188E-01	1 1-4.025E-04	l -6+819E+02	I -6.859E-02	-4.291E-04	-7.412E-02	-7.454E-021	
4	 -6.572E-03	-5.245E-01	 -5.311E-01	-1.707E-03	 -9.808E-02	-9.978E-02	1-1.825E-03	-1.073E-01	I-1.091E-01	
5	 -2.234E-03	 -5.069E-01	 -5.091E-01	 -7.715E-04	I-1-117E-01	-1.124E-01	1-8.152E-04	1-1.215E-01	-1.223E-01	
6	 -2,768E-03	 -5.402E-01	 -5.430E-01	-1.163E-03	-1.321E-01	-1.332E-01	I-1.219E-03	(-1.431E-01	I-1.443E-01	I .
7	 -3,385E-03	 -5.848E-01	-5.882E-01	1-1.745E-03	-1.508E-01	 →1,525E-01	-1.822E-03	-1.633E-01	I-1.651E-01	11
8	1-9,670E-05	-4.817E-02	-4.827E-02	-2.552E-04	1-3.384E-02	 -3.410E-02	1-2.598E-04	-3.565E-02	-3.591E-021	r .
9	10.0	1 0.0	 ·0•0	1-2.038E-02	i-8.165E-01	-8.369E-01	-2.131E-02	-8.888E-01	1-9.101E-01	
10	0.0	0.0	0.0	1-1.007E-02	-6.134E-02	-7.141E-02	-9.114E-03	-5.896E-02	-6.807E-02	
. 11	0.0	0.0	0.0	-1.888E-02	1-5.745E-02	-7.633E-02	-1.641E-02	-5.344E-02	-6.985E-021	
12	0.0	0.0	0.0	-5.7120-02	-7-133E-02	-1.285E-01	1-4.687E-02	-5.888E-02	-1.057E-01	
13	0.0	0.0	0.0	-1.701E-02	1-5.302E-02	-7.003E-02	-1.420E-02	1-5.339E-02	-6.759E-021	
14	10.0	0.0	10.0	-5.6052-02	-5.195E-02	-1.080E-01	-3.886E+02	-3.615E-02	-7.501E-021	
15	1 1 0 • 0 1	0.0	0.0	1-3.224E-02	-4.959E-03 	-3.720E-02	-3,991E-02	8.702E-03	-3.121E-02	·
 SUM	 -1.703E-02	 -2.657E+00	 -2.674E+00	 -2.180E-01	I-1.746E+00	 -1.964E+00	 -1.932E-01	i i-1.823E+00	I=2.016E+00: I	· · · · ·
	 		I TABI	LE 5 - SENSI	TIVITY COEFFI	CIENTS CR	• <u>_</u>	in a serie a serie de la s		

. [F	ÁST FLUX 62	2	тс	TAL FLUX 62	2	TOTAL FLUX 187		
GROUP	ABSORPT.	SCATTER.	TOTAL	ABSORPT .	SCATTER.	TOTAL	ABSORPT.	SCATTER,	TOTAL
1	-3.726E-03	-1.320E-02	-1.692E-02	-1.176E-03	-3.468E-03	-4.643E-03	-1.246E-03	-3.719E-03	-4.965E-03
2	-5.305E-03	-4.830E-02	-5.3602-02	-1.685E-03	-1.220E-02	-1.388E-02	-1.785E-03	-1.312E-02	-1.491E-02
3	-3.936E-03	-1.368E-01	-1.408E-01	-1.1090-03	-2.971E-02	-3.081E-02	-1.182E-03	-3.226E-02	-3.344E-02
4	-3.909E-03	-2.496E-01	-2.535E-01	-1.015E-03	-+.531E-02	-4.632E-02	-1.085E-03	-4.963E-02	-5.072E-02
5	-1.981E-03	-2.117E-01	-2.137E-01	-6.841E-04	-4.745E-02	-4.814E-02	-7.228E-04	-5.154E-02	-5.226E-02
6	-2.858E-03	-2.168E-01	-2.197E-01	-1.200E-03	-5.455E-02	-5.575E-02	-1.258E-03	-5.896E-02	-6.021E-02
7	-3.352E-03	-5.315E-01	-5.348E-01	-1.727E-03	-1.362E-01	-1.379E-01	-1.804E-03	-1.475E-01	-1.493E-01
8	-1.822E-04	-6.743E-02	-6.761E-02	-4.807E-04	-4.683E-02	-4.731E-02	-4.896E-04	-4.934E-02	-4.983E-021
9	0.0	0.0	0.0	-2.105E-02	-7.806E-01	-8.077E-01	-2.201E-02	-8.600E-01	-6.820E-01
10	0.0	0.0	0.0	-7.763E-03	-7.664E-02	-8.440E-02	-7.027E-03	-7.409E-02	-8.111E-02
- 11	1 0.0		0.0	-1.3026-02	-4.289E-01	-4.419E-01	-1.132E-02	-4.035E-01	-4.1+8E-01
12	0.0	/ 1 0 - 0		-1.600E-02	1-6-434E-02	1 1-8.034E-02	-1.313E-02	-5.294E-02	-6.607E-02
13	0.0	0.0	1 0.0	-1.124E-02	-9.189E-02	 -1.031É-01	-9.389E-03	-9.252E-02	-1.019E-01
14	0.0		0.0	-4.034E-02	-9.946E-02	-1.398E-01	-2.798E-02	-6.854E-02	-9.652E-02
15	0.0	0.0	0.0	-2.352E-02	1-1.004E-02	1-3.355E-02	-2.921E-02	1.770E-02	-1.151E-021
********	 = 1	 	 		 	 	 		 ===============
SUM	-2.5258-02	-1,475E+00	-1.501E+00	-1.420E-01	-1.934E+00	-2.076E+00	-1.296E-01	-1.940E+00	-2.070E+00
, ****		, 	і +==++==== ТАрі		' Tlvity coeceia		; 		, ====================================

9108001S

ਂ

12

I.

	a								
		FÁST FLUX 6	2	I T	OTAL FLUX 6	2	ί. Ι	OTAL FLUX 1	87
GROUP	ABSORPT.	I SCATTER.	I TOTAL	ABSORPT.	SCATTER.	TOTAL	I ABSORPT.	I SCATTER.	 TOTA
1	1-5.547E-04	 -1.755E-02	 -1.810E-02	 -1.750E-04	 -4.537E-03	 -4.712E-03	 -1.855E-04	 -4.869E-03	 -5.054E
2	I I-1.904E-05	1 1-8.034E-02	 -8.036E-02	1 1-6.045E-06	 -2.054E-02	1-2.054E-02	 -6.404E-06	 -2.206E-02) 1-2.207E
3	 -6.910E-05	 -2.777E-01	 -2.777E-01	1 1-1.947E-05	 -5.754E-02	 -5.756E-02	 -2.075E-05	 -6.262E-02	 -6.264E
4	 -2.998E-04	 -1.624E+00	 -1.624E+00	1 1-7.785E-05	 -2.714E-01	1 1-2.714E-01	 -8.323E-05	 -2.997E-01	 -2,998E
5	 -2.224E-04	 -1.147E+00	! !-1.147E+00	 -7.681E-05	 -2.488E-01	 -2.489E-01	 -8.116E-05	 -2.713E-01	 -2.714E
.6	-2.414E-04	 -7.498E-01	 -7.500E-01	 -1.014E-04	I 1-1.777E-01	 -1.778E-01	 -1.063E-04	 -1•931E-01	 -1,932E
7	-4.834E-04	 -1.471E+00	 -1.471E+00	 -2.492E-04	 -3.724E-01	 -3.727E-01	 -2.602E-04	 -4.038E=01	 -4.041E
8	-3.544E-05	 -1.142E-01	 -1.142E-01	 -9.353E-05	 -7.197E-02	 -7.206E-02	 -9.524E-05	1 1-7.594E-02	 -7.604E
9.	0.0		 00	 -3.311E-03	1-1.247E+00	 -1.250E+00	-3.462E-03	-1-364E+00	-1.368E
10	0.0	0.0	0.0	-1.678E-03	-1.327E-01	 +1.344E-01	-1.519E-03	 -1.290E+01	-1.305E
11	0+0	0.0	0.0	-1.549E-04	 -1.329E-01	 -1.331E-01	-1.347E-04	 -1.246E-01	-1.247E
12		0.0	0.0	 -8.140E-03	 -1.204E-01	 -1.286E-01	-6.678E-03	 -9•845E-02	-1.0512-
13	1 1 0•0	0.0	0.0	-7.713E-03	 -6.763E-02	 -7.534E-02	-6.491E-03	 -7.070E-02	-7.719E
14	0.0	0.0	0.0	-1.240E-02	-6.704E-02	-7.944E-02	-1.253E-02	-4.391E-02	-5.644E
15		0.0	0.0	-6.873E-03	-4.390E-03	-1.120E-02	-4.776E-02	5.376E-021	6,003E
SUM		-5.481E+00	-5.483F+00	-4.107E-02	-2.997E+00	-3.038E+00	-7.941E-02	-3.111E+00	-3.190E

13 -

	l - F	AST FLUX 62		тс	TAL FLUX 62	2	тс	DTAL FLUX 18	37
GROUP	ABSORPT. I	SCATTER.	TOTAL	AUSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL
1	1-2.482E-08	3.756E-071	3.508E-07	-1.981E-10	1.607E-09	1.409E-09	-2.933E-09	-2.986E-08	-3.280E-08:
2	-1.116E-091	4.908E-06	4.907E-06	-9.015E-12	1.859E-08	1.858E-08	-8.018E-11	-2.615E-07	-2.615E-07
3	1-8.178E-08	3.387E-04	3.386E-04	-6.805E-10	1.237E-06	1.236E-06	-4.303E-09	-1.246E-05	-1.247E-05
4	-3.0852-06	6.292E-03	6.289E-03	-2.418E-05	2.2268-05	2.224E-05	-7.578E-08	-1.271E-04	-1.272E-04
5	1-5.6298-06	5.631E-03	5.626E-03	-4.619E-08	2.482E-05	2.477E-05	-1.358E-07	-1.385E-04	-1.386E-04
6	-2.240E-05	1.981E-02	1.979E-02	-2.344E-07	1.695E-04	1.693E-04	-9.113E-07	-1.286E-03	-1.287E-03
· 7	-8.733E-05	1.0525-02	1.043E-02	-1.475E-06	6.047E-04	6.033E-04	-4.770E-06	-3.514E-03	-3.519E-03
8.	1-3.844E-05	-8.203E-02	-8.206E-02	-1,491E-06	4.422E-04	4.407E-04	1-5-281E-06	-2+892E-03	1-2.897E-03
9	10.0	0.0	0.0	-1.584E-04	2.350E-02	_2,334E-02	-5.269E-04	1-1-567E-01	1-1.572E-01
10	0.0	0.0	0.0	~5.468E-04	1.385E-02	1.330E-02	1-1.796E-03	-1.174E-01	-1.192E-01
11	1 0.0	0.0	0.0	-6.225E-05	2.339E-02	2.332E-02	-1.997E-04	-1.589E-01	-1.591E-01:
12	1 0.0	l 0.0	i 0.0	-3.447E-03	-5.932E-04	-4.040E-03	-9.831E-03	-8.991E-02	-9.974E-02
13	0.0		0.0	-9.323E-03	4.068E-02	3.136E-02	-6.668E-02	I-1.268E+00	1-1.334E+00.
14	0.0	0.0	0.0	-2.588E-02	4.277E-02	1.689E-02	-3.790E-01	-3.953E+00	-4.332E+00
ت ۱5	1 0.0	1 0.0 1	0.0 	1-9.020E-02	1 3.537E-02	 -5.483E-02 	-2.182E+00	-1.766E+00	-3.948E+00
SUM	I-1.570E-04	 -3,942E-02	 -3.958E-02		1.802E-01	1 5.060E-02	 -2.640E+00	 -7.517E+00	: -1.016E+01
·	. [TAB	- SENSITIVITY	Y COEFFICIENTS	NA IN NA	NK		*

910800°

- 14

ı

	SENSITIVIT	Y TO ANGULAR SOURCE	IN POINT 1	•	
GRP.	ANG	LE		·	N - 5
1	0.0 N =	N = 2 1.92608E-06	N = 3 9∙87623E-06	N = 4 8•42146E=03	1•95398E=02
. 2	C.O	9.68038E-06	3.44461E-05	2.67781E-02	6.10190E-02
3	0. 0	1.94790E-05	5.50621E-05	4.37362E-02	1.00602E-01
4	0.0	3.37812E-05	9.37240E-05	6.71297E-02	1.51196E-01
, 5	0.0	1.59807E-05	4 . 37996E-05	3.56493E-02	8.39731E-02
. 6	0.0	1.83782E-05	4.51470E-05	2.85132E-02	6.35739E-02
7	0.0	1.39681E-05	3.24735E-05	2.29151E-02	5.28771E-02
8	0.0	2.94015E-06	7.07782E-06	5.17792E-03	1.23423E-02
9	0.0	6.15669E-05	1.28221E-04	6.66926E-02	1.46856E-01
.1.0	0.0	1.38050E-06	2.75709E-06	1.04846E-03	2.31255E-03
. 11	0.0	6.49543E-07	1.28600E-06	4.88885E-04	1.08747E-03
12	0.0	3.79978E-07	7.36335E-07	1.44111E-04	3.04646E-04
13	0.0	8.51765E-08	1.65973E-07	3.98189E-05	8.50652E-05
14	0.0	3.25830E-09	6.33458E-09	1.40113E-06	2.98325E-06
15	0.0	8.98734E-13	1.74242E-12	3.78065E-10	8.19169E-10
1					

TABLE 9 - SENSITIVITY TO THE SOURCE

15 -

I.

DATA SET	GROUP 1	GROUP 2 1	GROUP 3	GROUP 4	GROUP 5 I	GROUP 6	GROUP 7	GROUP 8
****	 =		 ===================================	 		: 		
VITAMC	 4.327E-02	1.0416-02	2.533E-03	3.699E-03	5.156E-03	4.971E-03	5.047E-03	5.329E-03
VITAME	4.344E-02	1.057E-02	2.632E-03	4.840E-03	6.339E-03	4.684E-031	3.685E-03	4.159E-03
RADHEAT	4.716E-04	8.598E-041	1.590E-031	3.861E-03	5.142E-03!	4.952E-031	5.047E-03	5.328E-03
BABEL	4.251E-02	9.581E-03	2.404E-03	3.861E-03	5.144E-03	4.948E-03	5.041E-03	5.324E-03
PROPDC	3.401E-02	6.269E-031	2.153E-03	3.865E-03	5.142E-03	4.946E-03	5.045E-03	5.323E-03
PROPD1	3.374E-02	6.255E-031	2.149E-03	3.857E-03	5.126E-03	4.922E-03	5.012E-03	5.258E-03
EURLIB	4.327E-021	9.614E-03	2.396E-03	3.881E-03	5.145E-03	4.950E-031	5.048E-03	5.349E~03
UKAEA	 4.244E-02	8.201E-03	2.409E-031	4.058E-03	5.242E-03	4.983E-031	4.474E-03	3.574E-03
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 -							
MEAN	 3.539E-02	 7.720E-031	2.283E-031	3.990E-03	5.305E-03	 4.920E-03	4.800E-03	4•955E-03
ST. DEV.	 1.470E-02	 3.251E-03	 3.256E-04	3.566E-04	4.195E-04	 9.682E-05	4.924E-04	6.907E-04
***				*			*******	

T

16

1

TABLE 10 - Fe of a

910800°?

DATA SET	I GROUP 9	GROUP 10	GROUP 11	GROUP 12	GROUP 13	GROUP 14	GROUP 15
*****						*********	****
VITAMC	7.027E-03	8.272E-03	7.711E-03	1.291E-02	5.205E-02	5.942E-02	2.487E-01
VITAME	6.3 <u>0</u> 1E-031	7.617E-03	8.548E-03	1.035E-02	4.390E-02	5.713E-02	2.492E-01
RADHEAT	7.159E-03	5.625E-03	8.699E-03	1.225E-02	4.418E-02	5.912E-02	2.492E-01
BABEL	7.036E-03	9.628E-03	8.161E-03	1.308E-02	6.689E-02	5.917E-02	2.456E-01
PPOPD0	7.042E-03	1.054E-021	6.670E-03	1.247E-02	7.667E-02	6.325E-02	2.728E-01
PROPD1	7.009E-031	1.044E-02	6.645E-031	1.210E-02	6.791E-02	6.296E-02	2.728E-01
EURLIB	7.047E-03	7.818E-03	6.410E-03	1.193E-02	4.634E-021	5.896E-02	2.334E-01
UKAEA	7.244E-03	7.045E-031	5.959E-031	9.173E-03	3.829E-02	5.686E-02	2.320E-01
MEAN	6.983E-031	 8.373E-031	7.350E-03	1.178E-021	5.453E-021	5.961E-02	2.505E-01
ST. DEV.	2.872E-041	 1.721E-03	1.057E-03	1.342E-03	1•404E-021	2.363E-031	1.539E-02
*						******	
			•	-		•	

TABLE 10 (contd.) - Fe da

0

610080**1**6

17 -

I

GROUP 8 1	ROUP 7	GROUP 6 I	GROUP 5	GROUP 4 1	GROUP 3	GROUP 2	GROUP 1	DATA SET
	,	;]=======[******	~~~~~~~~~ 		** ** <= ~ <u>*</u> <* <= ~ ~ ~ *
2.798E+001	•550E+001	3.262E+001	1.936E+001	2.725E+00	2.920E+00	3.394E+001	1 3.598E+00	VITAMC
2.615E+00	+562E+00	3.270E+00	1.936E+00	2.735E+001	2.926E+00	3.394E+00	3.597E+00	VITAME
2.727E+00	•575E+00	3.326E+00	2.033E+00	2.688E+001	2.879E+00	3.448E+001	1 3.642E+00	RADHEAT
2.894E+00	.805E+00	3.537E+00	2.213E+00	2.878E+00	2.951E+00	3.457E+00	3.602E+00	BABEL
2.872E+00	.788E+00	3.556E+001	2.225E+00	2.835E+001	2.912E+00	3.300E+00	3.594E+00	PROPDC
2.864E+001	 2•776E+00	3.543E+00	 2•217E+00	2.829E+00	2.907E+00	 3.285E+00	1 3.585E+00	PROPD1
2.077E+00	807E+00	2.994E+001	1.732E+00	2.387E+001	2.756E+00	3.423E+001	3.596E+00	EURLIB
2.462E+001	785E+00 	2.998E+00 	1.692E+001	2.6115+00	2 . 999E+00	 3.469E+00 	 3.605E+00 	UKAEA
2.664E+001	 2•456E+00	3.311E+00	2.004E+00	2.711E+00	2.906E+00	 3.396E+00	1 1 3.602E+00	MEAN
2.792E-01	-210E-01	2.292E-011	2.051E-011	1.574E-01	7.033E-02	 7.010E-02 	 1.790E-02	ST. DEV.
·	·	i		i	TABLE 1	 	 	910300 2
	•785E+00	2.998E+00 3.311E+00 2.292E-01	1.692E+00 	2.611E+00 2.711E+00 1.574E-01	2.999E+00 2.906E+00 7.033E-02 TABLE 1	3.469E+00 3.396E+00 7.010E-02	3.605E+00 3.602E+00 1.790E-02	UKAEA MEAN ST. DEV.

DATA SET	I GROUP 9 I	GROUP 10	GROUP 11	GROUP 12	GROUP 13	GROUP 14	GROUP 15

VITAMC	3.429E+00	5.623E+00	3.468E+00	7.053E+00	9.978E+00	1.138E+01	1.140E+01
VITAME	3.339E+001	5.616E+00	3.504E+00	7.015E+00	9.890E+00	1.136E+01	1.141E+01
RADHEAT	3.463E+00	5.707E+00	5.860E+00	7.045E+00	9.974E+00	1.138E+01	1.140E+01
BABEL	3.471E+00	5.644E+00	3.655E+00	6.909E+001	9.975E+00	1.138E+01	1.140E+01
PROPD0	3.450E+00	7.3652+00	1.271E+00	7.143E+00	1.013E+01	1.137E+01	1.140E+01
PROPD1	3.448E+00	7.271E+00	1.249E+00	7.017E+001	1.007E+01	1.136E+01	1.140E+01
EURLIB	2.718E+00	5.779E+001	3.597E+001	6.791E+001	9.975E+00	1.137E+01	1.139E+01
UKAEA	2.598E+001	5.230E+001	3.722E+001	7.015E+001	9.474E+00	1.108E+01	1.134E+011
						'	
MEAN I	 00+3925	6.029E+00	3.291E+001	6.998E+00	9•933E+00	1.133E+01	1.139E+01
ST. DEV.	3.628E-01	8.120E-01	1.480É+00	1.056E+011	1.990E-01	1.021E-01	2.287E-02
•=====================================	!	 					

