
Modernisation of existing NPPs in Switzerland ALPIQ

Wolfgang Denk, Alpiq Suisse SA OECD/NEA Workshop in Innovations in Water-cooled Reactor Technologies Paris, 11 February 2015

Daily generation profiles 2013 Spring, Summer, Fall, Winter

Alpiq Suisse SA

ALPIQ

Domestic Nuclear and Long Term Contracts Supplying Switzerland with 42 TWh Electricity

Swiss units	COD Foundation	Plant/LTC Capacity	Generation/ Import 2013	<i>Sources:</i> <i>SFOE, annual</i> <i>reports,</i> <i>internal</i> <i>sources</i> ("Others")				
Beznau 1&2	1969/1971	730 MW	5.9 TWh	(others)				
Mühleberg	1971	373 MW	2.9 TWh					
Gösgen	1979	1010 MW	6.4 TWh					
Leibstadt	1984	1220 MW	9.7 TWh	25 TWh				
Nuclear imports (LTC from France)								
CNP (FES, CAT)	1972/1985	830 MW	5.1 TWh					
AKEB (BUG, CAT)	1972/1984	521 MW	2.9 TWh					
ENAG (-)	1990	400 MW	3.5 TWh					
Others		~1000 MW	~5.5 TWh	17 TWh				

Total supply for Switzerland 2013: 42 TWh

(Total domestic consumption: 64 TWh)

Since the 1980s

Backfitting of systems to prevent hydrogen explosions (passive autocatalytic recombiners, H2 mixing systems, H2 ignition systems in the primary containment, and N2 systems to inert the primary containment)

Since the 1990s

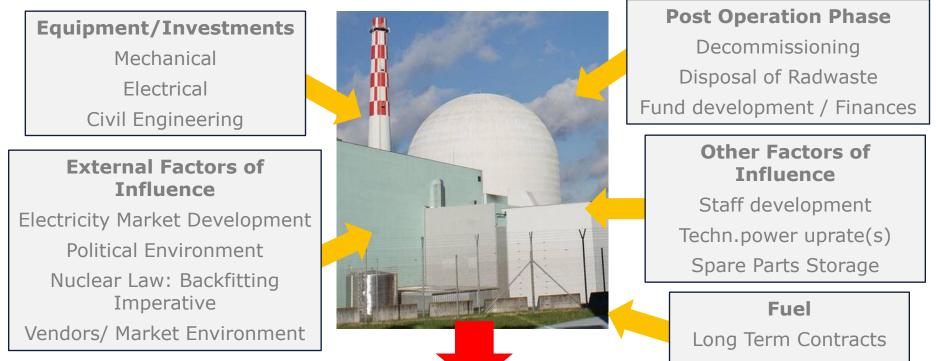
- Backfitting of independent special emergency systems in separate, bunkered buildings in Beznau and Mühleberg NPPs (part of design for the for Gösgen and Leibstadt).
- Backfitting of filtered containment venting system to mitigate the consequences of severe accidents
- Gradual backfitting of alternative feed lines to the reactor pressure vessel and the primary containment

Since the 2000s

Written decision-making aids to mitigate the effects of severe accidents (SAMG) have been developed both for power and nonpower operation

Since 2011

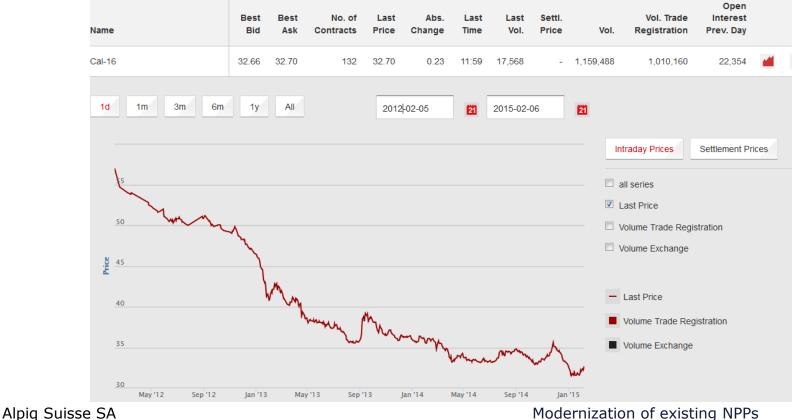
- Further strengthening of preventive and mitigative measures against consequences of accidents (onsite and offsite):
- Establishment of a Central Offsite External Storage Facility Reitnau in a former Swiss military bunker
- Further safety improvement measures ongoing in all Swiss NPPs


Retrofitting of Gösgen NPP over the last 35 years ALPIQ Examples

- 1979 Start of commercial operation
- 1993 Retrofit of filtered venting system
- 1993 Gross power increased from 970 MW to 990 MW
- 1995 Gross power increased from 990 MW to 1020 MW
- 1999 Third independent cooling line for the spent fuel pool
- 2001 Process computer replaced by data information system
- 2005 Retrofit pressure release system reactor coolant system
- 2008 New external wet spent fuel pool storage building
- 2010 Cooling tower internals optimization completed
- 2010 Gross power increased from 1020 MW to 1035 MW
- 2013 Low pressure turbine, condenser, main generator
- 2013 Gross power increased from 1035 MW to 1060 MW

Year a	Operating hours h	Load factor %	Electricity Generation Mrd. kWh	Annual costs Mio. CHF	Generation costs Rp./kWh
1996	8220,4	93,6	7,928	399,5	5,04
1997	8196,4	93,6	7,908	401,0	5,07
1998	8129,5	92,8	7,840	398,0	5,08
1999	7825,5	89,3	7,534	378,0	5,02
2000	8105,5	92,3	7,804	320,0	4,10
2001	8175,5	93,3	7,870	320,0	4,07
2002	8152,9	93,1	7,853	319,0	4,06
2003	8277,4	94,5	7,989	324,8	4,07
2004	8292,6	94,4	8,016	326,3	4,07
2005	7840,7	89,5	7,583	329,1	4,34
2006	8370,5	95,5	8,099	333,6	4,12
2007	8434,2	96,2	8,159	297,3	3,64
2008	8235,7	93,8	7,964	316,6	3,98
2009	8349,1	95,3	8,072	374,8	4,64
2010	8182,6	93,4	8,029	333,3	4,15
2011	8061,4	92,0	7,910	315,1	3,98
2012	8227,9	93,7	8,074	378,0	4,68
2013	6543,9	74,7	6,410	319,20	4,98

Long-term operation management Example: Leibstadt NPP


Purchase

Business Economical Analysis Needs/ Plans for Investments Consumption of Fixed Capital Net electricity generation Annual and Generation costs

- New long-term energy policy
- Decision to withdraw from the use of nuclear energy
- Intention: decommission Switzerland's NPPs when they reach the end of their service life
- NPPs not to be replaced with new ones
- Focus on energy efficiency, hydropower and new renewable energy sources

- Massively reduced electricity market prices in Western Europe triggered to a large part by German subsidy policy
- Strong Swiss currency but surrounding electricity markets all ٠ priced in EUR/MWh

Conclusion

- Large component replacements and modernizations ongoing (plant improvement and plant ageing management)
- Further safety improvements ongoing (continuous improvement & Fukushima lessons learned)
- Modified/additional legal requirements for the nuclear industry (for example: emergency measures/iodine tablets, fuel transport insurance, decommissioning cost studies & funds)
- Swiss electricity utilities under financial pressure (also run of river and storage hydro power plants not as profitable as in the past)

→ Very challenging environment for NPP long-term operation management

Wolfgang Denk, phone +41 79 571 39 64 wolfgang.denk@alpiq.com

