Present Status of JENDL Project

Yasuyuki Kikuchi Nuclear Data Center Japan Atomic Energy Research Institute

1. Revision of JENDL-3

The second revision work of JENDL-3 is still on going. The re-evaluation work for important nuclides will be finished in a couple of months. After compilation of the data, they will be varidated with various benchmark tests from the points of view of nuclear reactors, shielding and fusion neutronics. The modification of minor isotopes will be continued till the end of this year. Main parts of the present revision are as follows:

Resonance parameters of main actinides

The resolved resonance parameters of ²³³U, ²³⁹Pu and ²⁴¹Pu are replaced with Reich-Moore parameters obtained by Derrien who has been in JAERI since recent 2 years. The upper boundary of the resolved resonance region of ²³³U, ²³⁹Pu and ²⁴¹Pu has been expanded up to 150 eV, 2.5 keV and 300 eV, respectively. Those of ²³⁵U and ²³⁸U are also replaced with the parameters taken from ENDF/B-VI and JEF-2.

The unresolved resonance region of ²³⁶U is extended up to 150 keV. The parameters of ²³⁵U are superseded with a new set of average parameters determined so as to reproduce new evaluations of the fission, capture and total cross sections.

Major cross sections of main actinides

The inelastic scattering, fission and (n,2n) reaction cross sections of ²³³U are reevaluated. The inelastic scattering cross sections of ²³⁸U are also reevaluated. Other cross sections of those nuclides are changed to keep consistency.

Fission spectra

Ohsawa developed new formula based on Madland-Nix formalism by considering temperature difference between heavy and light mass fission fragments and multi-chance fission effects. The fission spectra of ²³⁵U and ²³⁹Pu are replaced with his calculations. For some of other nuclides, his calculation might be adopted.

Neutrons per fission

The V_n of ²³⁵U is updated by new evaluation.

Total cross sections of light-mass and structural materials

The total cross section of Fe in JENDL-3.1 are sharpened in its shape by considering

experimental resolution. It has been confirmed that the modified cross sections were in a better agreement with integral data at Broomstick experiments. This procedure will be applied to Ni and Cr too.

The total cross sections of ¹⁴N and ²³Na are revised on the basis of information from their benchmark tests.

Data of fission product nuclides

The capture cross sections and resolved resonance parameters of about 40 fission product nuclides are being updated. For several nuclides, new experimental data are available so that much reliable capture cross sections are given to them.

y-ray Production cross sections

The γ-ray production cross section data in JENDL-3 will be updated for several materials, and new evaluation will be added.

Other modifications

The neutron emitting reaction data around 14 MeV are important for fusion applications. They are updated in JENDL Fusion File to be described below. Mainly the inelastic scattering cross sections around 14 MeV are modified and particle emission spectra are represented in MF=6. The results for JENDL Fusion File will be taken into JENDL-3.2 too, by approximately giving neutron emission spectra in MF=5.

Other small modifications are made for many nuclides.

2. JENDL Special Purpose Files

JENDL Fusion File

JENDL Fusion File, to represent the DDX of emitted neutrons and charged particles, will store the data for Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Pb, Bi, Ge, As, Sn, Sb and W. This file is compiled in the ENDF-6 format applying MF6 representation of DDX. Up to the present, the work has been completed for 15 elements and their isotopes except Ge, As, Sn, Sb and W. The data for nuclides which are lighter than Al and important to fusion neutronics will be taken from JENDL-3.1 without any modifications.

JENDL Actinide File

JENDL Actinide File will be compiled in coming several years. It will contain the evaluated data for 89 nuclides from ²⁰⁸Tl to ²⁵⁵Fm in the neutron energy range from 10⁻⁵ eV to 20 MeV. The data for 57 nuclides will be taken from JENDL-3 with some modifications if necessary. In 1992, nuclear data evaluation was made for ²³⁷U, ²³⁶Np and ²³⁸Np. In 1993, the data of minor isotopes of Pu will be evaluated. We are expecting this file will be completed in 1996 or 1997.

Photonuclear data file

The evaluation work for Photonuclear Data File is being made for C, N, O, Al, Ti, Fe, Cu, Ta, W, Pb, Bi and U in the γ-ray energy range up to 140 MeV. The results will be compiled in a file in 1993. A bibliographic index to the photonuclear data has been compiled, and will be published as JAERI-M report.