TABLE 11 (contd.) - Fe σ_{S}

I

19

1

01080020

Ø

DATA SET	GROUP 1	GROUP 2	GROUP 3	GROUP 4	GROUP 5	GROUP 6 1	GROUP 7	GROUP &
VITAMC	1.663E-02	3.941E-03	4.9075-03	7.125E-03	4.464E-03	3.804E-03	3.781E-03	2.232E-03
VITAME	3.945E-02	7.001E-03	5.085E-03	2.296E-02	9.904E-03	3.792E-03	3.772E-03	2.207E-03
RADHEAT	7.867E-04	2.423E-03	4.959E-03	7.017E-03	4.119E-03	3.721E-03	3.797E-03	2.276E-03
BABEL	1.451E-02	3.843E-03	4.987E-03	7.023E-03	4.212E-03	3.739E-03	4.047E-03	2.300E-03
PROPD0	1.143E-02	3.535E-03	5.432E-03	7.005E-03	4.205E-03	3.737E-03	4.059E-03	2.283E-03
PROPD1	1.135E-02	3.532E-03	5.420E-03	6.994E-03	4.194E-03	3.723E-03	4.033E-03	2.258E-03
EURLIB	 1.660E-02	3.844E-03	4.991E-03	7.014E-03	4.209E-03	3.738E-03	4.026E-03	2.418E-03
UKAEA	 7.377E-03 	1.616E-03	2.088E-03	3.554E-03	3•386E-03	3.179E-03	4.811E-03	3+879E-031
MEAN	 1.477E-02	3.717E-03	4.734E-03	 8.587E-03	4.836E-03	3.679E-03	4.041E-03	2.482E-03
ST. DEV.	1.127E-02	1.559E-03	1.089E-03	5.934E-03	2.071E-03	2.043E+04	3.368E-04	5.682E-041
910 80022	-		TABLE 12	- Cr σ _α		•		

.

. . . .

~

20 1

- -

4

-

DATA SET	 GROUP 9	GROUP 10	GROUP 11	GROUP 12	GROUP 13	GROUP 14	 GROUP 15
VITAMC	6.991E-03	1.867E-02	3.208E-02	8.934E-02	2.396E-02	7.254E-02	3.010E-01
VITAMC	6.867E-03	1.859E-02	3.207E-02	8.733E-02	2.387E-02	7.266E-02	3.029E-01
RADHEAT	6.896E-03	1.796E-02	3.108E-02	7.361E-02	2.378E-02	7.235E-02	3.039E-01
BABEL	7.075E-03	1.872E-02	3.417E-02	1.017E-01	2.369E-02	7.241E-02	2.920E-01
PROPD0	7.103E-03	1.999E-02	3.421E-02	9.025E-02	2.358E-02	7.735E-02	3.232E-01
PROPD1	6.674E-03	1.736E-02	2.816E-02	7.635E-02	2.138E-02	7.427E-02	3.165E-01
EURLIB	7.548E-031	2.043E-021	3.542E-02	1.064E-01	2.378E-02	7.226E-02	2.836E-01
UKAEA	7.278E-031	9.760E-031	1.613E-02	7.504E-02	3.083E-02	7.020E-02	2.800E-01
MEAN	7.054E-031	1.768E-021	3.041E-02	8.750E-02	2.436E-02	7.300E-02	3.004E-01
ST. DEV.	2.685E-041	3.353E-031	6.193E-03	1.220E-02	2.748E-03	2.073E-03	1.495E-02

TABLE 12 (Contd.) - Cr oa

91080022

¢\$

21

I.

				:					
				•					
							·····		1
DATA SET	I GROUP 1 I	GROUP 2 1	GROUP 3	GROUP 4	GROUP 5	GROUP 6	GROUP 7	GROUP 8	
VITAMC	3.616E+00	3.736E+00	3.293E+00	2.943E+00	3.151E+00	3.837E+00	2.434E+00	2.351E+00	, , ,
VITAME	3.595E+00	3.733E+00	3.298E+00[2.944E+00	2.927E+00	3.841E+00	2.432E+00	2.348E+00	 1
RADHEAT	i 3.633E+00	3.706E+001	3.291E+00	2.865E+00	3.340E+00	3.799E+00	2.410E+00	2.358E+00	1
BABEL	3.619E+00	3.709E+00	3•278E+00j	2.897E+00	3.397E+00	3.848E+00	2.686E+00	2.405E+00	i i
PROPD0	3.659E+00	3.665E+00	3.219E+00	2.895E+00	3.388E+00	3.870E+00	2.676E+00	2.402E+00)
PROPD1	3.588E+00	3.587E+00	2.899E+001	2.792E+00	3•269E+00	3.496E+00	2.530E+001	2.288E+00	,
EURLIB	3.616E+00	3.711E+00	3.328E+001	2.928E+00	3.441E+00	3.918E+00	2.618E+00	2.404E+001	 1
UKAEA	3.599E+00	3.678E+00	3.168E+00	2.874E+00	2.956E+00	3.013E+00	2.679E+00	2.029E+00)
	    	~~~~~~	 	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··					, ‡ a
MEAN	3.616E+00	3.690E+00	3.222E+00	2.892E+00	3.233E+00	3.703E+00	2.558E+00	2.323E+00	,   1
ST. DEV.	2.320E-02	4.861E-02	1.399E-01	5.033E-02	2.015E-01	3.072E-01	1.208E-01	1.254E-01	] 8 1
9	 	 	TABLE 13	- Cr 05		 			•
0080							ti a		
			-			-			

	•			· ·			
DATA SET	I GROUP 9   I GROUP 9	GROUP 10	GROUP 11	GROUP 12	I GROUP 13 I	I GROUP 14	GROUP 15
					)		
VITAMC	4+898E+001	4.540E+001	3.016E+00	1.374E+01	4-818E+00	4.382E+00	4.344E+00
VITAME	4.885E+001	4.603E+001	3.014E+00	1.372E+01	4•790E+00	4.377E+00	4.353E+001
RADHEAT	4.854E+00	4.517E+00	3.339E+00	1.335E+01	4.784E+00	4.371E+00	4.339E+00
BABEL	4.956E+001	4.037E+001	3.000E+00	1.388E+01	4.783E+00	4.371E+00	4.337E+001
PROPD0	4.917E+00	4.031E+00	2.928E+00	1.262E+01	4.679E+00	4.372E+00	4.334E+00
PROPD1	4.728E+001	3.930E+001	2.863E+00	1.241E+01	4.623E+00	4.342E+00	4.315E+001
ÉURLIB	5.667E+001	5.866E+00	3.108E+00	1.321E+01	4.784E+00	4.370E+00	4.344E+001
UKAEA	4.696E+001	4.359E+001	3.030E+00	9.932E+00	4.280E+00	4.265E+00	4.186E+00
MEÁN	4.950E+001	4.485E+00	3.043E+001	1•286E+01	4.693E+001	4.356E+00	4•319E+00i
ST. DEV.	3.035E-011	6.159E-01	1.426E-011	1.294E+00	1.794E-01	3.906E-02	5.520E-02
		Ĩ	TABLE 13 (cont	td) - Cr 5			

- 23

I

91080024

a,

*

DATA SET	GROUP 1	GROUP 2	GROUP 3	GROUP 4	GROUP 5	GROUP 6	GROUP 7	GROUP 8
VITAMC	4.168E-01	1.577E-01	3.030E-02	8.606E-03	7.588E-03	7.808E-03	8.200E-03	9.073E-03
VITAME	4.112E-01	1.599E-01	2.707E-02	8.518E-03	7.783E-03	7.792E-03	8.176E-03	8.994E-03
RADHEAT	9.906E-04	2.510E-03	5.562E-03	7.548E-03	7.536E-03	7.827E-03	8.176E-03	9.112E-03
BABEL	4.158E-01	1.459E-01	2.794E-02	8.493E-03	7.593E-03	7.847E-03	8.146E-03	8-812E-03
PROPD0	3.601E-01	9.874E-02	2.122E-02	8.409E-03	7•593E-03	7.861E-03	8.159E-03	8.799E-03
PROPD1	   3.580E-01	   9.832E-02	2.1158-02	8.359E-03	7.553E-03	7.813E-03	8.091E-03	8.706E-03
EURLIB	4.165E-01	   1.460E-01	2.780E-02	8.478E-03	7.548E-03	7.820E-03	8.146E-03	9.067E-03
UKAEA	   4.336E-01	   1.623E-01	3.173E-02	   7.573E-03	7.633E-03	7.940E-03	8.306E-03	9.196E-03
	 	 		 	 	, 		
MEAN	3.516E-01	1.214E-01	2.410E-02	8.248E-03	7.604E-03	7.839E-03	8.175E-03	8.970E-03
ST. DEV.	1 1.444E-01	   5.459E-02	8.4055-03	4.307E-04	7.887E-05	4.650E-05	6.238E-05	1.758E-04
võ		 		 			*****	
			TABLE	E 14 - Ni c	ra.			
termentet Argene, Suite and Suite and							<b>、</b>	
a manan A mananan A manananan A manananan								
			•			•		

24 ı.

DATA SET	GROUP 9	GROUP 10	GROUP 11	GROUP 12	GROUP 13	GROUP 14	GROUP 15				
VITAMC	1.456E-02	2.727E-02	4.543E-02	5.523E-02	3.204E-02	1.065E-01	4.440E-01				
VITAME	1.443E-021	2.711E-02	4.5235-021	5.472E-021	3.2058-02	1.063E-01	4.460E-01				
RADHEAT	1.460E-021	2.619E-02	4.161E-02	5.398E-021	3•196E-02	1.058E-01	4.473E-01				
BABEL	1.485E-02	2.935E-021	4.792E-021	5.790E-021	3•184E-02	1.059E-01	4.330E-01				
PROPD0	1.487E-02	3.051E-021	4.883E-02	5.359E-02	3•181≝⊷Q2	1.132E-01	4.799E-01				
PROPD1	1.483E-021	3.038E-02	4.864E-021	5.350E-02	3•168E-02	1.125E-01	4.784E-01				
EURLIB	1.455E-021	3.120E-02	5.0228-021	5.851E-02	3.196E-02	1.056E-01	4.171E-01				
UKAEA	1.354E-02	2.741E-021	3.423E-021	5.392E-021	3.074E-02	1.005E-01	4.023E-011				
MEAN I	1.453E-02	2.868E-021	4.526E-021	5.517E-02	3.176E-021	1.071E-01	4.435E-01				
ST. DEV.	4.334E-04	1.899E-03	5.2216-03	1.968E-03	4.291E-04	4.062E-03	2.6905-021				
	 	1	       				 				
	TABLE 14 (contd.) - Ni ora										

J

25 -

I.

930080**10** 

*a* 5

DATA SET	GROUP 1	GROUP 2 I	GROUP 3	GROUP 4	GROUP 5	GROUP 6	GROUP 7	GROUP 8   
*********								
VITAMC	3.234E+00	3.132E+001	2.979E+00	2.788E+00	3.255E+00	3.730E+00	4.562E+00	6•554E+001
VITAME	3.273E+00	3.183E+00	3.091E+00	2.9725+00	3.269E+00	3.727E+00	4.567E+00	6.518E+00
RADHEAT	3.651E+00	3.257E+001	3.004E+001	2.845E+00	3.130E+00	3.836E+00	4.515E+00	6+592E+00
BABEL	3.236E+001	3.113E+001	2.979E+00	2.841E+00	3.203E+00	3.943E+00	4.641E+00	6.586E+00
PROPD0	3.221E+00	3.069E+00	2.979E+00	2.835E+00	3.190E+00	3.957E+00	4.661E+00	6.573E+00
PROPD1	3.197E+00	3.043E+00	2.904E+00	2.800E+00	3.149E+00	3.906E+00	4.531E+00	6.170E+001
EURLIB	3.235E+00	3.114E+00	2.987E+00	2.844E+00	3.179E+00	3.884E+001	4.588E+00	6.656E+00
UKAEA	3.195E+00	3.103E+00	3.279E+00	3.205E+00	3.200E+00	3.897E+00	4.618E+00	6.698E+00
*******							~~~~~~~~	
MEAN	3.280E+00	3.127E+00	3.025E+00	2.891E+Q0	3.197E+00	3,860E+00	4.585E+00	6.543E+001
ST. DEV.	1.518E-01	6,688E-02	1.147E-01	1.382E-01	4.754E-02	8.922E-02	5.182E-02	1.615E-01
		, 						

TABLE 15 - Ni os

ł 26

1

	{						
DATA SET	I GROUP 9 I I GROUP 9 I	GROUP 10	GROUP 11	GROUP 12	I GROUP 13	I GROUP 14	   GROUP 15   
	=						
VITAMC	6.302E+001	7.862E+00	2.449E+01	2.250E+01	1.698E+01:	1.777E+01	1.785E+01
VITAME	6.274E+001	7.840E+00	2.444E+01	2.251E+01	1.692E+01	1.776E+01	1.789E+01
RADHEAT	6.281E+001	7.322E+00	2.177E+01	2.208E+01	1.689E+01	1.775E+01	1.786E+01
BABEL	6.230E+00	8.256E+00	2.649E+01	2.296E+01	1.689E+01	1.775E+01	1.785E+01
PROPD0	6.208E+00	8.697E+00	2.838E+01	2.207E+01	1.699E+01	1.775E+01	1.785E+01
PROPD1	5.446E+001	8.261E+001	2.717E+01	2.143E+01	1.674E+01	1.761E+01	1.774E+01
EURLIB I	6.386E+00	7.843E+00	2.614E+01	2.264E+01	1.689E+01	1.775E+01	1.786E+01
UKAEA	7.387E+001	8.937E+00	2.401E+01	2.009E+01	1.572L+01	1.720E+01	1.743E+01
MEAN I	6.314E+00	8.127E+00	 2.536E+01	2+204E+01	1.675E+01	1.7672+01	1.779E+01
ST. DEV.	5.253E-01	5.205E-01	1 2•090E+001	9.105E-011	4.248E-014	1.966E-01	1.543E-01
j		 TI		!	*	******	

 $f \mathbb{R}^{n}$ 

2

•

.

91080028

- 27

I DATA SET I	GROUP 1	GROUP 2	GROUP 3	GROUP 4 I	GROUP 5   	GROUP 6   I	GROUP 7	GROUP 8
VITAMC	2.532E-02	2.1775-041	1.982E-04	2.549E-041	3.471E-04	2.792E-041	4.807E-04	6.938E-04
VITAME	2.537E-02	2.174E-04	1.979E-04	2.538E-04	3.463E- <u>0</u> 4	3.224E-04	4.193E-04	8.297E-04
RADHEAT	1.642E-04	1.717E-04	1.986E-04	2.640E-04	3.449E-041	2.699E-04	4.727E-04	6.937E-04
BABEL I	2.506E-021	2.119E-04	1.985E-04	2.636E-04	3.451E-04	2.684E-04	4.756E-04	6.939E-04
PROPDO I	1.749E-02	1.779E-04	2.018E-04	2.615E-04	1 3.449E-04	2.668E-04	4.820E-04	6.940E-04
PROPD1	1.704E-02	1.766E-041	2.014E-04	2.615E-041	3•448E-041	2.661E-041	4.791E-04	6•899E-04
EURLIB 1	2.519E-02	2.113E-041	1.986E-04	2.642E-04	3.450E-04	2.703E-04	4.703E-04	6.937E-04
UKAEA I	1.818E-02	   1.410E-94	1.357E-04	2.278E-04	3•177E-04	3.980E-04	5.321E-04	6.071E-04
۱ ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	• • • • • • • • • • • • • •	 			 			, 
i		 						
MEAN I	1.923E-02	1.907E-04	1.913E-04	2.564E-04	3.420E-04	2.926E-04	4.765E-04	6.995E-04
ST. DEV.	8.592E-03	2.8115-05	2.254E-05	1.225E-05	9.850E-06	4.651E-05	3.041E-05	6+065E+05
	 							   <b>-</b>
•			TABLE 16	- Nainlat	Sh. Go			

1.2

- 28

E

2008002

....

***							
DATA SET	GROUP 9	GROUP 10	GROUP 11	GROUP 12	GROUP 13	GROUP 14	GROUP 15
VITAMC	9.161E-04	2.760E-03	2.308E-04	1.304E-02	8.878E-03	1.323E-02	.5.191E-021
VITAME	6.388E-041	1.934E-03	2.611E-05	9.667E-03	6.506E-03	1.278E-02	5.162E-02
RADHEAT	8.197E-04	2.484E-03	2.297E-04	1.448E-02	8.845E-03	1.318E-02	5.254E-021
BABEL I	9.459E-041	2.568E-031	2.307E-04	1.1920-02	8.841E-03	1.319E-02	5.122E-02
PROPD0	9.636E-04	2.299E~03	2.314E-04	1.177E-02	8.179E-03	1.406E-02	5.689E-021
PROPD1	9.534E-04	2.282E-031	2.299E-041	1.167E-02	8.125E-03	1.402E-02	5.6902-021
EURLIB	9.221E-04	8.465E-03	2.305E-041	1.540E-02	8.855E-03	1.314E-02	4.870E-021
UKAEA I	9.721E-04	1.5985-03	2.297E-03	1.934E-021	6-259E-03	1.278E-02	4.888E-02
   ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	*			 		 	
MEAN I	8.915E-041	3•049E-031	4.633E-041	1.341E-021	8.061E-031	1.330E-021	5.233E-021
ST. DEV.	1.128E-04	2+219E-03	7•445E-04	2.985E-03	1•083E-031	4.930E-041	3.133E-031
		TAE	BLE 16 (contd.	.) Na in Lat	. Sh. σ	s i	

P

•

91080030

•

29

11

1

~

. . .

DATA SET	GROUP 1	GROUP 2	1 GROUP 3 1	GROUP 4	GROUP 5	GROUP 6	GROUP 7	GROUP 8	
   VITAMC	 1.798E+00	2.262E+001	2.708E+00	 4.491E+00	5.042E+00	3.040E+00	3.468E+00	3.064E+00	
VITAME	1.877E+00	2.349E+001	2.788E+00	4.619E+00	5.199E+00	3.106E+00	3.570E+00	2.932E+001	
RADHEAT	1.325E+00	2.345E+00	2.704E+00	4.814E+00	4.386E+00	2.927E+00	3.505E+00	2.983E+001	
BABEL	1.799E+00	2.346E+00	2.703E+00	4.808E+00	4.387E+00	2.953E+00	3.488E+00	3.076E+00	
PROPD0	1.905E+00	2.592E+00	2.6535+001	4.737E+00	4.380E+00	2.957E+00	3.477E+00	3.061E+001	
PROPD1	1.883E+00	2.5562+00	2.619E+00	4.666E+00	4.290E+00	2.893E+00	3.406E+00	2.998E+001	
EURLIB	1.7995+00	2.348E+00	2.712E+00	4.843E+00	4.388E+00	2.957E+00	3.509E+00	3.056E+00	
UKAEA	1.741E+00	2.365E+00	2.692E+00	5.004E+00	4.632E+00	2.992E+00	3.502E+00	3.011E+00	
		_ =				( 	   ~~~~~~~~~~	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
MEAN	1.828E+00	2.395E+00	2.697E+00	4.743E+00	4.588E+00	2.978E+00	3.491E+00	3.023E+00	
ST. DEV.	5.540E-02	1.151E-01	4.910E-02	1.572E-01	3.455E-01	6.740E-02	4.631E-02	5.050E-02	
\Q								 	
	TABLE 17 - Na in Lat. Sh. 5								
Š				• •					
					s.				

÷.,-

.

-30

DATA SET	GROUP 9 1	GROUP 10   	GROUP 11	GROUP 12	GROUP 13	GROUP 14	   GROUP 15   
		!					
VITAMC	3.687E+001	4.577E+001	4.031E+00	1.381E+011	3.634E+001	3.141E+00	3.171E+00
VITAME	3.697E+001	4.686E+001	4.215E+00	1.306E+01	3.633E+00	3.145E+00	3.172E+00
RADHEAT	3.680E+00	4.595E+001	3.983E+00	1.427E+01	3.623E+00	3.142E+00	3.160E+00
BABEL	3.668E+001	4.459E+001	4.032E+001	1.345E+01	3.623E+00	3.142E+00	3.163E+00
PROPDO	3.665E+001	4.432E+001	4.054E+001	1.213E+01	3.396E+001	3.143E+00	3.170E+00
PROPD1	3.550E+001	4.152E+00	3.744E+00	1.149E+01	3.209E+00	3.025E+00	3.173E+001
EURLIB I	3.688E+001	4.923E+001	  4•020E+00	1.507E+011	3.625E+00	3.142E+00	3.158E+00
UKAEA	3.654E+001	4.606E+001	4.184E+00	1.207E+01	3.380E+001	3.105E+00	3.160E+00
MEAN	3.661E+001	4.554E+00	4.033E+001	1.317E+01	3.515E+001	3.123E+00	3.166E+00
ST. DEV.	4.754E-021	2.218E-01	1.428E-01	1.2228+00	1.645E-01	4.184E-02	6.766E-03
		TABI	.E 17 (contd.)	) - Na in Lat	:. Sh. 😋		

**10** 

1.

DATA SET	   GROUP 1   	GROUP 2 I	GROUP 3	GRUUP 4	GROUP 5   	GROUP 6 I	GROUP 7	GROUP 8		
						1				
VITAMC	6.397E-02	2.011E-04	2.052E-04	2.664E-041	3.474E-041	2.691E-041	5.229E-04	6•938E-041		
VITAME	6.784E-02	2.023E-04	2.055E-04	2.646E-04	3.462E-041	3.175E-04	3.794E-04	4.419E-04		
RADHEAT	1.685E-04	1.734E-04	2.048E-041	2.731E-04	3.439E-041	2.657E-04	5.135E-04	6.942E-04		
BABEL	5.669E-02	1.957E-04	2.045E-04	2.728E-041	3.438E-041	2.646E-041	4.995E-04	6.940E-04		
PROPD0	3.578E-02	1.771E-04	2.045E-04	2.651E-04	3.439E-041	2.629E-04	4.923E-04	6.939E-04		
PROPD1	3.331E-02	1.760E-04	2.043E-041	2.651E-04	3.439E-04	2.627E-04	4.921E-04	6.924E-04		
EURLIB	6.279E-02	1.953E-04	2.051E-04	2.739E-04	3.443E-041	2.652E-041	5.155E-04	6.937E-04		
UKAEA	3.924E-02	1.303E-04	1.431E-04	2.372E-04	3.209E-041	4.060E-04	5.451E-04	6.071E-04		
MEAN	1 4.498E-021	1.814E-04	1.971E-04	2.648E-04	3•418E-04	2.892E-04	4.950E-04	6.514E-04		
ST. DEV.	1 2•268E-02	2.373E-05	2.183E-05	1.182E-05	8•561E-06	5.067E-05	4.993E-05	8.988E-05		
Ø	 				 	 		 		
$\overline{\mathbf{o}}$	TABLE 18 - Na in Na tank $\sigma_{a}$									
and a second sec										
<u> </u>										

-

- •

-

I

32

!

.

	 1 <b></b> .					e>	
DATA SET	GROUP 9	GROUP IO	GROUP 11	GROUP 12	GROUP 13	GROUP 14	GROUP 15
VITAMC	7.282E-04	2.006E-03	2.337E-04	7.811E-03	8.517E-03	1.458E-02	9.425E-02
VITAME	4.008E-041	1.603E-03	2.820E-05	5.897E-03	6.270E-03	1.424E-02	9.698E-021
RADHEAT	6.518E-04	1.476E-03	2.328E-04	9.151E-03	8.500E-03	1.451E-02	1.021E-01
BABEL	8.460E-04	2.677E-03	2.336E-041	7.088E-03	8.475E-03	1.455E-02	9.989E-02
PROPDO	7.588E-04	2.102E-03	2.356E-041	8.114E-03	8.095E-03	1.563E-02	1.139E-01
PROPD1	7.489E-04	2.098E-031	2.347E-041	8.043E-031	8.064E-031	1.541E-02	1.135E-01
EURLIB	8.323E-04	3.585E-031	2.334E-041	9.256E-03	8.527E-03	1.443E-02	5.904E-021
UKAEA	1.063E-03	1.637E-031	2.355E-031	1.502E-02	6.107E-03	1.427E-02	5.935E-021
			******				
MEAN I	7.537E-04	2.148E-03	4.733E-041	8.797E-031	7.819E-03	1.470E-02	9.237E-021
ST. DEV.	1.874E-04	6.948E-041	7.636E-04	2.735E-03	1.025E-03	5.223E-04	2.167E-02
		*******	 	   ===================================	: 	 	
			TABLE 18 (c	ontd.) Na in	Na tank on		

C7

••?

.

910800*3* §

33

ł

DATA SET	GROUP 1 1	GROUP 2	GROUP 3	GROUP 4	GROUP 5	GROUP 6	GROUP 7	GROUP 8 I
~~~~~ <del>~</del> ~~~~~	,   -~~~~~~   	   1					الله الله الله الله الله الله الله الله	
VITAMC	1.676E+00	2.280E+001	2.590E+00	4.760E+00	4.841E+001	2.978E+00	3.359E+00	2.710E+00
VITAME	1.747E+00	2.361E+00	2.650E+00	4.882E+001	4.978E.+00	3.017E+00	3.474E+00	2.518E+00
RADHEAT	1.743E+00	2.3825+00	2.595E+00	5.016E+00	4.318E+00	2.931E+00	3.383E+00	2.731E+001
BABEL	1.695E+00	2.386E+00	2.588E+00	4.999E+001	4.303E+00	2.929E+001	3.393E+00	2.747E+00
PROPD0	1.314E+00	2.544E+00	2.579E+00	4.748E+00	4.309E+001	2.926E+001	3.403E+00	2.602E+00
PROP01	1.316E+00	2.532E+001	2.569E+00	4 .7 28E+00	4.284E+00	2.909E+00	3+379E+00	2.584E+00
EURLIB	1.682E+001	2.399E+00	2.634E+00	5.137E*00	4.351E+00	3.052E+00	3.398E+00	3.056E+001
UKAEA	1.714E+00	2.410E+00	2.671E+00	5.1522+00	4.5228+00	3.108E+00	3.398E+00	3.011E+00
******	; [~~~~~~~~~~		******					
MEAN	1 1.736E+00	2.412E+00	2.610E+00	4.928E+00	4.488E+00	2.981E+001	3.398E+00	2.745E+001
ST. DEV.	5.532E-02	8.733E-02	3.738E-02	1.731E-01	2.731E-01	7.166E-02	3.380E-02	1.953E-01
		 					=	
2			TABLE 19 -	Na in Na tan	k oz			
<u>~</u>								

9108003

1 34

£.

						· .		
DATA.SET	GROUP 9	GROUP 10	GROUP 11	GROUP 12	GROUP 13	GROUP 14	GROUP 15	 . 2
VITAMC	3.592E+00	4.143E+00	4.062E+00	9.356E+00	3.475E+00	3.139E+00	3.193E+00	
VITAMC	3.612E+00	4.339E+00	4.244E+00	9.095E+001	3+479E+00	3.141E+00	3.200E+00	
RADHEAT	3+593E+001	4.111E+00	4.043E+00	9.846E+00	3.469E+001	3.140E+00	3.200E+00	
BABEL	3.587E+00	4.159E+00	4.064E+00	9.391E+00	3.459E+00	3.140E+00	3.241E+00	
PROPDO	3.573E+001	4.040E+00	4.111E+00	8.492E+00	3.341E+00	3.141E+00	3.263E+00	
PROPD1	3.493E+001	3.864E+001	3.916E+00	8.105E+00	3.177E+00	3.036E+00	3.261E+00	· · ·
EURLIB	3.597E+001	4.569E+00	4.053E+00	1.025E+011	3•480E+00	3.140E+00	3.168E+00	ł
UKAEA	3.553E+001	4.413E+00	4.212E+00	8.531E+001	3.300E+001	3.108E+00	3.171E+00	i I
~~~~~~		 			 			l
MEAN I	3.575E+001	1 4.205E+001	 4•088E+00	9 <b>.</b> 133E+001	 3•397E+00	 3.123E+00	3.212E+00	Í
ST. DEV.	3.770E-021	 2.241E-01	  +031E-01	 7.270E-011	 1.132E-01	3.691E-021	  3.822E-02	-
		ΤA	BLE 19 (contd	l.) - Na in ta	ank $\sigma_{S}$	•		

--

•

- 🔸

35 1

ł
			. 1	Ťc		· ·	Ťc		· ·
	{		***						
GROUP	ABSORPT.	SCATTER. 1	TOTAL	ABSORPT	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL
1		1.312E-041	6.809E-05	-1.991E-05	3.394E-051	1.403E-05	-2.110E-05	3.644E-05	1.534E-05
2	  -2.717E-04	6.616E-03	6.344E-03	-8.628E-05	1.686E-031	1.600E-03	  -9.141E-05	1.812E-03	1.720E-03
· 3	  -2.433E-04	8.664E-031	8.421E-03	-6.856E-05	1.758E-03	1.689E-03	-7.309E-05	1.917E-03	1.844E-03
4	1-3.407E-03	1.198E-01	1.164E-01	-8.847E-04	2.2586-02	2.170E-02	-9.459E-04	2.471E-02	2.377E-02
5	1-2.358E-031	1.461E-01	1.438E-01	-8.146E-04	3.245E-02	3.164E-02	-8.607E-04	3.527E-02	3.441E-02
6	7.276E-04	1.389E-01	1.397E-01	3.056E-04	3.399E-02	3.430E-02	3.203E-04	3.683E-02	3.715E-02
7	4.223E-031	1.566E-011	1.608E-01	2.176E-03	4.143E-02	4.300E-02	2.273E-03	4.4805-02	4.7075-02
8	1.823E-04	2.192E-02	2.210E-0Ż	4.810E-04	1.517E-02	1.5658-02	4 <b>.</b> 898E-04	1.598E+02	1.0478-02
. 9	0.0.	0.0	0.0	7.8845-03	7.800E-02	8.588E-02	-8.243E-03	6.426E-02	9.811E-02
10	0.0	0.0	0.0	4.023E-03	2.528E-03	6.551E-03	3.642E-03	2.4568-03	6.098E - 03
11	1 0.0	0.0	0.0	-7.948E-04	9.116E-03	8.321E-03	-6.910E-04	8.438E-03	7.747 <u>E</u> -03
12	0.0	0.0	0.0	5.695E-03	-2.866E-03	2.830E-03	4.673E-03	-2.343E-03	2.3305-03
13	0.0	0.0	0.0	6.143E-02	3.661€-03	6.509E-02	5.130E-02	3.711E-03	5.5016-02
14	10.0	0.0	0.0	5.890E-03	9.722E-04	6.863E-03	4.085E-03	6.727E-04	4.757E - 03
15	1 0.0	0.0	0.0	-1.491E-03	-4.268E-05	-1.534E-03	-1.849E-03	7.466E-05	-1.775E - 03
SUM		5.988E-01	5.976E-01	8.373E-02	2.405E-01	3.242E-01	7.049E-02	2.592E-01	3.297E - 01
		TABLE	20 VI BABE	BABEL Fe	Effects				

- -

910800A

- 36 -

.

					· ,				•
	1 1 1 1	FÀST FLUX 6;	2	1   T	OTAL FLUX 6	2	   T 	OTAL FLUX 1	87
GROUP	I ABSORPT.	SCATTER.	TOTAL	I I ABSORPT•	I SCATTER.	1 1 1 TOTAL	     ABSORPT. 	I SCATTER.	I TOTAL
	    -4.544E-04	1.895E-04		    -1.434E-04	     4.934E-05	    -9.405E-05	-1-520E-04	1 5.293E-05	1-9.903E-05
2	  -2,335E-04	  -6.726E-04	  -9.061E-04	  -7.414E-05	  -1.705E-04	  -2.446E-04	1  -7.854E-05	  -1.832E-04	  +2.618E-04
3	  -2.810E-05	  -1.913E-03	  -1.941E-03	  -7.918E-06	  -4.111E-04	1 1-4.190E-04	  -8.440E-06	  -4.468E-04	1 1-4.552E-04
4	  -1.491E-02	  -8.474E-03	  -2.339E-02	  -3.873E-03	  -1.585E-03	  -5.458E-03	1  -4.141E-03	  -1-733E-03	1-5.674E-03
. 5	  -3.018É-03	7.022E-02	6.720E-02	-1.043E-03	   1.547E-02	1 1 1.443E-02	  -1.102E-03	   1.683E-02	1 1,573E-0Z
6	  -3.954E+05	1.023E-03	9.838E-04	-1.660E-05	   2.502E-04	1 1 2.336E-04	-1.741E-05	   2.711E-04	1 2.5372-04
7	1 1 2.296E-04	5.5278-02	5.550E-02	1.183E-04	1.425E-02	   1.437E-02	   1.236E-04	1.1.544E-02	1.5568-02
8	   3.943E-06	1.142E-03	1.146E-03	1.040E-05	1 1 8.026E-04	   8.130E-04	   1.059E-05	1 1 8.455E-04	8.561E-04
9	1 0.0	0.0	0.0	5.992E-04	1.170E-02	1 1.230E-02	1.6.265E-04	1 1.1.274E-02	1.337E-02
10	10.0	0 0	0.0	6.991E-05	1-8.603E-03	1-8.533E-03	6.3292-05	  -8.268E-03 	1-8.2045-03
11	10.0	0.0	0.0	1.161E-03	1 1-2.784E-04	1 8.823E-04	1.009C-03	  -2.590E-04	1 7.5022-04
12	10.0	0.0	0.+0	8.052E-03	1 1 8.132E-04	1 8.865E-03	6.6062-03	1   6.712E-04.	1 7.278E-03
13	10.0	0.0	0.0	-1-285E-04	1  -7.361E-05	1  -2.071E-04	-1.0732-04	1  -7.915E-05	I-1.865E+04
14	1 0.0	0.0	0.0	-1.912E-04	  -8.171E-05	-2.729E-04	-1.326£-04	1-5.686E-05	I=1.894E=04
15	0.0	0.0	0.0	-1.204E-03	I 1-1+887E-05	-1-222E-03	-1.490E-03	1 3.3112-05	1-1.457E-03
	 				; ; ~ ~ ~	] 		   ~	     ``
SUM	i-1.845E-02	   1.168E-01  	9.8336-02	3.330E-03	   3.211E-02	3.544E-02	1.211E-03	1 3.585t-02	1   3.706E-02 
********			TARIE 21		RAREL Co	facts			<b>!</b> =

.

P

9**10800**58

	1					,				
	1   F 	AST FLUX 62	2 . 1	TC	DTAL FLUX 62	 2   1	тс	TAL FLUX 10	37	
GROUP	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	
1	4.1752-05	-1.494E-04	-1.077E-04	1.318E-05	-3,926E-05	-2,608E-05	1.3962-05	-4.210E-05	-2.614E-05	
2	1-5.102E-04	  -1.076E-03	-1.586E-03	-1.620E-04	-2.717E-04	-4.337E-04	-1.7162-04	  -2.923E-04	1-4.639E-041	
3	1.220E-04	1-5.134E-03	-5.012E-03	3.438E-05	1-1.115E-03	  -1.080E-03.	1 3.665E-05	  -1•211E+03	ι  -1.174Ε-03	
4	1-1.137E-05	1-1.151E-02	-1.152E-02	-2.953E-06	1 1-2.089E-03	+2.092E-03	-3.157E-06	  -2.288E-03	-2.291E-03	
5	-4.977E-05	  -4.349E-03	-4.399E-03	-1.719E-05	  -9.746E-04	  -9.918E-04	i  -1,816E-05	  -1.059E-03	-1.077E-03	
6	2.014E-05	1 1 1.189E-02	1.191E-02	8.458E-06	1 2.993E-03	1   3.001E-03	8.866E-06	   3.234E-03	   3.243E-03	
· 7 '	-1.210E-05	   8.416E-03	   8.404E-03	-6.234E-06	   2.156E-03	2.150E-03	  -6.510E-06	   2.336E-03	i 1 2.3298-03	
8	-3.757E-06	6.921E-04	   6.883E-04	-9.913E-06	1 4.307E-04	4.708E-04	  -1.009E-05	1 1 5.064E-04	4.964E-04	
9	0.0	0.0	0.0	6.022E-04	1-5.566E-03	1 1-4.964E-03	   6.296E+04	₽  -6.086E-03	1-5.456E-03	-
10	0.0	1 0.0	i 0.0	5.907E-04	1 1 3.863E-03	1   4.453E-03	1   5.347E-04	1   3.734E-03	4.269E-03	
11	0.0	0.0	1 0.0	7.310E-04	1 3.322E-02	   3.395E-02	1 6.356E-04	   3.125E-02	3.185E-021	
12	0.0	0.0		8.795E-04	1 1.240E-03	2.120E-03	1   7.215E-04	1 1.020E-03	1.7422-03	
13	0.0	1 0.0		-7.451E-05	-1.873E-04	1 1-2.618E-04	1 1-6,222E-05	  -1.886E-04	1-2.508É-041	
14	0.0	0.0	1 0.0	-1.257E-04	-7.815E-05	1-2.038E-04	  -8.715E-05	1 1-5-385E-05	I-1.410E-041	
15	0.0	0.0	1 0.0 1	-7.082E-04	1-2.305E-05	  -7.313E-04	1-8.797E-04	   4.067E-05 	  -8.391E-04    3	
SUM	1 1-4.033E-04		I-1.617E-03		     3.361E-02	I I 3.536E-02	1 1.342E-03	   3.090E-02	11 1 3.224E-021	

· · · · · ·

ି ୧୦୦୫୦୮ ୧

		· · ·						•	·
		FAST FLUX 6	2	   T	OTAL FLUX 6	2		OTAL FLUX 1	87 i
GROUP	ABSORPT.	SCATTER.	I TOTAL	I ABSORPT•	I SCATTER.	TOTAL	I I ABSORPT.	I SCATTER.	TUTAL
 1		    -7.546E-04	    -7.615E-04		    -1.951E-04	    -1.973E-04	    -2.317E-06	1 1 1-2.094E-04	    -2.117E-04
2	1-4.978E-07	-8.850E-05	-8.899E-05	-1.580E-07	-2.261E-05	-2.277E-05	1-1.674E-07	-2.429E-05	-2.4458-05
3	2.154E-07	-8.732E-03	-8.732E-03	6.080E-08	-1.811E-03	-1.811E-03	1 6.480E-08	-1.971E-03	I-1.971E-03
4	1.133E-05	6.350E-02	6.351E-02	2.9182-06	1.063E-02	1.004E-02	1 3.122E-06	1 1.175E-02	1.175E-02
5	I-7.994E-07	1-2.115E-01	  -2.115E-01	1-2.630E-07	1 1-4-607E-02	I 1-4.607E-02	I-2.784E-07	1 1-5,026E-02	1-5.026E-02:
6	1-5.307E-05	-3.816E-02	  -3.822E-02	1-2.046E-05	  -9+180E-03	-9.200E-03	  -2.158E-05	1  -1•002E-02	  -1.004E-02
7	7.828E-05	1-3.439E-02	1 1-3.431E-02	   2.988E-05	  -8.757E-03	  -8,728E-03	  .3.198E-05	1  -9.596E-03	1. 1-9.564E-031
8	   7.025E-06	   1.221E-02	1.222E-02	l  -1.776E-05	l 1 3.337E-03	   3.319E-03	  -1.672E-05	l 1 3,802E-03	l   3.785E-03
9	1 0.0	0.0	   0•0	   1.158E-03	  -9.678E-03	  -8,520E-03:	1.401E-03	I I-1+188E-02	1 1-1.048E-0z;
10	0.0	0.0	0.0	6.340E-04	  -6.175E-03	-5.541E-03	   1.096E-03	  -1.168E-02	  -1.058E-02
11	0.0		1 0.0	1.921E- <u>0</u> 4	  -5.007E-03	  -4.815E-03;	2.950E-04	  -1+269E-02	  -1.240E-0 <i>2</i> :
12	0.0	0.0	1 1 0•0 - ;	2.118E-03	   3.491E-03	   5.610E-03	   2.914E-03	1   5.668E-03	1 8.582E-03;
13	   0.0	0.0	1 0.0	   4.462E-03	   6.141E-05	4.523E-03	1.906E-02	  -7.666E-03	   1.1396-02;
14	0.0	0.0	0.0	9.334E-04	-4.188E-05	8.915E-041	0.411E-03	-1.940E-03	1 6.471E-03:
15	0.0	0.0	0.0	2.530E-031	-4.648E-041	2.115E-03	6.3332-02	2.2716-02	   8.605E-021 
SUM	3.555E-05		-2.178E-01	1.207E-02	 -6.988E-02	-5.7812-021	9.651E-02	-7.402E-02	2.2495-02
	.			TABLE 23 - V	IT.E - BABEL BABEL	Na effe	cts	,	************************************

39 -

• .