KERMA/PKA file

For the KERMA and PKA Spectrum File, a code system ESPERANT has been developed, which calculates DPA cross sections from PKA spectra and makes a data file.

No explicit progress has been made for Activation Cross Section File, (α,n) Data File, Decay Data File.

3. High energy data files

Data requirements for high energy neutron and proton data are increasing. A couple of movements are existing in Japan to make data files for those requirements. One is evaluation of neutron data up to 50 MeV mainly for structural materials. This work is mainly based on the calculation with GNASH. Another one is a data file for accelerator-driven spallation system. This file will cover the energy range up to 1.5 GeV, incident particles of neutron and proton, and materials important to an intense proton LINAC and sub-critical fuel assemblies. So far, only a few trial evaluations have been made with ALICE-F and auxiliary programs.

Comment	completed completed 57 nuclei in JENDL-3	up to 140 MeV neutrons up to 50 MeV up to 1.5 GeV up to 1.5 GeV
Completion	<u> </u>	호호 호 중 중 호 한 중 중 중
Contents	288±28 mmmmz	ESNIT 49 E Ab E Ab E No No N
<u>2</u>	Dosimetry Can production Activation Can reaction Actinide	High energy data Photo-reactions Cross sections for ESN PKA Neutron-induced reacti Charged particles Decay data Decay data

R: Reactions, N. Nuclides, E:Elements, NS: Not yet specified.

Table 2 Nuclides to be stored in JENDL Actinide File

nuclide	status	nuclide	status	nuclide	status
28 _{T1}	×	²¹⁰ Pb	×	²¹⁰ Bi	×
²¹⁰ Po	×	²²² Rn	×	²²³ Ra	13
²²⁴ Ra	13	²²⁵ Ra	J 3	²²⁶ Ra	J3
²²⁸ Ra	×	225 _{Ac}	J3	²²⁶ Ac	13
²²⁷ Ac	13	227 Th	J3	²²⁸ Th	13
2239 Th	J3	²³⁰ Th	13	²³¹ Th	×
²³² Th	13,A	²³³ Th	J 3	²³⁴ Th	13
22spa	×	²³⁰ Pa	×	231pa	J3
232pa	J 3	²³³ Pa	J3	²³⁰ U	×
²³¹ U	×	²³² U	J3	²³³ U	J3,A
²³⁴ U	J 3	235U	J3,A	²³⁶ U	13
²³⁷ U	New	23%U	J3,A	²³⁴ Np	×
²³⁵ Np	×	²³⁶ Np	New	²³⁷ Np	J3,B
²³⁸ Np	New,B	²³⁹ Np	13	236Pu	13
²³⁷ Pu		238pu	J3,B	²³⁹ Pu	J3,A
²⁴⁰ Pu	J3,A	²⁴¹ Pu	J3,A	²⁴² Pu	13,B
²⁴⁴ Pu		²⁴⁶ Pu	×	²⁴⁷ Pu	*
²⁴¹ Am	13,B	²⁴² Am	13,B	^{242m} Am	13,B
^{2A3} Am	13,B	²⁴⁴ Am	J3	^{244m} Am	13
²⁴⁰ Cm	×	²⁴¹ Cm	Ј3	²⁴² Cm	13,B
²⁴³ Cm	13,B	²⁴⁴ Cm	J3,B	²⁴⁵ Cm	ЈЗ,В
²⁴⁶ Cm	J3,B	²⁴⁷ Cm	J3	²⁴⁸ Cm	13
²⁴⁹ Cm	J3	²⁵⁰ Cm	13	²⁴⁵ Bk	×
²⁴⁶ Bk	×	²⁴⁷ Bk	×	²⁴⁸ Bk	×
²⁴⁹ Bk	13	290Bk	J 3	²⁴⁶ Cf	×
²⁴⁸ Cf	×	249°Cf	J3	²⁵⁰ Cf	<i>1</i> 3
²⁵¹ Cf	13	²⁵² Cf	J3	²⁵³ Cf	ß
· 254Cf	J3	²⁵¹ Es	×	²⁵² Es	×
²⁵³ Es		²⁵⁴ Es	J3	234mEs	×
²⁵⁵ Es	13	²⁵⁵ Fm	J3		

J3: data exist in JENDL-3, New: new evaluation for JENDL Actinide File has been completed, x: data are not existing in JENDL-3, ENDF/B-VI nor JEF-2, A: major actinide, B: important for the actinide burner reactor.