Т

-

. •	   F	FAST FLUX 62	2	T (	DTAL FLUX 62	<u>.</u>	L TC	DTAL FLUX 18	37
GROUP	ABSORPT.	SCATTEP.	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TUTAL
1 .				-1.523E-04	-1.511E-04		1-1.614E-04	-1.621E-04	
2	1-1.016E-03	4.779E-03	3.763E-03	-3.226E-04	1.2216-03	8.986E-04	-3.418E-04	1.312E-03	9.7028-041
3	-1.492E-04	-7.115E-03	-7.264E-03	-4.204E-05	-1.579E-03	-1.621E-03	-4.482E-05	-1.711E-03	I-1.756E-03
4	1-1.832E-02	1.634E-01	1.450E-01	-4.758E-03	2.9552-02	2.479E-02	-5.087E-03	3.2448-02	2.735E+021
5	1-5.427E-03	I 5.455E~04	-4.882E-03	-1.875E-03	8.719E-04	-1.003E-03	  -1.981E-03	7.794E-04	-1.201E-03
6	1 6.551E-04	1.137E-01	1.144E-01	2.770E-04	2.806E-02	1 2.833E-02	2.902E+04	1 3.031E-02	1 3.061E-02:
ŕ	1 4.518E-03	1.859E-01	1.904E-01	2.318E-03	4.908E-02	5.140E-02	2.4228-03	5.297E-02	5.5402-02
8	1.895E-04	1 3.597E-02	3.616E-02	4.637E-04	1.979E-02	   2.025E+02	4.736E-04	   2.113E-02	2.161E-02
9	10.0 .	10.0	1 0.0	1.024E-02	1 7.446E-02	1 8.470E-02	1 1.090E-02	7.963E-02	1 9.053E-021
. 10	0.0	0.0	0.0	5.318E-03	  -8.388E-03	-3.070E-03	1 5.336E-03	  -1.376E-02	  -8.419E-03]
11	0.0	0.0	0.0	1.289E-03	1 3.705E-02.	   3.834E-02	   1.249E-03	   2.673E-02	   2.795E-021
12	0.0	0+0	0.0	1.675E-02	1 2.679E-03	   1.942E-02	   1.492E-02	   5.016E-03	   1.993E≟02
13	0.0	1 0.0	0.0	6.569E-02	   3.456E-03.	   6.915E-02	   7.019E-02	  -4.223E-03	6.597E-02
14	0.0	!   0.0	1   00	1 6.507E-03	   7.705E-04	1 1 7.277E-03	   1.2285-02	  -1.378E-03	   1.090E+02;
¹⁵		1 1 0.0 1	   0-0 	  -8.230E-04 	  -5.494E-04 	  -1.372E-03 	   5.911E-02 	   2.286E-02 	   5.198E-02  
SUM	I-2.003E-02	4.965E-01	4.765E-01	1.009E-01	2.363E-01	   3.372E-01	1.695E-01	2.520E-01	4.215E-01
		· · · · · · · · · · · · · · · · · · ·	TABL.	E 24 - VIT.E	E – BABEL BABEL	Total ef	feets		, <b></b> - ,

o "

· · ·	1 1 1	FAST FLUX 6	2	1	OTAL FLUX 6	2	I T	OTAL FLUX 1	9 <b>7</b> i
GROUP	I ABSORPT.	I SCATTER.	I TOTAL I	ABSORPT.	I SCATTER+ I	I TOTAL	I ABSORPT.	I SCATTER.	TOTAL
1	     2.849E-03	    -1.297E-03	1.552E-03	     8.991E-04	    -3,356E-04	     5.634E-04	     9.527E-04	    -3.603E-04	5.924E-04i
2	1   2.399E-03	   9.306E-04	   3.330E-03	   7.619E-04	   2.371E-04	1 1 9.990E-04	   8.072E-04	   2.548E-04	1.062E-03.
3	   8.672E-04	   2.525E-02	   2.612E-02	   2.443E-04	   5.123E+03	1 1 5.367E-03	1 2.605E-04	   5.588E=03	5.848E-03
4	   1.741E-06	   1.597E-01	1.597E-01	   4.520E-07	1 3.010E-02	   3.010E-02	   4.833E-07	   3.294E-02	3.294E-02
5	   3.161E-06	9.497E+02	9.498E-02	   1.092E-06	   2.109E-02	   2.109E-02	   1.154E-06	   2.292E-02	2.293E-02
6	  -1.102E-05	  _1+099E=01	1.099E-01	  ≁4•629E-06	   2.688E-02	1 1 2.688E-02	  -4,853E-06	2.912E-02	2.912E-02
7	  -1.837E-05	1.480E-01	1.480E-01	 	   3.915E=02	   3.914E=02	  -9.884E-06;	4.234E-02	4.233E-02
8	  -5.162E-07	1.309E-021	1.309E-02		  `9.056E-03	   9.055E-03	  -1•387E-06	9.5428-031	9.541E-03
9		0.0	0.0	  ~1•309E-03	   4•694E-03	   3.386E-03	-1.368E-03	5.108E-03	3.739E-03
10	   0.0	0.0	0.0	-   8,010E-03	  -5.679E-03	   2.332E-03	7.252E-03	-5.519E-03	1.733E-03
11	   0.0	0+0 · I	0.0	-1.106E-03	-1.329E-01	  -1.340E-01	-9.616E-04	-1.230E-01	-1.240E-01
12		-0∎0 I	0.0	   1.721E-03	-3.682E-03	  -1.961E-03	1.412E-03	-3.011E-03	-1.599E-03
13	0.0	0.0	00	   6.068E-02	3.577E-05	6.072E-02	5.067E-02	3.627E-05	5.071E-02
14	0.0	0+0	0.0	   1.469E-04	2.276E-05	1.697E-04	1.019E-04	1 1.575E-051	1.176E-04
15	1   0.0	0.0	0+0	  ~1.504E-03	-4.2668-06	  -1.508E-03	-1.865E-03	1 7.463E-061	-1-857E-03
					+=======				
SUM	6.091E-03	 5.505E-01  	5.566E-01	6.853E-021	-6-243E-03	6.229E-02	5.725E-02	1.594E-021	7 <b>.319E-</b> 02
	*********		TABLE	25 – RADHEAT	-BABEL	Fe effects			

e - "

BABEL

41

L

ŧ

	i F	ÁST FLUX 62	۱ ۲ ۱	T(	DTAL FLUX 62	2	т. . тс	TAL FLUX 18	37
GROUP	I ABSORPT. I	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL
1	2.499E-04	-1.099E-04	1.400E-04	7.887E-05	-2.861E-05	5.026E-05	8,358E-05	-3.069E-05	5.2898-
2	1.050E-04	9.573E-05	2.007E-04	3.334E-05	2.426E-05	5.760E-05	3.532E-05	2.608E-05	6.140E-
3	8.107E-06	-1.257E-03	-1.2498-03	2.284E-06	-2.701E-04	-2.678E-04	2.435E-06	-2.935E-04	1  -2,911E-
4	5.428E-06	5.727E-03	5.732E-03	1.410E-06	1.071E-03	1.072E-03	1.507E-06	1.171E-03	1.173E-
5	4.906E-05	8.589E-03	8.638E-03	1.694E-05	1.892E-03	1.909E-03	1.790E-05	2-058E-03	2.076E-
6	1.318E-05	6.945E-03	6.958E-03	5.5358-06	1.698E-03	1.704E+03	5.802E-06	1-840E-03	1.846E-
7	2.092E-04	6.004E-02	6.025E-02	1.078E-04	1.548E-02	1.559E-02	1.126E-04	1.677E-02	1.688E-
8	1.017E-06	9.463E-04	9.474E-04	2.684E-06	6.649E-04	6.675E-04	2.733E-06	7.004E-04	1 7.031E-
. 9	10.0	•   0∙0	0.0	5.145E-04	1.6835-02	1.735E-02	5.379E-04	1.833E-02	1 1.886E-
10	0.0	0.0	0.0	4.082E-04	-7.297E-03	1-6.889E-03	3.695E-04	-7.0132-03	
11	0.0	1 1 0 • 0	0.0	1.711E-03	-6.499E-03	-4.788E-03	1.487E-03	-6.045E-03	ı <b>!−+</b> •558E-
12	1 0.0	0.0	0.0	1.576E-02	2.728E-03	1.8498-02	1.2935-02	2.2518-03	   1.518E-
13	i 0.0	0.0	0.0	-6.318E-05	-2.023E-05	1 1-8.341E-05	1 -5.276E-05	-2.037E-05	  -7.312E-
14	0.0	0.0		5.112E-05	-2.041E-06	1 1 4.908E-05	3.545E-05	-1.420E+06	   3.403E-
15	0.0	0.0	i 0•0	-1.321E-03	-2.973E-06	  -1.324E-03 	  -1.635E-03	5.217E-06	  -1,630E- 
SUM		i i 8.098E-02	8.162E-02	1 1.731E-02	2.628E-02	     4.359E-02	1.394E-02		     4.368E-

- 42

1

÷.

910800 A

		i . ↓	AST FLUX 62	2	тс	DTAL FLUX 62	2	т	DTAL FLUX 18	97 I
	GROUP	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL
	1	1 1 3.717E-03	-1.691E-03	2.026E-03	1.173E-03	  -4•443E-04	7.286E-04	1.243E-03	  -4.765E+04	7.6642-041
	2	1   5,214E-03	-2.226E-03	2.9885-03	1.656E-03	1-5.622E-04	1.093E-03	1.754E-03	-6.049E-04	1.149E-03
	3	1 3.152E-03	-1.136E-03	2.0168-03	8.882E-04	-2.467E-04	6.415E-04	9.468E-04	-2.679E-04	6.789E-04
	4	4,351E-04	-3.759E-04	5.926E-05	1.130E-04	-6.823E-05	4.477E-05	1.208E-04	-7+475 <u>E</u> -05	4.607E-05
	5	1.469E-05	4.825E-03	4.839E-03	5.073E-06	1.081E-03	1.086E-03	5.360E-06	1.174E-03	1.1802-031
	<b>6</b> ·	   7,537E-06	5.8858-03	5.8928-03	3.166E-06	1.481E-03	1.484E-03	3.318E-06	1.600E-03	1.604E-03
0	7	-1.230E-05	1.437E-02	1.436E-02	-6.341E-06	3.683E-03	3.676E-03	-6.621E-06	3.990E-03	3.983E-03
· · ·	8	-6.203E-06	-6.859E-05	-7.4798-05	+1.637E+05	-4.764E-05	-6.401E-05	-1.667E-05	-5.020E-05	-6.686E-05
	9	0.0	0.0	0.0	-3.627E-04	-6.395E-03	-6.032E-03	3.793E-04	-6.9928-03	-6.612E-03
	10	0.0	0.0	0.0	8.343E-04	8.669E-03	9.503E-03	7.553E-04	8-380E-03	9.135E-03
	11	0.0	0.0	0.0	1.714E-03	7.642E-02	7.813E-02	1.491E-03	7.1896-021	7.338E-02
,	12	0.0	0.0	0.0	1.085E-03	2.468E-03	3.552E-031	8.898E-04	2.030E-031	2.920E-03
	13	0.0	0.0	0.0	-4.202E-05	6.725E-06	-3.530E-05	-3.509E-05	6.771E-06	-2.832E-05
	14	0.0	0.0	0.0	3.427E-05	2.137E-06	3.641E-05	2.377E-05	1.473E-06	2.5248-05
S	15	0.0	0.0 t	0.0	-7.745E-04	-3.929E-06	-7.784E-04	-9.620E-04	6.931E-06	-9.551E-04
<u> </u>										H 7205-02
	SUM	1.2526-02	1.9595-02	-3.211E+021	7.0292-03	0+0042-02	9.30/E+U2	0.371E-03	0.001E-021	0.12VE=V2!
	,			TABLE	27 – <u>RADHE</u> B	AT-BABEL ABEL	Ni effects		<b></b>	

. . **.** 

**>10800**∜

43 1

I.

.

	l l F	ÁST FLUX 62	8 9 1	то	TAL FLUX 62	 	то	TAL FLUX 18	7 1
GROUP	ABSORPT.	SCATTER. I	TOTAL I	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL
·	     5.511E-04	    -2.464E+04	   3.046E-04	1.739E-04	-6.372E-05	1.102E-04	1.843E-04	-6.838E-05	1.159E-041
2	3.613E-06	3+066E-051	3.427E-05	1.147E-06	7.840E-06	8.987E-06	1.215E-06	8.423E-06	i 9.638E-061
3	  -4.191E-08	  -1•241E-04	-1-241E-04	<b>→1.177E-08</b>	-2.5908-05	-2.592E-05	-1.255E+08	-2.823E-05	-2.824E-051
4	1-3.673E-07	  -2•113E-03	-2.113E-03	79.456E-08	-3.565E-04	-3-566E-04	-1.012E-07	-3.943E-04	-3.944E-04
5	1.218E-07	2.335E-04	2.336E+04	4.228E-08	4.655E-05	4.660E-05	4.467E-08	5.0198-05	5.024E-05.
6	1-1.420E-06	6.701E-03	6.699E-03	-5.602E-07	1.584E-03	1.584E-03	-5.898E-07	1.721E-03	1.7202-03:
7	5.422E-07	-7.512E-03	-7.511E-03	1.499E-06	-1.896E-03	-1.895E-03	1.4758-06	-2.044E-03	-2.043E-03
8	1.300E-09	3.940E-03	3.940E-03	2.794E-08	2.180E-03	2.180E-03	2.7538-08	2.3202-03	2.3205-03
- <b>9</b>	0.0	0+0	0.0	4.780E-04	-4.040E-03	-3.5628-03	5.827E-04	-4.728E-03	-4.145E-031
10	0.0	I,0∎0 I	0.0	3.003E-04	-4.219E-03	-3.919E-03	8.555E-04	I-2.602E-03	-1.747E-03
11	1 0.0	!0≠0 i I l	0.0	9.354E-07	1.493E-03	1.494E-03; 	1.337E-06	2.329E-03	2 <b>,3305-</b> 03:
12	1 0.0	1 0÷0	0.0	-2.753E+03  	1-7.406E-03 1	-1.016E-02	-4.297E-03 	-1.039E-02 	-1.468E-02.
13	1 0.0 1	0.0 	0.0	-3.178 <u>E</u> -05 	1.324E-04	1.006E-04  '	1-2.003E-04	1-3.706E-03	-3.906E-03:
14	1 0.0	0.0	0.0	7.959E-05	-3.213E-06 	7.638E-05	1.050E-03 	1-2.693E-04	7.809E-04
15 VO	0.0	10.0	0.0	-2.163E-03	1-4-398E-04	1-2.603E-03	1-4.927E-02	2.208E-02	-2.719E-02
SUM	5.535E-04	9.095E-04	   1.463E-03	    +3.913E-03	    -1.301E-02	    -1.692E-02	    -5.109E-02 	4.281E-03	-4.681E-02
		: :	TAI	BLE 28 - RAD	HEAT-BABEL BABEL	Na effects		<b></b>	[ ,

and the second s

.

- - ·

•

• ~

....

1 44

ŧ

	 	AST FLUX 6	2	   T(	OTAL FLUX 6	2	l l T(	DTAL FLUX 1	37
GROUP	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL
 l	7.367E-03	-3.3452-03	4.022E-03	2.325E-03	    -8.723E-04	     1.452E-03	2.463E-03	    -9+358E+04	1.528E-03
2	1 7.722E-03	-1.169E-03	6.553E-03	   2.452E-03	  -2•930E-04	   2.159E-03	   2.598E-03	  -3-155E-04	2.282E-03
3	4.028E-03	2.273E-02	2.676E-02	1.135E-03	I 4.580E-03	5.715E-03	1.210E-03	   4•998E-03	6.208E-03
4	4.419E-04	1.630E-01	1.634E-01	1.148E-04	1 3.075E-02	1 3.086E-02	1.227E-04	3.364E-02	3.376E-02
5	6.702E-05	1.086E-01	1.087E-01	2+315E-05	2.411E-02	1 2.413E-02	2.446E-05	2.621E-02	2.623E-02
6	8.2748-06	1.294E-01	1.294E-01	3.511E-06	3.164E-02	3.165E-02	3.678E-06	3.428E-02	3.429E-02
7	1.791E-04	2.149E-01	2+151E-01	9.351E-05	5.642E-02	5.652E-02	9.7562-05	6.1058-02	6.115E-02
8	-5.700E-06	1.791E-02	1.790E-02	<b>→1.502E-05</b>	1.185E-02	1.184E-02	-1.529E-05	1.251E-02	1.250E-02
9	0.0	0.0	0.0	4.645E-05	1.109E-02	1.114E-02	1.315E-04	1.171E-02	1.184E-02
10	10.0	0.0	0.0	9,553E-03	-8.526E-03	1.027E-03	9.2326-03	-6.754E-03	2.478E-43
11	0.0	0.0	0.0	2.320E-03	-6.152E-02	-5.920E-02	2.017E-03	-5.487E-02	-5.286E-02
12	0.0	0.0	0.0	1.582E-02	-5•893E-03	9.923E-03	1.094E-02	-9.114E-03	1.823E-03
13	0.0	0.0	0.0	6.055E-02	1.547E-04	6.070E-02	5.038E-02	-3.6832-031	4.6702-02
· 14	0.0	0+0	0.0	3.119E-04	1.964E-05	3.315E-04	1.211E-03	-2.5358-04	9.578E-04
15	0.0	0.0	0+0	-5.762E-03	-4.510E-04	-6.213E-03	-5.373E-02	2.210E-02	-3.164E-02
پي چ ک چ ک ^{یو} نه ک ک ک	 	 			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	========= 	*********	     	
SUM	1.981E-021	6.520E-01	6.718E-01	8.896E-021	9.307E-02	1.820E-01	2.668E-02	1.306E-01	1.573E-01i
		·	TABLE 2	- RADHEAT-	BABEL Tota	al effects		Ì	

•

45

t

4

		AST FLUX 62		TC	TAL FLUX 62		TO	TAL FLUX 18	7
GROUP	ABSORPT.	SCATTER . I	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOT
1		1.165E-041	6.445E-05	-1.643E-05	3.014E-05	1.372E-05	-1.741E-05	3.236E-05	1,4958
2	  -2.285E-04	6.619E-03	6.390E-03	-7.257E-05	1.687E-03	1.614E-03	-7.688E-05	1.813E-03	1,7368
З	-1.375E-04	1.078E-021	1.064E-02	  -3.874E-05	2.187E-03	2.148E-03	-4.130E-05	2.385E-03	2.3448
4	5.658E-04	1.286E-01	1.291E-01	1.469E-04	2.423E-02	2.437E-02	1.571E-04	2.651E-02	2.6675
5	I-2.388E-05	1.466E-01	1.465E-01	-8.247E-06	3.255E-02	3.254E-02	-8.714E+06	3.538E-02	3,5376
. ⁶ .	-6-199E-05	1.431E-01	1.430E-01	1-2.603E-05	3.500E-02	1 3.498E-02	-2.729E-05	3.793E-02	3.790
7	-1.774E-05	1.640E-011	1.640E-01	-9-143E-06	4.340E-02	- 4∡339E+02	-9.547E-06	4.693E+02	4,692
8	1-7.353E-07	7.565E-03	7.565E-03	1-1-940E-06	5.234E+03	5.232E-03	-1.976E-06	5.515E-03	5.513
9	0.0	0.0	0.0	1.061E-04	2.516E-02 	2.527E-02	1.109E-04	1 2.737E-02	2.748
10	0.0	0.0	0.0	2.713E-03	1.820E-03	4.533E-03	2,456E-03	1.769E-03	4.225
11	0.0	0.0	0.0	9.243E-04	1.124E-02	1.217E-02	8.036E-04	1.041E-02	1.121
12	0.0	0.0	0.0	1 3.554E-04	-3.892E-03	1-3.537E-03	2.916E-04	1-3-182E-03	-2.891
13	0.0	1 0.0 1	0.0	3.964E-02	1-1.173E-04	3.953E-02	1 3.310E-02	-1.189E-04	3,299
14	0.0	i 0.0	0.0	1-6.999E-04	4.049E-05	-6.595E-04	1-4.854E-04	2.801E-05	-4.574
15	0.0	0.0	0+0 	1-1.265E-03	0.0	-1.265E-03	-1.569E-03	i 0.0	-1,569 
SUM	4.338E-05	   6.073E-01	     6.074E-01 	4.175E-02	   1.786E-01	   2.203E-01	   3.469E-02	   1.928E-01	l   2.275 
		1	TABLE 30	- VIT.C-BAE BABEL	BEL Fe eff	ects	1	!	1

. . .

· · · · · · · · · · · · ·

I. 46

t

Ĩ.

	‡ 1 i	FÁST FLUX 6	2	I ° T	OTAL FLUX 6	2	TOTAL FLUX 187		
GROUP	ABSORPT.	I SCATTER.	I TOȚAL	ABSORPT.	I SCATTER.	TOTAL	ABSORPT.	I SCATTER.	I TOTAL
1	-3.871E-05	2.262E-05	    -1.609E-05	    -1.222E-05	)     5.889E-06		    -1.294E-05	     6.317E-06	    -6,627E-
2	-7.238E-06	1 1-7+625E-04	I-7.698E-04	1 1-2.298E-06	-1.933E-04	-1+956E-04	1-2.435E-06	-2.077E-04	-2.102E-
3	1 2.303E-05	-1.433E-03	-1.409E-03	6.489E-06	-3+078E-04	-3.013E-04	1 6.918E-06	1-3.345E-04	-3,276E-
4	-9.563E-05	-8.368E-03	-8.464E-03	-2.484E-05	-1.565E-03	-1.590E-03	-2.655E-05	-1.711E-03	~1.738E-
5	I-1.337E-04	3.683E~02	3.670E-02		8.114E-03	8.068E-03	1-4-879E-05	8.826E-03	,   8.778E-
. 6 .	1-4.790E-05	1.5955-03	1.5478-03	-2.012E-05	3-8995-04	1 3.698E-04	-2.109E-05	, 1 4•554E-04	4.013E-
7	2.2278-04	5.491E-02	5.513E-02	1.148E-04	1.416E-02	1.428E-02	  -1•199E−04	1.534E-02	1.546E-
8	2.892E-06	1.075E-03	1.078E-03	7.631E-06	7.555E-04	7.631E-04	7.771E-06	¦, 7•958E−04	8.036E-
9	0.0	0.0	0+0	2.4205-04	9.509E-03	9.751E-03	2.5306-04	1.035E-02	1.06DE-
10	0.0	<b>0</b> ₊0	0.0	2.958E-05	-7.647E-03	-7.618E-03	2.678E-05	-7.350E-03	-7.323E-
11	0.0	0+0	0+0	1.157E-03	-3.181E-04	8.388E-04	1.006E-03	-2.959E-04	7.100E-
12	0.0	0.0	0+0	6.925E-03	7.241E-04	7.649E-03	5.682E-03	5.977E-04	6.279E-
13	0.0	0.0	.0•0	-1.960E-04	-3-910E-04	~5.870E-04	-1.637E-04	-3.937E-04	-5-573E-
14	0.0	0.0	0.0	-9.597E-05	-1+412E-04	-2.371E-04	-6.654E-05	-9.823E-05	-1.648E
15	0.0	0+0	0+0	+9.927E-04	-9•035E-06	-1.002E-03	-1.229E-03	1.585E-05	-1-2138-
SUN	-7.450E-05	8.387E-02	8.380E-02	<b>7.</b> 092E-03	2.309E-02	3.018E-02	5.531E-03	2.5965-02	3.1498-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b> </b>		TABLE 31 - <u>V</u>	IT.C-BABEL	Cr effects		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		# # <b># # 6</b> # # # #

.....

•---

••••

47 -

Т

		AST FLUX 62	2	TC .	DTAL FLUX 62	2		TAL FLUX 18	57 ·	
ROUP	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	- - - -
1	-8.422E-06	9.242E-06	8.199E-07	+2.658E-06	2.428E-06	 -2.296E-07	 -2.816E-06	2.604E-06	-2.125E-07)	
2	1-4.302E-04	-2.911E-04	-7.213E-04	-1.366E-041	-7.352E-05	1 -2.101E-04	I-1.447E-04	-7.910E-05	1-2.238E-04	
3	1-3-335E-04	1.529E-05	-3.182E-04	-9.3972-05	3.319E-06	-9+065E-05	1 1-1.002E-04	3.604E-06	1-9.656E-051	
4	-5.206E-05	4.620E-03	4.568E=03	₹1.352E-05	8.387E-04	8.252E-04	 -1.445E-05	9.188E-04	1 9.043E-041	
5	1.148E-06	-3.426E-03	-3•425E-03	3.964E-07	1 1-7.677E-04	1 1-7.673E-04	4.188E-07	-8.338E-04	1 1-8.334E-041	
6	1.435E-05	1.169E-02	1.170E-02	6.026E-06	2-940E-03	2.9462-03	6.317E-06	3.178E-03	3.184E-03	
7	1-2.201E-05	9.007E-03	8.985E-03	; ≠1•134E=05	2-308E-03	1 2.296E-03	1 -1.185E-05	2.5005-03	1 2.488E-031	
8	1-5.402E-06	3.225E-04	3.171E+04	i≠1.426E-05	2.240E-04	2-098E-04	-1.4522-05	2.360E-04	1 - 2.215E-04	
9	0.0	0+0	0.0	1 4.222E-04	-9.014E-03	-8-592E-03	1 4.415E-04	-9.856E-03	-9.414E-03	
10	1 0.0	10.0	0.0	, 5.481E-04	1 3.653E-03	4.202E-03	1 4.962E-04	3.5326-03	4.028E-93	
11	0.0	, 0.0	0.0	, 6.756E-04	3.230E-02	3.298E-02	5.874E-04	3.0398-02	3.098E-02	
12	1 0.0	0.0	i 0.0	7.385E-04	1.282E-03	2.021E-03	6.059E-04	1.0556-03	1.661E-03	
13	0.0	0.0	0.0	, 1-7.346E-05	-4-893E-04	1-5.627E-04	-6.134E-05	-4.926E-04	1-5.540E-04	
14	0.0	0.0	0.0	/	-1-300E-04	1-3-623E-04	1-1.611E-04	-8.962E-05	1-2.507E-041	
15	10.0	i 0.0	0.0	1-5.963E-04	-1.681E-06	1-5.980E-04	1-7.407E-04	2.966E-06	1-7.378E-04	
SUM	 -8.361E-04	2.194E-02	 2.111E-02	1 1.216E-03	3.308E-02	3.429E-02	 8.859E-04	1 1 3.047E-02	1 3.135E-02	

an ana

~ ~

• • • • •

910800×

· •

						•				
· · · · · · · · · · · · · · · · · · ·		FÁST FLUX 6	2	 T:	OTAL FLUX 6	2	I TOTAL FLUX 187			
GROUP	ABSORPT.	SCATTER.	1 1 1 TOTAL 1	ABSORPT.	I I SCATTER.	I TOTAL	I ABSORPT.	I SCATTER.	I TOTAL	
1	 -5.824E-06	 1.321E-05	 7.387E-06	 71.837E-06.	 3.417E-06	 1.580E-06	 -1.947E-06	1 1 1 3.667E-06	l	
2	-5.220E-07	 2.865E-03	 2.864E-03	 -1.657E-07	 7.323E=04	1 7.322E-04	 -1.756E-07	7.868E-04	 7.866E+	
3	9.7205-08	-5.654E-04	 -5+653E-04	2.746E-08	 -1.172E-04	 -1.172E-04	2.926E-08	I-1.276E-04	 -1.276E-(
4	1.003E-05	1.068E-01	1 1+069E-01	1 2.587E-06	 1.790E-02	1 1.791E-02	2.767E-06	1 1.978E-02	l 1.978E	
5	-1-361E-06	1-1.705E-01	 -1.705E-01	 -4.501E-07	 -3.714E-02	1 1-3.714E-02	1 1-4.765E-07	 -4.052E-02	 -4.052E-(
6	-1.011E-05	I -2.168E-02	 -2+169E-02	I	1-5.215E-03	 -5.219E-03	 -4.301E-06	 -5.693E-03	 -5.697E~(
7	-9+270E+06	8+163E-03	8.154E-03	 + 2+736E+06	 2.088E=03	 2.085E-03	 -3.008E+06	 2.306E-03	 2.303E-(
8	1.662E-08	 1.564E-03:	 1.564E-03	1.793E-08	2.771E-04	 2.771E-04	1.9236-08	3.381E-04	3.381E-(
9	0.0	0.0	0.0	1.263E-04	-6.460E-03	 -6.334E-03	1.824E-04	 -7.323E-03	 -7.141E (
10	0.0	0.0	0.0	1.143E-05	-3.550E-03	 -3.539E-03	3.365E-04	 -3.100E-03	 -2•764E~(
11	0.0	0+0	0.0	-6.564E-08	1.175E-05	 1.168E-05	-1.007E-07	9.109E-05	9.099E~(
12	0-0	0.0	0+0	-1+113E-03	-3.276E-03	-4.389E-03	-1.628E-03	-2.344E-03	-3.972E-(
13	0.0	0+0	0.0	+7 •945E−05	-1.437E-05	-9.382E-05	-3.640E-04	-5.984E-03	-6.348E-(
14	0.0	0.0	0+0	-8-407E-05	2.486E-06	-8.158E-05	-6.669E-04	1.450E-03	7.832E-(
15	0.0	0.0	0.0	4+999E-03	-5.373E-04	4.462E-03	1.225E-01	2.640E-02	1.489E-(
SUM .	 -1.694E-05	 -7.327E-02	-7.329E-02	3.854E-03	-3.529E-02	-3.144E-02	1.204E-01	-1.394E-02	1.0648-(
			ABLE 33 - <u>V</u>	IT.C-BABEL	Na effects		****		ی نہ ، حد نور تھے چی چی ہے ہے -	

91080050

م میں ایک کار میں ایک میں ایک کی ایک کی ایک کی ایک کی

49 -

I

· · ·

.

م ، به

....

	. F	FAST FLUX 62			TAL FLUX 62	2	I TOTAL FLUX 187		
GROUP	ABSORPT I	SCATTER I	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT	SCATTER.	TOTAL
1		1.616E-04/	5.657E-05	 -3.314E-05	4.188E-05	8.741E-06	-3.511E-05	4.4958-05	9.831E-06
2	1-6.665E-04	8.430E-03	7.764E-03	-2.116E-04	2.152E-03	1.941E-03	-2.242E-04	2.313E-03	2+088E+03
3	-4+479E-04	8.796E-03	8.348E-03	-1.262E-04	1.765E-03	1.639E-03	-1.345E-04	1.927E-03	1.792E-03
4	4.282E-04	2.317E-01	2.321E-01	1.112E-04	4.140E-02	4.151E-02	1.189E-04	4.550E-02	4.562E-02
5	1-1.578E-04	9.503E-03	9.345E-03	-5.448E-05	2.752E-03	2.697E-03	-5.756E-05	2.852E-03	2.795E-00
6	-1.057E-04	1.347E-01	1.346E-01	-4+422E-05	3.312E-02	3.308E-02	-4.637E-05	3.583E-02	3.579E-02
7	1.737E-04	2.361E-01	2.363E-01	9.158E-05	6.196 <u>E</u> -02	6.205E-02	9.548E-05	6.708E-02	6.717E-93
8	1-3.229E-06	1.053E-02	1.052E-02	-8.547E-06	6.491E-03	6.482E-03	-8.702E-06	6.885E-03	6.876E-0
9	0.0	0+0	0.0	8.967E-04	1.919E-02	2.009E-02	9.878E-04	2.055E-02	2•153E~0
10	i 0.0	0.0	0.0	3.302E-03	-5.724E-03	-2.422E-03	3.316E-03	-5.149E-03	-1.834E-0
11	0.0	0•0	0.0	2.757E-03	4.324E-02	4.600E-02	2.397E-03	4.059E-02	4.299E-0
12	1.0.0	0.0	0.0	6,906E-03	-5.162E-03	, i 1.744E-03	4.951E-03	-3.874E-03	1.077E-0
13	0.0	0.0	0.0	3.930E-02	-1.012E-03	3.828E-02	3.2516-02	-6,989E-03	2.553E-0.
14	0.0	0.0	0.0	-1.112E-03	-2.282E-04	-1.340E-03	-1-380E+03	1.290E-03	-8.967E+0
15	0.0	0.0	0.0	2.145E-03	-5.480E-04	1.597E-03	1.1905-01	2.642E-02	1.454E-0
SUM	-8.842E-04	6+399E-01	 6.390E-01 	 5.391E-02	1.994E-01	1 2.534E-01	1.615E-01	2.353E-01	3:967E-0
		ی که ۲۰۰۰ منه وی می به به به مرد می دود می وی و	TABLE 34 -	VIT.C-BABEL	Total effec	! ts	!	!	

.

. --

910800=3

ŧ 50

	 FAST FLUX 62 			(T	OTAL FLUX 6	2	I TOTAL FLUX 187			
GROUP	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	I SCATTER.	TOTAL	ABSORPT.	SCATTER.	TUTAL	
1	 2.295E-05	 2.837E-04	 3.066E-04	7.243E-06	 7.340E-05	1 1 1 8.064E-05	7.6765-06		8.647E-05	
2	5.887E-06	1.651E-03	 1.657E-03	 1.869E-06	I 1_4•206E-04	1 1 4.225E-04	1.980E+06	l 4.520E-04	4.540E-04	
3	1.4.640E-06	1.675E-03	1.680E-03	1.307E-06	1 1 3.398E-04	 3.411E-04	1.3940-00	 3•707E-04	3.721E-04	
4	2.783E-05	5.071E-03	5.099E-03	7.2276-06	 9.557E-04	 9.630E-04	7.727E-06	1.0465-03	1.054E+03	
5	3.178E-05	4.140E-03	4.172E-03	1.0985-05	 9•194E-04	9.304E-04	1+160E-05	9+994E-04	1.0118-03	
6	6.753E-051	6.998E-03	7.065E-03	2.836E-05	1 1.712E-03	 1.740E-03	2.973E-05	1.855E-03	1.8858-03	
7	. 1.039E→041	7.199E-03	7.303E-031	5.353E-05	 1.905E-03	 1.958E-03	5.590E-05	2.060E+03	2.1162-03	
8	1.018E-051	6.879E-04	6.981E-04	2.687E-05	4.759E-04	5.028E-04	2.736E-05	5.015E-041	5.2888-04	
9	0.0	0.0	0.0	3.567E-04	1.311E-03	1.668E-03	3.729E-04	1.426E-03	1.7992-0	
10	0.0	0.0	0.00	1.828E-04	6.434E-03	6.616E-03	1.655E-041	6.252E-031	6.418E-03	
11	0.0	0.0	0.0	6.464E-05	3.7202-03	3.785E-03	5.6208-051	3.444E-031	3.5001-03	
12	0.0	.0.0	0.0	7.962E-04	3-294E-03	1 4.090E-031	6.532E-04	2.693E-031	3.3462-03	
13	10.0 l	0.0	0.0	2.042E-02	2.367E-03	2.278E-021	1.705E-021	2.400E-031	1.945E-02	
14	10+0 · l	0.0	0.0	8.0296-04	2.957E-04	1.099E-03	5-568E-041	2.046E-0+1	7.014E-04	
15	0.0	0.0	_0•0 t	0.0	-4.271E-06	-4.271E-061	0+0	7•471E-col	7.471E-06	
SUM	 2.747E-04 1	2.771E-021	2.798E-021	2.276E-021	2.422E-02	4.696E-021	1.900E-021	2+379E-021	4.279E-02	
**************************************	=======	i T.	ABLE 35 - <u>PF</u>	ROPANE D1-PROP PROPANE D0	<u>PANE D_O Fe</u>	effects				

910800S2

. 1	FAST FLUX 62			ŤŎ	TAL FLUX 62		1 TOTAL FLUX 187			
GROUP	ABSORPT.	SCATTER. I	TOTAL	ABSORPT -	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TUTAL	
1	1.849E-06	5.547E-04	5.566E-04	5.835E-07	1.444E-04	1.450E-04	6.184E-07	1.549E-04	1.5558-04	
2	1-688E-071	2.256E-03	2.256E-03	5.361E-0B	5.717E-04	5.718E-04	5.680E-08	G.146E-04	6.146E-04	
3	3.2 <u>6</u> 1E-06	3.154E-02	3.155E-02	9.187E-07	6.777E-03	6.778E-03	9.793E-07	7.366E-03	7.367E-03	
4	1.088E-05	1.862E-02	1.863E-02	2.826E-06	3.482E-03	3.485E-03	3.022E-06	3.808E-03	3.811E-53	
5	6.002E-061	1.780E-02	1.781E-02	2.073E-06	3.922E-03	3.924E-03	2.190E-06	4.266E-03	4.268E-03.	
6	1.044E-051	5.221E-02	5.222E-02	4.386E-06	1.277E-02	1-277E-02	4.598E-06	1-383E-02	1.884E - 02	
7	2.177E-05	3.190E-02	3.192E-02	1.122E-05	8.225E-03	8.237E-03	1.172E-05	8.908E-03	8.9205-03	
8	1.051E-06	2.286E-03	2.287E-03	2.772E-06	1.606E-03	1.609E-03	2.823E-06	1.692E-03	1.6952-03	
9		0.0	0.0	1.231E-03	3.137E-02	3.260E-02	1.2888-03	3.414E-02	3.543E-02:	
10	10.0	0.0	0.0	1.326E-03	1.528E-03	2-855E-03	1.201E-03	1.469E-03	2.670E-03	
11	l l 0=0	0.0	0 = 0	3.3386-03	1.278E-03	4-616E-03	2.902E-03	1-189E-03	4.0915-03	
12	0-0	0.0	0.0	8.793E-03	1.171E-03	9.965E-03	7.215E-03	9.667E-04	8.1815-03	
13	1 1 0+0	0.0	0.0	1.588E-03	6.296E-04	2.217E-03	1.326E-03	6.340E-04	1-9605-03:	
14	1 0.0	0_0	0.0	2,232E-03	3.605E-04	2.593E-03	 1.548E-03	2.508E-04	1.798E-03:	
15	1 0+0 	0.0	0.0	6.714E-04	2.197E-05	6.933E-04	8.311E-64	 -3-855E-05 	7.9255-041	
SUM	5.543E-05	1.572E-01	1.572E-01	1.920E-02		9.305E-02	1.634E-02	7.925E-02	9.559E-02	
]	, 1	ABLE 36 - PR	OPANE DI-PROPA PROPANE DO	NE DO Cr	effects	* 	[; ;	

....

910800×

5 2

ł

ł

	I FAST FLUX 62			I I TOTAL FLUX 62					
. ́.	 	ASI FLUX 6		 	JIAL FLUX 60			01AL'ELUX-10 1	; (; [=======;
GROUP	ABSORPT.	SCATTER.	I TOTAL	ABSORPT.	SCATTER.	ΤΟΤΑL	ABSURPT.	I SCATTER.	TOTAL I
1	2.214E-05	9.930E-05	1.219E-04	6.986E-06	2.622E-05	3.321E-05	7.403E-06	 2.812E-05	3.552E-051
2	2.262E-051	4.060E-04	4.286E-04	7.182E-06	1.025E-041	1.097E-04	7.609E-06	1.103E-04	1.179E-041
3	1.317E-05	3.432E-03	3.445E-03	3.711E-06	7.450E-04	7.488E-04	3.956E-06	6.091E-04	8.1315-04
4	1 2.3105-05	3.039E-03	3.062E-03	6+000E-06	5.516E~04	5.576E-04	6.415E-06	6.043E-04	6-1078-04
5	 1.043E-05	2.663E-03	2.673E-03	3.604E-06	5.967E-04	6.003E-04	3.808E-00	6.481E-04	0.519E-04
6	1.756E-05	2.807E-03	2.824E-03	7.374E-06	7.062E-04	7.136E-04	7.7301-00	1 7.632E-04	7.7092-04
7	2.814E-05 	1.479E-02	1.482E-02	1.450E-051	3.790E-031	3.804E-03	1.514E-05	4.106E-03	4-1216-03
. 8	1.907E-061	4.140E-03	4.142E-03	5.032E-06	2.876E-03	2,881E-03	5.124E-00	3.030E-031	3.0.5E-03
9	0.0	0.0	0.0	6.228E-051	9.652E-021	9.659E-02	6.512E-05	1.055E-01	1.056E-01
10 I		0.0	0.0 1	3.359E-051	3.838E-031	3.871E-03	3.041E-05	3.710E-031	3.7402-03
- 11	0+0	0.0	0.0	4.854E-05	1.830E-02	1.835E-02	4.220E-05	1,722E-021	1./265-02
12	0.0	0.0	0+0	2.479E-051	1.876E-03	1.901E-03	2.0348-05	1.543E-031	1.5645-03
13	10.0	0.0	0.0	4.912E-05	1.3518-03	1.400E-03	'4.102E-05	1.361E-03	1.4026-03
) 14		0.0	0.0	2.708E-04	7.404E-04	1.011E-03	1.878E-04	5.102E-041	6.930E-04
2 15	0 + 0 . 1 .	0.0	0.0	7.498E-05	5.960E-05	1.346E~04	9.3135-054	-1.051E-04	-1.201E-05
D D SUM	1+391E-041	 3.138E-02 	3.152E-021	6.184E-041	1.321E-01	1,327E-01	5.372E-041	1.399E-01	1.4048-01
			ABLE 37 - PF	PROPANE D1 - PR	OPANE DO	li effects	~~~~~]		*****

52

I. 53

t

.....

. -.

.

> CORROL6

	.F	AST FLUX 62		TC	TAL FLUX 62					
GROUP	ABSORPT. 1	SCATTER. I	TOTAL	ABSORPT.	SCATTER. I	TOTAL	ABSORPT. I	SCATTER. I	TUTAL	
1	1.440E-05	2.041E-041	2.185E-04	4.543E-06	5.278E-051	5,7322-05	4.815E-061	5.664E-051	6.145E-05	
2	1.317E-07	1.131E-03	1.131E-03	4.180E-08	2.892E-041	2.8922-041	4+429E-081	3.107E-041	3.107E-04	
3	1.439E-071	3.569E-031	3.570E-031	4.0522-08	7.400E-041	7.401E-04	4-319E-001	3.054E-041	8.054E-04	
4	2.295E-081	2.425E-02	2.4256-02	5.960E-09	4.•056E-031	4.056E-031	6.372E-091	4.481E-03	4.481E-03	
5	1.233E-07	2.350E-02	2.350E+021	4.231E-08	5.107E-03	5.107E-03	4.472E-08	5.569E-031	5.569E-03	
6	6.875E-07	1.627E-02	1.627E-02	2.814E-07	3.882E-03	3.8822-031	2.955E-071	4.228E-03	4.2286-03	
7	2.942E-06	3.031E-02	3.031E-02	1.500E-06	7.690E-031	7.692E-03	1.5675-001	8.369E-031	8.371E-03	
8	2.9528-071	2.906E-03	2907E-03	5.585E-07	1.476E-03	1.476E-031	5.770E-071	1.580E-03	1.581E-03	
9	0.0	0.0	0.0	3.743E-05	3.868E-021	3.872E-021	4.387E-051	4.641E-02	4.645E-02	
10		0.0	0.0	1.353E-05	7.781E-031	1 7.795E-031	1-4916-051	1.326E-02	1.3286-02	
11	0.0	0.0	0.0	1.211E-06	9.051E-03	9.0528-03	1.5852-061	1.706E-02	1.7068-02	
12	10.0	0.0	0.0	1.001E-04	6.400E-031	6.500E-031	1.438E-04	9.3148-03	9.458E-03	
13	10.0 1	0.0	0.0	8.581E-05	1.7152-03	1.801E-031	2.954E-041	6.595E-021	0.625E-0z	
14	0.0	0.0	0.0	3.897E-04	1.095E-03	1.485E-03	5.2268-03	1.3268-01	1.379E-01	
15	 0+0 	0.0	0.0	3.636E-04	1 -3.192E-05 	3.317E-041	8.806E-031	1.452E+03	1.026E-02	
			/							
SUM	1 1.875E-05	1.021E-01	1.022E-01	9.984E+04 	1 8.799E-02	8,899E-02 	1.454E-02	3.115E-01	3 .26 0E -01 	

910800°

1

- 54

£

		i I F i	AST FLUX 62		TC	TAL FLUX 62		тс)TAL FLUX 18	7
	GROUP	I ABSORPT. I	SCATTER. I	TOTAL I	ABSOPPT•	SCATTER.	TOTAL	ABSORPT. I	SCATTEP.	TUTAL
-		 6.134E-05	1.142E-03	1.204E-03	1.936E-05	2.968E-04	3.162E-04	2.051E-05	3.105E-041	3.3906-04
	2	 2.881E-05	 5.444E-03	1 5.473E-031	9.147E-06	1.384E-031	1.393E-03	9.691E-00	1-488E-03	1.497E-03
	3	 2.121E-05	4.022E-021	1 4.024E-021	5.977E-06	8.602E-03	8.608E-03	6.372E-06	9.351E-03	9 . 358E-03
	4	 6.184E=05	 5.098E-02	 5.104E-02	1.606E-05	9.046E-03	9.062E-03	1.717E-05	9.939E-031	9.958E-03
	5	 4.834E-05	4.811E-02	4.816E-021	1.670E-05	1.054E-021	1.056E-021	1.764E-05	1.148E-02i	1.150E-02
	61,	9.621E-05	7.828E-02	7.838E-021	4.0400-05	1.907E-02	1.911E-02	4.235C-05	2.068E-02	2.072E-02
	7	1.567E-04	8.420E-02	8.435E-021	8.075E-05	2.161E-02	2.169E-02	8-432E-05	2.344E-02	2.353E-02
	8	1.344E-05	1.002E-02	1.003E-02	3.523E-05	6.434E-031	6.469E-03	3-589E-05	6.803E-031	6.8392-03
	9		0.0	0.0	1.688E-03	1.679E-01	1.696E-01	1.769E-03	1.875E-01	1.893E-01
	10		0.0	0.0	1.556E-03	1.958E-021	2.114E-02	1.412E-03	2.469E-021	2.6116-02
•	11	0.0	0.0	0.0	3.452E-03	3.235E-02	3.580E-02	3.002E-03	3-891E-02	4.1918-02
	12		0.0	0.0	9.715E-03	1.274E-02	2.246E-02	8.032E-03	1.4528-02	2.2558-02
	13		0.0	0.0	2.214E-02	6.063E-03	2.820E-02	1.871E-02	7.035E-021	8.9060-02
þ	14		0.0	0.0	3.695E-03	2.492E-03	6.187E-03	7.518E-03	1.336E-01	1.411E-01
4 0 0	15	0.0	0.0	0.0	1.110E-03	4•538E-051	1.155E-03 	9.730E-031	1.316E-03	1.1058-02
	SUM		3.184E-01	3.189E-01	4.358E-02	3.181E-01	3.617E-01	5.041E-02	5.544E-01	6.048E-01
			I T/	ABLE 39 - PR	OPANE D1-PROPANE DO	ANE D _O Tot	al effects			••••••••••••••••••••••••••••••••••••••

· · ·

g

0

·-

1.1

អ ហ

· ·	FAST FLUX 62			TO	TAL FLUX 62	2	TOTAL FLUX 187		
GROUP	ABSORPT.	SCATTER	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL
1	 -1.085E-05	1.470E-05	3.853E-06	-3.424E-06	3.804E-06	3.799E-07	-3.629E-06	4.084E-06	4.551E-07
2	-3.975E-05	 -2.963E-06	-4.271E-05	-1.262E-05	-7.550E-07	-1.338E-05	-1,337E-05	-8.114E-07	-1.418E-05
3	I+1.005E-04	 -2•137E-03	-2.237E-03	-2.830E-05	-4.335E-04	-4.618E-04	-3.017E-05	-4.728E-04	-5.030E-04
4	-4-147E-03)-9.207E-03	-1.335E-02	71.077E-03	-1.735E-03	-2.812E-03	-1.151E-03	-1.899E-03	-3.050E-03
5	-2-3295-03	 +4+953E+04 	 -2+824E-03 	→8.0 44E-04	-1.100E-04	-9.144E-04	-8.500E-04	-1.196E-04	-9.695E-04
. 6.	7.860E-04	-4.477E-03	-3.691E-03	3.301E-04	-1.095E-03	-7.652E-04	3.460E-04	-1.187E-03	-8.406E-04
7	1 4.236E-03	, 1-8.208E-03	-3.973E-03	2.183E-03	-2.172E-03	1.108E-05	2.279E-03	-2.349E-03	-6.909E-05
8	1.8295-04	1.485E-02	1.503E-02	4.825E-04	1.027E-02	1.076E-02	4.913E-04	1.083E-02	1.132E-02
9	1 0.0	1 0.0	i 0.0	7.789E-03	5.350E+02	1 6.129E-02	8.143E-03	5.821E-02	6.635E-02
10	0.0	0.0	0.0	1.524E-03	7.102E-04	2.235E-03	1,380E-03	6.902E-04	2.070E-03
11	0.0	0.0	0.0	-1.819E-03	1-2.242E-03	1-4.062E-03	1-1,582E-03	-2.076E-03	-3.657E-03
12	1 0.0	1 0+0	1 0.0	5.410E-03	1 1.006E-03	6.416E-03	1 4.439E-03	8-222E-04	5.261E-03
13	i 0+0	1 0+0 1	0.0	1 2.800E-02	i 3.777E-03	3.178E-02	2.338E-02	3.829E-03	2.721E-02
14	0.0	0.0	1 0.0	6.563E-03	9.318E-04	1 7.495E-03	1 4.551E-03	6+447E-04	5.196E-03
15	1 0.0	1 0+0) 0.0 	1-2.232E-04	1-4,268E+05	1-2.658E-04	-2.767E-04	7.466E-05	-2.0212-04
SUH		 -9.662E-03 	 -1.108E-02	4.831E-02	6.237E-02	1.107E-01	 4.110E-02	6.699E-02	 1.081E-01
		.]	TABLE 40 - V	VIT.C	Fe effects	· I	1	ا الله ميد 44 الله من 10 الله 10 من من من ال	

910800st

.

1 56

						•~		n sa sugar		. -
- - 25 	0	† 1 j	FAST FLUX 6	2	f T	OTAL FLUX 6	2	i i	DTAL FLUX 1	B7
	GROUP	 	SCATTER.	 TOTAL 	ABSORPT.	I SCATTER.	I TOTAL	I I I ABSORPT. I	I SCATTER.	 TOTAL
•	 1	 -3.626E-04	1.670E-04		 +1+144E-04	4.349E-05	 -7.093E-05	 -1.213E-04	4.665E-05	-7.461E-051
	z	-2.206E-04	8.926E-05	-1.314E-04	 +7.006E-05	2.2626-05	 +4.743E+05	-7.422E-05	2.432E+05	-4.990E-05
	3	-5.197E-05	-4.785E-04	-5.305E-04	-1.464E-05	1-1-028E-04	-1.175E-04	1-1.561E-05	-1.117E-04	-1.274E-04
	4	1-1.461E-02	-1.043E-04	-1.471E-02	-3.793E-03	-1.951E-05	-3.812E-03	-4.055E-03	-2.134E-05	-4.077E-03
	5	-2.722E-03	3.600E-02	3,328E-02		7.932E+03	6.991E-03	-9.934E-04	8.628E-03	7.635E-03
	6	8.224E-06	-5.7302-04	-5.647E-04	1 3.454E-06	I-1.401E-04	-1.366E=04	3.621E-06	-1.518E-04	=1.482E=041
•	7	7.3428-06	3.964E-04	4.0378-04	3.784E-06	 1.022E-04	1.060E-04	3.951E-06	1.107E-04	1.1472-04
	8	1.083E-06	6.863E-05	6.972E-05	2.858E+06	4•822E-05	5.108E-05	2.911E-06	5.079E-05	5.370E~051
	9	0.0	0.0	0.0	3.615E-04	2.220E+03	2.582E-03	3.780E+04	2.417E-03	2.795E-031
	10	0.0	0.0	0.0	4.045E-05	 -8+493E-04	-8.089E-04	3.662E-05	-8.162E-04	-7.796E-041
	11	1 0.0	0.0	.0.0	4.120E-06	 3.943E-05	4.355E-05	3,582E-06	3.668E-05	4.026E-051
	12	0.0	0.0	0.0	1.283E-03	9.000E-05	1.373E-03	1.052E-03	7.428E-05	1.127E-031
	13		0.0	0.0	6.672E-05	3.101E-04	3.768E-04	5.572E-05	3.122E-04	3.679E-041
0 	14		0•0	0.0	+9.507E-05	5.930E-05	-3.577E-05	-6.592E-05	4-126E-05	i -2.466E-05!
80	15	t 00 	0.0	0.0	-2.046E-04	-9.816E-06	-2.144E-04	-2.533E-04	1.723E-05	-2.361E-04i
0 7 07	SUM	 -1.795E-02	3.557E-02	1.762E-02	~3.466E-03	9.746E-03	6.279E-03	-4.042E-03	1.066E-02	6.616E-03i
-			TA	BLE 41 - <u>VI</u>	T.E-VIT.C VIT.C	Cr effects	****			

مېر يې سېس . .

ŧ

57 .

·

	I F	àST FLUX 62	1	TOTAL FLUX 62			I TOTAL FLUX 187 I			
GROUP	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	
1		-1.588E-04	-1.087E-04	1.580E-05		-2.592E-05	1.674E-05			
2	 -7.400E-05	-7-800E-04	-8.540E-04	-2.350E-05	 -1+970E+04	-2.205E-04	-2.490E+05	-2.119E-04	 -2,368E-04	
3	 4.199E-04	-5.150E-03	-4.730E-03	1.183E-04	 -1.118E-03	 -9,998E-04	1.261E-04	 -1.214E-03	 -1.088E-0 3;	
4	 4.015E-05	-1.643E-02	-1.639E-02	1.043E-05	 -2•983E-03	 -2.972E-03	1.115E-05	 -3.267E-03	 -3.256E-03-	
5	1 1-5+095E+05	 -9•086E+04	 -9.595E-04	 →1.760E-05	 -2.036E+04	 -2.212E-04:	 -1.859E-05	 -2.211E-04	1 1-2-397E-04	
6	1 5.819E-06	2.199E-04	2.257E-04	2.444E-06	 5.534E+05	 5.778E-05.	2.562E-06	 5.981E-05	6.237E-05	
7	1 9+852E-06	 -6=020E-04	 -5.921E-04	 5.077E-06	 -1.542E-04	 -1.491E-04.	5.302E-06	 -1.671E-04	 -1.618E-04	
8	1 1.598E-06	 3+713E=04	 3.729E-04	 4.217E-06	 2.579E-04	 2,621E+04	 4.295E-06	 2+717E-04	1 2.760E-04	
9	0.0	1 1 0•0	l 1 0+0	 1.836E-04	1 1 3.409E-03	 3.593E+03	1.920E-04	 3.727E+03	 3.919E-03	
10	0.0	1 0.0	l 1 0.0	 4.582E+05	 2.197E-04	1 2.655E-04	 4.148E-05	 2.124E-04	 2,539E-04	
11	l L 0.0	 0.0	1 1 0.0	 5.847E-05	 9∘891E+04	 1.048E-03	 5.084E-05	 9.305E-04	1 9.813E-04	
12	0.0	l 1. 0•0	 0.0	 1.478E-04	 -4.272E-05	 1.051E-04	 1.212E-04	 -3.515E-05	 8.609E-05	
13	 0+0	 0+0	 0.0	 →1•052E-06	 1 3+004E+04	 2.993E-04	1 1-8.786E-07	 3.024E-04	 3.016E-04	
14	0.0	l 10+0 .	 0.0	1 1 1.060E-04	 5.183E+05	 1.578E-04	 7.351E-05	 3.572E-05	 1.092E-04	
15	0.0	l 1 0•0	1 i 0•0	 -1+091E-04	 -2+137E-05	 -1.305E-04	 -1.355E-04	1 3.769E-05	 -9.784E-05	
		 	{ }	{ 	 	 		} 	 	
SUM	 4.025E-04	 -2+344E-02 	 -2.304E-02 	 5.467E+04	 5.220E-04 	 1.069E-03 	 4.653E-04 	 4.157E-04	 8.811E-04 	
		1TA	BLE 42 - VII	VIT.C	Ni effects					

مدير

.

•

910800%§

н 58

Т

•	FÀST FLUX 62				OTAL ELUX 6	2	TOTAL FLUX 187			
GROUP	ABSORPT.	I SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTER.	TOTAL	
1	-1.097E-06	 -7.684E-04	-7.695E-04	 	-1.987E-04	1-1.990E-04	-3.664E-07	-2.132E-04	-2.136E-04	1 -
2	2.360E-08	1-3.062E-03	-3.062E-03	1 7.497E+09	-7.829E-04	-7.829E-04	7.942E-09	-8.411E-04	-8.411E-04	•
3	1.184E-07	-8.150E-03	-8.150E-03	3.339E-08	-1.691E-03	-1.691E-03	3.5595-08	-1.840E-03	I-1.840E-03	
4	1-338E-06	-4.641E-02	-4.6418-02	3.422E~07	-7.781E-03	-7.781E-03	3.662E-07	-8.598E-03	-8.597E-03	* .
5	5.584E-07	-3.566E-02	-3.566E+02	1.861E-07	-7.772E+03	-7.772E-03	1.969E-07	-8.479E-03	-8.479E-03	1
6	-4.139E+05	-1.601E-02	-1.605E-02	-1.573E-05	-3+852E-03	-3.868E-03	-1.661E-05	-4.206E-03	-4.222E-03	1
7	8.5778-05	-4.279E-02	-4.271E-02	3.225E+05	-1.091E-02	-1.087E-02	3.457E-05	-1.197E-02	-1.194E-02	1
8	7.011E-06	1.074E-02	1.075E-02	-1.778E-05	3+071E-03	3.054E-03	-1.674E-05	3.479E-03	3.463E-03	ł
9	0.0	0.0	0.0	1.073E-03	-3.201E-03	-2.128E-03	1.285E-03	-4.539E-03	-3.255E-03	i
10	0.0	0.0	0.0	6.125E-04	-2.539E-03	-1.927E-03	8.163E-04	-8.511E-03	-7.695E-03	i
11	0.0	0.0	0.0	1.921E-04	-5+020E+03	-4.828E-03	2.950E-04	-1.279E-02	+1.249E-02	1
12	0.0	0.0	0.0	2.948E-03	6.588E-03	9.537E-03	4.135E-03	7.875E-03	1.201E-02	i. †
13	0.0	0.0	0.0	4.520E-03	7.547E-05	4.596E-03	1.933E-02	-1.674E-03	1.765E-02	ł
14	0.0	0.0	0.0	1.015E-03	-4.437E-05	9.707E-04	9.062E-03	-3.391E-03	5.671E-03	ł
15	0+0	0.0	0.0	-2.567E-03	7+367E-05	-2.493E-03	-6-275E-02	-3.740E-03	-6.649E-02	
*******	 	 			 	********	****			l
SUM I	5+233E-05	-1.421E-01	-1-421E-01 	7.794E-03	-3-398E-021	-2.618E-021	-2.783E-02	-5.944E-02	-8.727E-02) [}
**********		+	BLE 43 - VII	LE-VIT.C	Na effects			~~~~~	*****	i •

•

01080060

59 -

ŧ.

vş.

	FAST FLUX 62		TOTAL FLUX 62		I TOTAL FLUX 187		1 17 1		
GROUP	ABSORPT.	SCATTER.	TOTAL	ABSORPT.	SCATTÉR.	TOTAL	ABSORPT.	SCATTER.	TOTAL
1	-3•245E-04	-7•454E-04	-1.070E-03	-1.024E-04	-1.931E-04	-2.955E-04	-1.085E-04	-2.072E-04	-3.157E-04
2	 -3•344E=04	-3•756E-03	-4.090E-03	-1.062E-04	-9.580E-04	-1.064E-03	-1.125E-04	-1.029E+03	-1.142E-03
3	1 2.676E-04	-1-592E-02	-1.565E-02	7.541E-05	-3.345E-03	-3.270E-03	8.038E-05	-3.639E-03	-3.559E-031
4	 -1.871E-02	-7-215E-02	-9.086E-02	-4.859E-03	-1.252E-02	-1.738E-02	-5.195E-03	-1.379E-02	-1.898E-02
5	 -5.101E-03	-1.062E-03	-6.164E-03	-1.762E-03	-1.540E-04	~1.9 <u>16</u> E-03	-1.862E-03	-1.919E-04	-2.054E-03
6	 7.586E-04 	-2•084E~02	-2.008E-02	3.203E-04	-5.032E-03	-4.712E-03	3.356E-04	-5.484E-03	-5.149E-03
7	1 4.339E-03	-5-121E-02	-4.687E→02	2.224E-03	-1.313E-02	-1.091E-02	2.323E-03	-1.437E-02	-1.205E-021
8	1.925E=04	2+603E-02	2.623E-02	 4.718E-04	1.365E-02	1.412E-02	4.818E-04	1.4 <u>63</u> E-02	1.511E-021
9	10.0	i 0 • 0	0+0	9.407E-03	 -5,593E-02	6.533E-02	1 .9.998E-03	5.981E-02	6.981E-021
10	1 0.0	0+0	0.0	2.223E-03	1-2.458E-03	1 1-2-352E-04	1 2.274E-03	1-8.425E-03	-6.150E-03
11	1 0.0	0.00	0.0	1 +1.565E=03	1 -6.234E-03	1 -7.798E-03	 -1.232E-03	-1.390E-02	-1.513E-02
12	0.0	1-0.0	0.0	1 1 9.789E-03	7.641E-03	1 1.743E-02	1 9.747E-03	8.736E-03	1.848E-021
13	1.0+0	1 0+0	0+0	1 3.258E-02	4.463E-03	1 3.705E+02	1 1 4.276E-02	2.769E-03	4.553E-021
14	1 0.0	1 0 • 0	 0•0) 7.589E-03	 9.986E-04	 8.588E-03	 1.362E-02	 -2.670E-03	
15	0.0	1 0+0	0.0	 =3.103E+03	 -1.926E-07	 -3.104E-03	 -6.342E-02	 -3.611E-03	i +6,703E-02

SUM	 -1.891E-02	 -1.396E-01 	 -1.586E-01	 5.319E-02 	1 3.866E-02	 9+185E-02 	 9.695E-03 	 1.863E-02 	i 1 2,832E-02
TABLE 44 - VIT.E-VIT.C Total effects									

•

.

.

60

Т

I.

PART II

1 - Introduction

The following analysis of some of the major results of the LMFBR benchmark exercise was made using the fifteen-group cross section sets provided by the participants. These cross sections are explicitly given in some of the tables in Part I of the present document. For the sake of simplicity, some of the data already provided in Part I are duplicated in some tables of Part II.

The benchmark specifications, the responses requested and the fifteen energy group structure can be found in Annex I of the present document.

2 - GENERAL FEATURES OF THE NEUTRON DATA LIBRARIES

The benchmark solutions obtained up to now are largely based on ENDF/B data :

- VITAMIN E (ORNL) on ENDF/B version 5
- VITAMIN C (ORNL) ; JSD-100 file data (RADHEAT Japan), EURLIB, BABEL &
 PROPANE-D data (CEA/CNEN solutions) are based on ENDF/B version 4.

On the contrary, the PROPANE - D1 data are adjusted data based on neutron propagation experiments. Moreover, UKNDL data were used (UKAEA data).

Three main types of data processing methods have been used :

 $1 - 1/\Sigma_t$ type of weighting to process cross sections from the point data to multigroup data (VITAMIN - C and E, RADHEAT data /2,3,4/).

2 - Ultrafine flux weighting, mixture dependent, to take into account several self-shielding effects (BABEL data) /5/.

9108006%

3 - Starting from data of method 2, a successive space dependent shielding procedure can be used to further reduce the number of energy groups. This procedure was applied to produce the PROPANE D_0 formulaire data /6/.

The PROPANE D1 data are based on the PROPANE D formulaire, but are adjusted on neutron propagation experiments in sodium/steel mixtures, in the framework of the CEA/CNEN Cooperation /7, 8/.

The UK data, supplied by McCracken and Miller, included also continuous Monte Carlo calculations, based on UKNDL data, using the Monte Carlo DUCKPOND code.

3 - MAIN RESULT DESCRIPTION

The main results are shown in tables 1 - 3.

3.1 TOTAL FLUX AND THE SODIUM CAPTURE RATE (Table 1)

Responses

The total flux and the sodium capture rate result dispersions are fairly large, in particular for the Na (n,y) capture rate (sometime, more than a factor of two). In fact, one would expect a lower dispersion in view of the common origin of many data sets.

In fact, two groups of solutions seem to be present, namely the group of solutions based on the $1/\Sigma_t$ - type of processing, and the group based on ultrafine group flux weighting, which give consistently lower flux values.

In particular, lower flux values ($\sim 30 \div 40$ %) are observed in the lateral shield, and the discrepancy stays more or less constant in the sodium tank up to the heat exchanger (mesh 187). This seems to indicate that a possible role is played by the stainless-steel cross section processing. Pure sodium cross section are presumably less affected by the processing procedure $(1/\Sigma_t \text{ or ultrafine flux weighting for a pure sodium mixture, being very close}).$

In fact the additional discrepancy between BABEL and VITAMIN - C on \emptyset_{tot} in the sodium tank (i.e. between mesh 62 and 187) is ~ 15 %, i.e. of the some order of magnitude found between two $1/\Sigma_t$ - weighted data sets (RADHEAT and VITAMIN - C data at mesh interval 187). It is worth noting that the adjusted data tend-to increase substantially the calculated unadjusted results.

3.2 HIGH ENERGY RESPONSES (TAB. 2)

7 }_

1

ł

£

1

The high energy responses ($\Phi > 100$ KeV and the stainless-steel damage response, DPA) show also large dispersions. In particular, as it could have been expected, the high energy flux at deep penetration is strongly affected by both data and processing method differences. Differences on the DPA response is somewhat lower, due to the low energy neutron contribution at deep penetration.

Moreover it should be noted that some inconsistency can exist in the data presented, since both iron and steel DPA data are sometime quoted.

3.3 γ - HEATING AND n - HEATING DATA (TAB. 3)

The γ - heating data are fairly consistent, in particular if data up to mesh 62 are considered and which are shown in table 3. The neutron heating data are also consistent, except for the RADHEAT data at mesh 62.

In sumary both method and data influence the comparison among the different solutions. In section 4 some results of sensitivity analysis will be used to point out major data uncertainty effects and in section 6 some method related effects will be examined.

4 - SENSITIVITY ANALYSIS

Sensitivity coefficients were requested for both the original group structure (i.e. consistent with the multigroup data used) and for the reduced 15 energy group structure. A remarkable agreement is found in both the shape and the numerical values of the sensitivity profiles, which were calculated basically from two different code systems, the SWANLAKE /9/ system, and the SAMPO System /10/.

In Part I of the present paper, some sensitivity coefficients are provided in tables 4-3 for the different isotopes (Fe. Cr. Ni and Na, both in the lateral shield and in the Na tank). These are region integrated values relative to the fast flux at mesh 62 and to the total flux at meshes 62 and 187.

The folding of these sensitivity coefficients and of the 15 energy group cross section data supplied by the participants gives an indicative explanation of the discrepancies observed in tables 1 - 3. For example, some results of this exercise are shown in tables 20 and 24, where the VITAMIN - E/BABEL discrepancies are shown group-wise for the fast flux and the total flux.

The total effects (table 10) are fairly representative of the exact discrepancy data of table 1 and 2, even if some non-linear effects and group structure dependent effects are also present :

	DISCREPANCY BETWEEN VITAMIN - E AND BABEL			
	Based on direct calcul.	Based on sens 15 g calc.		
Fast flux at mesh 62	107 %	48 %		
Total flux at mesh 62	58 %	34 %		
Total flux at mesh 187	73 %	42 %		
	{			

9108006

1

ì

The results for the total flux response of the tables show the predominant role played by the iron data (table 20) in particular the scattering data below \sim 300 KeV and the capture data in the region below \sim 2 KeV. Self-shielding effects could be at the origin of some of the observed discrepancies.

In the case of the fast flux response, the iron data indicate a strong effect of the scattering data below 1.35 MeV. Since Fe inelastic cross sections are different from zero only in the first four groups of the 15 energy group structure, these effects are mainly due to elastic scattering. Discrepancies of the order of 10 % in the scattering cross sections produce the observed fast flux response discrepancy.

5 - UNCERTAINTY ANALYSIS

To compare the observed discrepancies with the expected discrepancies on the basis of data uncertainty assessments, it was requested to the participants to fold the sensitivity coefficients with evaluated error matrices. The ORNL results indicate the following values, based on the existing ENDF/B - V uncertainty files, and on the ENDF/B - IV based 15 group covariances of Drischler and Weisbin /11/ :

Uncertainty	ENDF/1	3 - V	ENDF/B - IV		
on :	Uncertainty Value	Correlation	Uncertainty Value	Correlation	
Fe damage at mesh 20	4 %	25.9%	3.4 %	21.0/	
Sodium Activation at mesh 187	65 %		69 %		

No other participant has supplied a consistent estimate of data uncertainty effects. However several hypothesis can be made on data uncertainties and indicative results can be obtained on the uncertainty of the different responses. For example the following data are obtained in the case of the total flux at mesh 187 :

91080087

i

66 -

UNCERTAINTY ON σ_{a} and σ_{s}	CORRELATION IN ENERGY	EFFECT ON TOTAL FLUX AT MESH 187
σ _a : 1%	1.0	105 %
σ_{s} : 10 %	0.5	84 %
	0.	56 %
σ _a : 10 %	1.0	108 %
σ _s : 10 %	0.5	88 %
	0.	60 %
σ;> 50 %	1.0	171 %
σ_{s} : 10 %	0.5	150 %
	0.	125 %
$\sigma_a : 50\%$	1.0	250 %
σ_{s} : 20 %	0.5	209 %
	0.	158 %

)

The results obtained show the predominant role played by σ_s uncertainties and that only very large uncertainties on σ_a can be relevant in the global uncertainty assessement. Finally, the impact of correlations is certainly very important, as it has been often stressed, even in the simplified calculations of the previous table.

6 - METHOD EFFECTS

The main solutions allowed also to analyse the impact of the method approximations on the benchmark calculated results. The proposed reference solution had a fixed mesh size grid (approximately 3 cm in steel/ sodium mixtures and 4 cm in sodium), S_N order N = 4 and P_1 Legendre polynomial expansion order.

The participants provided data obtained in S_{16}^{P} , P_{3}^{P} and with a doubled space mesh grid.

The results are summarized in tables 45 and 46. The following com-" mentaries can be made :

- There is excellent agrements between VITAMIN E and BABEL calculated effects. Similar effects, but somewhat different in absolute value, are shown by RADHEAT calculations.
- Method effects systematically give higher calculated values with respect to the simplified reference model (~ 20 % for Φ_{tot} and Φ_{theq} on the HE).
- High energy flux is strongly affected, as it could be expected, by method effects.

Separate effect analysis, show comparable order of magnitude of the different effects with a slight increase of S_N effects with propagation, except for P_n and, more pronounced, space mesh size in the case of the $\Phi > 100$ KeV response (up to a factor of 4 global underestimation at mesh 187).

In conclusion, method approximations seems to be sufficiently understood. Major problems are certainly related to the correct modeling of 3D geometrical effects. Finally, some processing effects have been investigated. In particular in table 47 we have indicated the effect on some typical response functions of the type of weighting used to generate multigroup cross section.

The influence of the fine weighting spectrum is large and the use of an appropriate method to handle self-shielding seems to be mandatory.

In this respect, the Monte Carlo results provided by UK and shown in table 48 seem to indicate that large discrepancies can be found if two widely different processing strategies are used. This indication applies to low energy responses, the high energy responses being in fairly good agreement. Therefore, if no normalization problem exists between the ANISN and DUCKPOND calculations, the results seem to indicate a larger self-shielding of resonances in the Monte Carlo calculations. Several participants at the meeting expressed their intention to perform more comparisons of that type.

Concerning the processing of scattering data, we have compared in the 15 group structure, the results obtained by two different, widely used codes to generate multigroup data, SUPERTOG and MC^2 - 2. Table 42 presents the results obtained for Fe. The inelastic scattering data compare fairly well, with the exception of the data close to the inelastic threshold. No major effect was found in the detailed inelastic matrix comparison.

In the case of elastic scattering, we have compared both the elastic $\sigma_{j \rightarrow j}$ and $\sigma_{j \rightarrow j+1}$ data for Fe. The infinite dilution data show the effect of the different algorithms of the two codes. The $\sigma_{j \rightarrow j}$ are in general good agreement with the exception of group 9 (273 - 67.4 KeV) where a discrepancy of ~ 8 % is observed. Larger discrepancies are found in the elastic removal data, $\sigma_{j \rightarrow j+1}$, where, in the intermediate range, 10 ÷ 20 % differences are often found.

Even if it is difficult to draw general conclusions from the data presented, there is evidence of the well known difficulty of assessing the uncerainty associated to the data processing codes, both from the point of view of comparing different multigroup processing codes /12/, and from the point of view of comparing différent data processing strategies /13/.

91080070

7 - CONCLUSIONS

At the present stage, more data should be compared and a more deep insight in many of the observed results is necessary. This will be the main objective of the coming specialist meeting.

However, the present picture indicates a somewhat improved situation in data dispersion, with respect to the previous Vienna 1976 meeting.

Since the data analysed so far are in general related to the ENDF/B files, the main discrepancies observed are due a) to data processing methods and b) to the effects of data adjustments on the basis of integral experiments. The method approximations seem to be well understood, even if they are difficult to extrapolate to more complex geometries.

The use of the sensitivity analysis, now a very well established technique, will help in identifing areas of uncertainties and needs for improvements.

Finally, the subject of target accuracies has not been explicitely touched in the benchmark exercise. It will be of interest to evaluate the possible impact of the discrepancies observed in the benchmark exercise on the assessement both of the present state of data uncertainties and on the design target accuracies.

It seems in fact that uncertainties other than data uncertainties should be taken into account in a global uncertainty assessement. In this perspective, the notion of design target accuracy could possibly evolve to take into account the need for defining appropriate bias factors on the major quantities of interest. ł

8 - REFERENCES

1 - M. SALVATORES

"Definition of a Fast Breeder Reactor Benchmark Configuration for Comparison of Shielding Cross Section Data", distributed by the NEA Data Bank, 16/03/1981.

71

2 - R.W. ROUSSIN et al. ORNL - RSIC - 37 (1978).

3 - C.R. WEISBIN et al. ORNL - TM - 5505 (1979).

4 - N. OHTANI Contribution to the NEACRP benchmark

 5 - J.C. ESTIOT et al.
 Proc. Conf. on Neutron Physics and Neutron Data HARWELL (1978).

6 - J.P. TRAPP et al. Knoville Conference on Nuclear Data and Technology (1979)

7 - J.P. TRAPP

OECD Specialists' Meeting on Nuclear data and Benchmarks for Shielding, Paris 1980.

8 - A. DE CARLI et al. Ibidem
- 9 D.E. BARTINE et al. The SWANLAKE System, ORNL - TM - 3809 (1973).
- 10 G. PALMIOTTI et al The SAMPO System OECD Specialists' Meeting on Nuclear Data and Benchmarks for Shielding, Paris 1980.
- 11 J. DRISCHLER and C. WEISBIN, ORNL Report
- 12 C. WEISBIN et al. ANS Atlanta Conference 1974
- 13 M. GOLDSTEIN
 ANS Sun Valley Conference 1980

-۲

	^{\$\$} total				^Φ th eq			
. · · · ·	20	62	124	187	20	62	124	187
VITAMIN - E	1.008	1.103	1.149	1.214	1.009	1.100	1.137	1.189
RADHEAT	1.010	1.073	1.104	1.154	1.996	1.041	1.044	1.047
BABEL	1.0	1.122	1.148	1.209	1.0	1.089	1.140	1.202

	φ > 100 KeV			DI	PA ·	⁵⁸ Co(n,γ)		
	20	62	124	187	20	62	20	62
VITAMIN - E	1.012	1.212	1.711	3.81	1.010	1.152	1.007	1.098
RADHEAT	1.011	1.189	1.61	4.23	1.	1.083	1.	1.112
BABEL	1.008	1.204	1.741	3.87	1.010	1.140	1.	1.100

TABLE 45

GLOBAL METHOD APPROXIMATION EFFECTS

 $(S_4 P_1 \Delta x \rightarrow S_{16} P_3 (\Delta x/2))$

73 -

	^Φ total			[¢] th eq			
	62	124	187	62	124	187	
$P_1 \rightarrow P_3$	1.028	1.039	1.052	1.019	1.034	1.046	
S ₄ → S ₁₆	1.035	1.048	1.091	0.965	1.040	1.132	
Δx → Δx/2	1.036	1.054	1.058	1.117	1.057	1.003	

		⊅ > 100 KeV	DPA	Co (n,γ)	
	62	124	187	62	62
$P_1 \rightarrow P_3$	1.098	1.27	1.41	1.06	1.025
$S_4 \rightarrow S_{16}$	1.099	1.087	1.05	1.082	1.021
$\Delta x \rightarrow \Delta x/2$	1.004	1.237	2.57	1.003	1.049

6

TABLE 46

SEPARATE METHOD APPROXIMATION EFFECTS

74 -

ţ

	^Φ total		^Φ th	eq	Ф> 820KeV	Ф> 14KeV
	62	187	62	187	62	62
Case 1	1.84	2.04	1.67	1.98	1.20	2.04
Case 2	1.17	1.22	1.15	1.22	1.07	1.25
Case 3	1.22	1.26	1.19	1.26	1.06	1.28

Reference case	:	Fe, Cr, Ni and Na weighted in a 50/50 SS/Na mixture spectrum
Case 1	:	Fe weighted in a 100 % Fe spectrum. The other iso- topes as reference
Case 2 .	:	Fe weighted in a 100 % SS spectrum. The other iso- topes as reference

Case 3 : Fe, Cr, Ni as in case 2. Na as in reference.

TABLE 47

ļ

Response		MESH							
Response	Method	20	62	124	187				
A. 0. 14-14	ANISN	4.03 + 11	1.92 + 7	2.28 + 1	2.15 - 5				
φ >0.1MeV DPA	DUCKPOND	3.89 + 11	2.07 + 7	-					
DPA	ANISN	1.37 + 14	1.29 + 10	1.67 + 7	2.74 + 4				
	DUCKPOND	1.35 + 14	1.57 + 10	-	-				
23 _{ND} (n)	ANISN	5.47 + 10	2.76 + 7	8.07 + 5	1.33 + 3				
Na(n,yr)	DUCKPOND		-	2.59 + 6	3.87 + 3				
$59_{co}(n, x)$	ANISN	2.43 + 13	8.62 + 9	7.21 + 7	9.55 + 4				
co(n,y)	DUCKPOND	-	_	2.02 + 8	2.75 + 5				
235	ANISN	7.21 + 13	3.33 + 10	8.01 + 8	1.27 + 6				
U(n,r)	DUCKPOND	-	-	2.70 + 9	4.06 + 6				

TABLE 48

UK results using a) ANISN and $1/\xi_{+}$ weighting for iron (1/E for other isotope and b) continuous Monte Carlo (DUCKPOND code). The starting data file is the same (UKNDL) for the two calculations.

76 -

•••

Group		SUPERTOG		MC ² - 2			
	σj inel	σ _{el} (j→j)	σ _{el} (j+1)	σ ^j inel	σ _{el} (j→j)	σ _{el} (j+1)	
1	1.506	2.008	0.076	1.511	2.004	0.079	
2	1.165	2.178	0.128	1.142	2.174	0.157	
3	0.784	2.148	0.103	0.755	2.147	0.104	
4	0.264	2.509	0.097	0.193	2.525	0.125	
5		1.976	0.316		1.959	0.348	
6		3.188	0.517		3.191	0.547	
7		3.439	0.159		3.366	0.174	
8		2.092	1.327		2.054	1.430	
9		4.064	0.018		4.410	0.054	
10		5.367	0.593		5.341	0.584	
11		11.148	0.119		11.229	0.118	
12		7.387	0.133		7.379	0.133	
13		9.916	0.200		9.897	0.200	
14		11.245	0.136		11.248	0.136	
15	-	-	-		-	-	

TABLE 49

FE INFINITE DILUTION DATA PROCESSED BY SUPERTOG AND $MC^2 - 2$

ţ

ANNEX I

DEFINITION OF A FAST BREEDER REACTOR BENCHMARK CONFIGURATION FOR COMPARISON OF SHIELDING CROSS-SECTION DATA

M. SALVATORES

CEA, Cadarache, France

- INTRODUCTION -

The benchmark characteristics are specified as follows :

- Section I-VII : benchmark specifications (in particular for the forward flux solution, required for all participants);
- Section VIII : uncertainty and sensitivity analysis specifications (optional).

I - GEOMETRY AND COMPOSITIONS -

They are directly obtained from the previous Benchmark definition /1/, as well as the space description (see Appendix I).

II - SOURCES -

The source spectrum is the same of reference /1/, but with the hypothesis of an isotropic angular distribution, to allow calculation at different angular quadrature orders.

The source spectrum is given in the 100 group structure. Both are given in Appendix II. The 100 group structure (DLC-2) is consistent with the following widely used libraries :

VITAMIN-E	(174	groups)
VITAMIN-C	(171	")
EURLIB	(100	μ)
BABEL	(113	¹¹)
PROPANE	(45	")

If a source redistribution in a fine structure should be necessary, we suggest the following :

$$S_i = S_I \frac{\Delta u_i}{\Delta u_I}$$

where I is the 100 groups structure index and i the finer group index.

III - TRANSPORT CALCULATION -

If the ANISN code is used, we suggest the following selected option values :

IBL = IBR = 0	(zero boundary conditions)
IFLU = 3	(weighted mode for difference equations)
$XLAL = 10^{-3}$	convergence tests
$EPS = 10^{-4}$	

The reference calculation should be S₄P₁ with the angular constants of Appendix III.

IV - CROSS SECTIONS -

It is suggested, in order to simplify the interlaboratory comparison, to use only <u>one</u> cross section set for each Benchmark region. This will not prevent however to use different "isotope" cross sections in each region (e.g. different Na cross sections in the PNL region, in the pure Na region and in the HE region).

V - PARAMETERS TO BE STUDIED -

The following <u>space-dependent</u> distributions should be considered :

- total flux

- thermal equivalent flux :

$$\phi_{\text{theq}}(r) = \int_0^\infty \sqrt{\frac{E_0}{E}} \phi(E,r) dE$$

with $E_0 = .025 \text{ eV}$, E energy corresponding to the mean group lethargy.

- integral of the flux for energies > 100 KeV :

$$\phi(r) = \int_{E} \phi(E,r) dE$$
>100KeV

- (n,γ) capture rate of ²³Na
- (n,γ) capture rate of ⁵⁹Co
- damage in steel
- ~ (n,f) fission rate of 235U

- γ and neutron heating on the lateral shield (w/cm 3 of homogeneized composition)

For all these parameters, selected point values should be provided according to the format of Appendix IV.

The calculation of the 23 Na and 59 Co capture rates and the 235 U fission rate, should be performed both with inhouse response cross-section <u>and</u> with response cross-section derived from the generally available ENDF/B.V files. In the case of the atomic displacement, beside in-house cross-sections, a standard displacement model (e.g. the NRT model) could be used.

910×008-

VI - METHOD TESTS -

A few simple method tests are also suggested in order to verify the influence of different cross section data on method approximations :

> - a recalculation of the reference with both a doubled space mesh-grid and S₁₆ (constants in Appendix III)

- a recalculation of the reference with P_3 option.

VII - TESTING OF DIFFERENT CROSS-SECTION SETS -

To simplify the result interpretation, it is asked that every laboratory participating to the exercice should provide (according to the format described in Appendix V) the folloxing data :

Microscopic cross sections by region :

1) Lateral shield : Na, Fe, Cr, Ni

2) Pure sodium : Na

in a 15 group structure (see Appendix VI).

This energy structure is the closest possible to the energy structure of the correlation matrices provided by ORNL.

The group collapsing should be performed starting from the reference calculation and using flux weighting algorithms (of the type used in ANISN).

81 -

VIII - SENSITIVITY AND UNCERTAINTY ANALYSIS -

As an option, beside the forward calculation described in Section I-VI, the participants are asked to perform sensitivity calculations for the following two responses :

Atomic-displacement in Iron at mesh 20;
Sodium activation-rate at mesh 187.

The plotted sensitivity profiles (per unit lethargy) are asked for the elastic and non-elastic crosssections of Sodium, Iron, Chromium and Nickel.

The sensitivity can be calculated either in the 100-group structure or in the 15-group structure described in Section VII.

Sensitivity profiles could also be calculated for the other responses given in Appendix IV.

For what concerns the uncertainty analysis, the ORNL data (ORNL-5318 Report by JD.Drischler and CR. Weisbin) for Sodium and Iron could be used both directly in the 15 energy group structure, or expanded according to the procedure suggested in the paper "Preliminary version of the EURLIB variance-covariance matrices", by M. Hall (presented at the recent PARIS NEA Meeting), if the sensitivity analysis was performed in the original 100-group structure.

Fractional standard deviations should be provided for the two responses previously mentioned.

REFERENCE /1/ : JY. BARRE : "Benchmark specifications" see 1976 Vienna Specialist Meeting Proceedings.

- 82 -

- A P P E N D I X I -

83

SPHERICAL GEOMETRY AND COMPOSITIONS

ZONE	N°	Inner radius CM	Outer radius CM	Thickness CM	Composition			
Source	1	236.5	236.51	0.01				
Lateral shield	2	236.51	416.5	179.99				
Sodium tank	3	416.5	916.5	500	2			
HE	4	916.5	966.5	50	3			
Sodium	5	966.5	1016.5	50	2			

TABLE 1

FIGURE 1

T	r -						· T			- -	7	
ı	ı –	I.			1		ł		1	,	ł	
236	5.5	236.	51	41	6.5		916 ,	.5	966	. 5	101	6
1	soul	RCE	LATERAL	SHIELD	' SOI	DIUM TAN	IK !	HE	1	SODI	Rcnh UM	I
•) :		D		2		3	1 1	2) ¦	
-	2				1		. 1		1		ł	

TABLE 2

ATOMIC COMPOSITION 10²⁴ ATOMS/CM³

REGION	Source and Lateral shield	Sodium tanks	HE
Composition label		2	3
% v/o SS*	53%	0%	15%
% v/o sodium	47%	100%	85%
Atoms/cm ³ x 10^{24}			
Sodium	.01045	.02223	.01890
Iron	.03200	.0	.00906
Nickel	.00423	.0	.00120
Chrome	.00860	.0	.00243

* Standard SS : ≈ 70 - 18 - 12 v/o Fe-Cr-Ni

910×008

ΤA	BL	Ε	3
		_	

G

REFERENCE SPACE MESH GRID

ZONE	Zone number	Total mesh number	Mesh number	Number of meshes	Thickness CM	Radius CM
Source	1	1	1	1	0.01	236.5 236.51
Lateral shield	2	60	2 th 61	1 59	2.99 3.00	239.5 416.5
Sodium tank	3	125	62 to 186	125	4.00	916.5
HE	4	17	187 to 203	1 16	2.00 3.00	918.5 966.5
Sodium	5	13	204 to 216	1 12	2.00 4.00	968.5 1016

91080086

4

- <u>APPENDIX II</u>-

- 86 -

GROUP STRUCTURE AND SOURCE SPECTRUM

Group	Energy		Lethargy	
Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Energy 1. 3499E 07 à 1. 2214E 07 1. 1052E 07 1. 0000E 07 9. 0484E 06 8. 1873E 06 7. 4082E 06 6. 7032E 06 6. 7032E 06 6. 0653E 06 5. 4881E 06 4. 9659E 06 4. 9659E 06 4. 9657E 06 3. 6788E 06 3. 3287E 06 3. 3287E 06 2. 7253E 06 2. 4660E 06 2. 2313E 06 2. 0190E 06 1. 8268E 06 1. 8268E 06 1. 6530E 06 1. 4957E 06 1. 3534E 06	1.4913E 07 1.3499E 07 1.2214E 07 1.1052E 07 1.0000E 07 9.0484E 07 8.1873E 06 7.4032E 06 6.7032E 06 6.7032E 06 6.0653E 06 5.4881E 05 4.9659E 06 4.4933E 06 3.6783E 06 3.6783E 06 3.3287E 06 3.0119E 06 2.7253E 06 2.4660E 06 2.2313E 06 2.0190E 06 1.8268E 06 1.6530E 06 1.4957E 06	Lethargy -0.400 à -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.000 1.100 1.200 1.300 1.400 1.500 1.500 1.500 1.600 1.700 1.800 1.900	-0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000 1.100 1.200 1.300 1.400 1.500 1.600 1.600 1.700 1.800 1.900 2.000
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	1.4957E 06 1.3534E 06 1.2246E 06 1.1080E 06 1.0026E 06 9.0712E 05 8.2085E 05 7.4274E 05 6.7206E 05 6.0810E 05 5.5023E 05 4.9787E 05 4.9787E 05 4.5049E 05 3.6883E 05 3.6883E 05 3.0197E 05 2.7324E 05 2.4724E 05 2.2371E 05	1.6530E 06 1.4957E 06 1.3534E 06 1.2246E 06 1.2246E 06 1.0026E 06 9.0718E 05 8.2085E 05 7.4274E 05 6.7206E 05 6.7206E 05 6.7206E 05 5.5023E 05 4.9787E 05 4.9787E 05 4.0762E 05 3.6883E 05 3.3373E 05 3.0197E 05 2.7324E 05 2.4724E 05	1.800 1.900 2.000 2.100 2.200 2.300 2.400 2.500 2.600 2.600 2.700 2.800 2.900 3.000 3.100 3.200 3.300 3.400 3.500 3.600 3.700	1.900 2.000 2.100 2.200 2.300 2.400 2.500 2.600 2.600 2.700 2.800 2.900 3.000 3.100 3.100 3.200 3.300 3.400 3.500 3.600 3.700 3.800 2.800
43 44	2.0242E 05 1.8316E 05	2.2371E 05 2.0242E 05	3.800 3.900	9108000

. •

•

•

Grou	F
	÷

oup	Ener	<u>an</u>	Leth	argy
45	1.6573E 03	1.8316E 05	4.000	4.100
46	1.4996E 05	1,6573È 05	4,100	4.200
47	1,3560E 05	1.4996E 05	4.200	4,300
48	1.2277E 05	1.3569E 05	4.300	4.400
49	1,1109E 05	1.2277E 05	4,400	4.500
50	8.6517E 04	J.1109E 05	4.500	4,750
51	6,7379E 04	8.6617E 04	4.750	5.000
52	5,2475E 04	6.7379E 04	5.000	5,25·)
53	4.0362E 04	5.2475E 04	5.250	5,50)
54	3.1828E 04	4.0858E 04	5.500	5, 750
55	2.4788E 04	3.1828E 04	5.750	6,000
56	1,9305E 04	2.4788E 04	6.000	6,250
57	1.5034E 04	1.9305E 04	6,250	6,500
58	1,1709E 04	1.5034E 04	6.500	6,750
59	9.1188E 03	1.1709E 04	6.750	7.000
60	7.1017E 03	9.1188E 03	7.000	7.250
61	5.5308E 03	7.1017E 03	7,250	7.500
62	4.3074E 03	5.5308E 03	7,500	7.750
63	3.3546E 03	4.3074E 03	7.750	8,000
64	2.6126E 03	3.3546E 03	8.000	8.250
65	2.0347E 03	2.6126E 03	8.250	8,500
66	1.5846E 03	2.0347E 03	8,500	8,750
67	1,2341E 03	1.5846E 03	8,750	9,000
68	9.6112E 03	1.2341E 03	9,000	9,250
69	7,4852E 02	9.6112E 02	9,250	9.500
70	5.8295E 02	7.4852E 02	9.500	9.750
71	4.5400E 02	5.8295E 02	9,750	10.000
72	3.5357E 02	4.5400E 02	10.000	10,250
73	2.7536E 02	3.5357E 02	10.250	10.500
74	2,1445E U2	2.7536E 02	10.500	10,750
75	1.6702E 02	2.1445E 02	10, 750	11,000
10 :	1.3007E 02	1.6702E 02	11.000	11,250
11	1.0130E 02	1.3007E 02	11.250	11,500
.16	7.8693E 01	1.0130E 02	11.500	11,750
19	6.1442R 01	7.8893E 01	11.750	12,000
6U ·	4.7851E 01	6.1442E 01	12.000	12.200
-01 -01	3,7207E UI	4.7851E 01	12,250	12.000
04		3. 1201E VI	12,000	12,100
03		2.9023E 01	12,700	13,000
04. 95	1, (DUSE VI	3. 4003L UI	12,000	13.200
00 00	1.37102.01	1, 1003E UL	13,230	13.000
00 87	I, VOI(E VI 8 91597 00	1. STIVE UL	13,000	14 000
90	6.3133E 09	1,00//L UI	13./50	11 250
L LL	D. 4 / D U C. 110	0. 31332 111	14.000	14.4.70

9108008%

Group	Energy		Leth	largy
89	5,0435E 00	6.4760E 00	14.250	14.500
90	3.9279E 00	5.0435E 00	14.500	14.750
91	3,0390E 00	3,9279E 00	14.750	15.000
92	2.3824E 00	3.0590E 00	13.000	15.250
93	1.8554E 00	2.3824E 00	15,250	15,500
94	1.4450E 00	1.8554E 00	15,500	15,750
95	1,1254E 00	1.4450E 00	15.750	16. 0 00
96	8.7642E-01	1.1254E 00	16.000	16,250
97	6.2256E-01	3.7642E-01	16,250	16.500
. 98	5.3152E-01	6,8256E-01	16,500	16.750
99	4,139! E-01	5.3150E-01	16.750	17.000
100	E < 4.	$1399 \text{ ev} \ 10^{-1}$	u > 1	7.00

91080.085

•

÷

· .

6	roup N°	Ø 4 = ¢ ₅		Group N°	$\emptyset 4 = \phi_5$
G	iroup N° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 30 31 32 34 35 36 37 38 9 40 41 42 43 44 5 46 47 48 49 40 41 42 43 44 45 46 47 48 46 47 48 46 47 48 46 47 48 46 47 48 49 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46 47 48 46 47 48 46 47 48 46 47 48 46 47 48 46 47 48 46 47 48 46 47 48 46 47 48 46 47 48 48 46 47 48 48 48 48 48 48 48 48 48 48	$ \emptyset \ 4 = \phi_5 $ 6.02524E07 1.81727E08 4.07211E08 9.42370E08 1.95173E09 3.52236E09 6.27127E09 9.84427E09 1.58784E10 2.08818E10 3.05881E10 3.05881E10 3.57854E10 4.37794E10 4.27307E10 5.09825E10 7.42581E10 9.74418E10 1.08859E11 1.31778E11 1.12294E11 1.06088E11 1.31778E11 1.22713E11 1.43676E11 1.38604E11 1.38604E11 1.38604E11 1.37396E11 2.31932E11 3.17939E11 3.58870E11 4.61146E11 5.45901E11 6.05226E11 4.10883E11 3.35203E11 4.14334E11 6.16085E11 6.74255E11 7.75847E11 7.73701E11 8.05348E11 7.97731E11 9.60821E11 8.96930E11 9.01712E11 1.07587E12 1.07587E1 1.0758		Group N° 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 97 98 97 97 98 97 97 98 97 97 98 97 97 98 97 97 97 97 97 97 97 97 97 97	$ \emptyset \ 4 = \phi_5 $ 3.27689E12 2.34726E12 3.46194E12 3.26389E12 3.84814E12 3.92430E12 2.52851E12 2.76140E12 2.69055E12 1.87633E12 1.86242E12 1.60780E12 9.22607E11 2.26337E11 1.15389E12 1.43406E12 1.43406E12 1.17007E12 9.04616E11 7.21524E11 5.61813E11 3.85968E11 2.63066E11 2.07377E11 1.50525E11 1.43630E11 3.99921E10 8.70758E10 2.03617E10 5.84330E10 6.25251E10 1.89189E09 2.17767E10 3.09199E10 3.41943E10 5.53856E08 4.99411E09 1.45122E10 1.68612E10 1.70436E10 1.59551E10 1.42725E10 1.20954E10 9.80882E09 7.67665E09

ISOTROPIC SOURCE SPECTRUM COMPONENTS 4 AND 5 OF ANGULAR GRID

91080090

- 89 -

- 90 -

- A P P E N D I X III -

ANGULAR DATA FOR SN CALCULATIONS

S₄ Calculations :

ANGULAR QUADRATURE CONSTANTS				
COSINE (MU)	WEIGHT	REFL DIRECTION		
- 1.00000E+00	0	5		
- 8.61130E-01	1.73400E-01	5		
- 3.39980E-01	3.26570E-01	4		
3.39980E-01	3.26570E-01	3		
8.61130E-01	1.73400E-01	2		
L	<u> </u>	l		

 S_{16} Calculations :

ANGULAR (QUADRATURE CONS	STANTS
COSINE (MU)	WEIGHT.	RELF DIRECTION
- 1.00000E+00 - 9.89400E-01 - 9.44574E-01 - 8.65630E-01 - 7.55404E-01 - 6.17876E-01 - 4.58017E-01 - 2.81604E-01 - 9.50129E-02 2.81604E-01 4.58017E-01 6.17876E-01 7.55404E-01 8.65630E-01 9.44574E-01 9.89400E-01	0 1.35760E-02 3.11270E-02 4.75790E-02 6.23140E-02 7.47979E-02 8.45779E-02 9.13010E-02 9.47250E-02 9.47250E-02 9.47250E-02 9.13010E-02 8.45779E-02 7.47979E-02 6.23140E-02 4.75790E-02 3.11270E-02 1.35760E-02	17 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

910R0091

- A P P E N D I X IV -

	Lateral shi	Lateral shield interval		k interval
	20	62	124	187
[¢] total		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
[¢] th eq		•		0
¢>100 KeV		۰.		
²³ Na(n, _Y)				
⁵⁹ Co(n,γ)				
²³⁵ U(n,f)				
DPA				
γ-heating (w/cm ³)			
neutron heating (w/cm3)				
Total heating (w/cm ³)				

91080092

- 91 -

- APPENDIX V -

92 -

•••

Data format (Data to be sent as punched cards) should be the standard ANISN format, with :

IHM = 20 IHT = 5 IHS = 6

Position 1 and 2 can be used for $\sigma(n,\gamma)$ (Position 2) and for total inelastic, if available (Position 1).

- A P P E N D I X VI -

15 ENERGY GROUP STRUCTURE FOR SENSITIVITY CALCULATIONS

Group	E _{lower} for group
1	4.49 MeV
2	2.59
3	1.35
4	.706
5	.578
6	.407
7	.302
8	. 273
9	67.4 KeV
10	31.8
11	15.0
12	1.58
13	214 eV
14	10.7
15	down to thermal

91080094

93 -

.

Specialists' Meeting on Shielding Benchmark Calculations

1st and 2nd July, 1982, OECD, Paris

LIST OF PARTICIPANTS AND CONTRIBUTORS

TO THE SHIELDING BENCHMARKS

Belgium	de Raedt, C.	Centre d'Etude de l'Energie M Boeretang 200, 2400 Mol	Nucléaire,		
France	Dejonghe, G.	Commissariat à l'Energie atomique, Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette Cedex			
	Gannord, J.	11 TT	11		
	Nimal, JC.	. 11 H	11		
	Palmiotti, G.	Commissariat à l'Energie atomique, Centre d'Etudes Nucléaires de Cadarache, B.P. No. 1, 13115 Saint Paul lez Durance			
	Salvatores, M.	11 H	11		
	Trapp, J.⊷P.	IF T	n		
Fed. Rep. of Germany	Hehn, G.	Institut für Kernenergetik der tät, Pfaffenwaldring 31, 7000 80	Universi. Stuttgart		
Italy	de Carli, A.	Energia Nucleare delle Energie tive, CSN-Casaccia, 00060 S. Galeria (Rome)	Alterna~ Maria di		
	Gandini, A.	n n	11		
Japan	Oka, Y.	Nuclear Engineering Research La University of Tokyo, Tokai-Mura, 319-11	aboratory, , Ibaraki-ken		
Switzerland	Herrnberger, V.	Federal Institute for Reactor (EIR), 5303 Würenlingen	Research		

United Kingdom	Butler, J.	United Kingdom Al AEE Winfrith, Doro	tomic Ener chester, Do	gy Authority, prset DT2 8DH
	McCracken, A.K.	11	11	n N
	Miller, P.	H 1997 - 1997 - 1997 1997 - 19	11	9
United States	Bartine, D.	Neutron Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830		
	Ingersoll, D.	n	17	7 1
	Cramer, S.	Oak Ridge National Laboratory		
	Marable, J.	H H 11	tt	
CEC	Mathes, W.	Reactor Physics De Joint Research Cer	epartment, ntre, 21020) Ispra (Varese)
	Rief, H.	"	11	H
OECD Nuclear Energy Agency	Nagel, P.	Nuclear Energy A 75016 Paris	Igency, 38	Bd. Suchet,