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ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT 

The OECD is a unique forum where the governments of 38 democracies work together to address the economic, 
social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand 
and to help governments respond to new developments and concerns, such as corporate governance, the 
information economy and the challenges of an ageing population. The Organisation provides a setting where 
governments can compare policy experiences, seek answers to common problems, identify good practice and work 
to co-ordinate domestic and international policies. 

 The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, Colombia, Costa Rica,  
Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, 
Korea, Latvia, Lithuania, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the 
Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Türkiye, the United Kingdom and the United States. The 
European Commission takes part in the work of the OECD. 

 OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on 
economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its 
members. 

 

NUCLEAR ENERGY AGENCY 

The OECD Nuclear Energy Agency (NEA) was established on 1 February 1958. Current NEA membership 
consists of 34 countries: Argentina, Australia, Austria, Belgium, Bulgaria, Canada, Czechia, Denmark, Finland, 
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nuclear energy for peaceful purposes; 
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government decisions on nuclear energy policy and to broader OECD analyses in areas such as energy and 
the sustainable development of low-carbon economies. 
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nuclear data and computer program services for participating countries. 
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Committee on the Safety of Nuclear Installations (CSNI) 

The Committee on the Safety of Nuclear Installations (CSNI) addresses NEA 
programmes and activities that support maintaining and advancing the scientific and 
technical knowledge base of the safety of nuclear installations. 

The Committee constitutes a forum for the exchange of technical information and for 
collaboration between organisations, which can contribute, from their respective 
backgrounds in research, development and engineering, to its activities. It has regard to 
the exchange of information between member countries and safety R&D programmes of 
various sizes in order to keep all member countries involved in and abreast of 
developments in technical safety matters. 

The Committee reviews the state of knowledge on important topics of nuclear safety 
science and techniques and of safety assessments, and ensures that operating experience 
is appropriately accounted for in its activities. It initiates and conducts programmes 
identified by these reviews and assessments in order to confirm safety, overcome 
discrepancies, develop improvements and reach consensus on technical issues of 
common interest. It promotes the co-ordination of work in different member countries 
that serve to maintain and enhance competence in nuclear safety matters, including the 
establishment of joint undertakings (e.g. joint research and data projects), and assists in 
the feedback of the results to participating organisations. The Committee ensures that 
valuable end-products of the technical reviews and analyses are provided to members in 
a timely manner, and made publicly available when appropriate, to support broader 
nuclear safety. 

The Committee focuses primarily on the safety aspects of existing power reactors, other 
nuclear installations and new power reactors; it also considers the safety implications of 
scientific and technical developments of future reactor technologies and designs. 
Further, the scope for the Committee includes human and organisational research 
activities and technical developments that affect nuclear safety. 
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Foreword 

The modelling of external hazards encompasses different technical aspects, depending 
on the type of hazard, though a general feature of hazards is that they produce off-normal 
conditions that can impact nuclear installations. There is also a coupling of the hazard 
with its associated risk analysis models. A risk analysis contains a set of scenarios, 
frequencies and associated consequences, developed in such a way as to inform 
decisions. A scenario contains an initiating event and (usually) one or more subsequent 
events leading to an end state that reflects the issue of concern. The objective of this 
benchmark study is to focus on the initiating event by facilitating an exercise on the 
statistical modelling for assessing hazard frequency and magnitude for external events 
risk assessment. This benchmark study report provides details (data and overall 
objectives) for the benchmarking exercise by specifying synthetic data for a hypothetical 
external event (e.g. precipitation, extreme temperatures and high winds). The analysis 
steps and modelling results of the benchmark participants are provided and summarised. 
Overall conclusions from these submissions are described to gain insights from the 
activity. 

This report was approved by the Nuclear Energy Agency (NEA) Committee on the 
Safety of Nuclear Installations (CSNI) at the 69th meeting of the CSNI held on 2-3 June 
2021 (NEA/SEN/SIN(2021)1, not publicly available). 
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Executive summary 

The March 2011 accident at the Fukushima Daiichi Nuclear Power Plant triggered 
discussions about natural external events that are low-frequency but high-consequence. 
To address these issues and determine which events would benefit from international co-
operative work, the NEA Committee on the Safety of Nuclear Installations (CSNI) 
established the Task Group on Natural External Events (TGNEV) at its June 2013 
meeting. In June 2014, the CSNI decided to re-organise TGNEV into a Working Group 
on External Events (WGEV) to improve the understanding and treatment of external 
hazards and support the continued safety performance of nuclear installations as well as 
improve the effectiveness of regulatory practices in NEA member countries. The WGEV 
is composed of a forum of experts for the exchange of information and experience on 
external events in NEA member countries, thereby promoting co-operation and 
maintenance of an effective and efficient network of experts. 

At its 61st meeting, the CSNI approved the recommended task on the benchmark on 
external events hazard frequency and magnitude statistical modelling, to be pursued by 
the WGEV. Modelling of these external events is a common practice in hazard and risk 
assessments in many countries. Having a valid statistical approach to model these 
hazards is important. However, current practice indicates a wide variety of approaches 
being used and a lack of appreciation of the uncertainties inherent to these types of 
statistical models. The objective of this activity is to provide a benchmark suitable to 
explore the application of typical approaches to external hazard representation through 
a data-informed process. This report captured two types of benchmarks, one with data 
and model provided and one with just data provided (a “blind test”).  

In the report is a summary of statistical modelling approaches from the organisations 
Électricité de France (EDF), the Finnish Meteorological Institute (FMI), the Idaho 
National Laboratory (INL), the Institut de Radioprotection et de Sûreté Nucléaire 
(IRSN), and the Korea Atomic Energy Research Institute (KAERI).  

Several observations can be made related to the approaches used and results from the 
benchmark for external hazards. 

• Different statistical approaches such as regression or probability distribution 
models can provide reasonable hazard frequency and magnitude estimations for 
time periods where data exist. 

• Predictions for long return periods (e.g. much greater than the existing data time 
collection) can prove challenging for some types of models and data sets. 

• Rather than focusing on predictions of a magnitude for a particular hazard, an 
alternative approach might be to evaluate the probability of exceeding a critical 
level in a future time interval. 

• If an underlying physical phenomenon that drives an external hazard is 
unbounded then predictions for the hazard may be underestimated. 

• Capturing uncertainties in the hazard predictions is not typically performed.  
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Based upon the observations made from the benchmark, several potential future WGEV 
activities are recommended: 

• The availability of statistical open-source tools and frameworks offers the 
potential for standardised approaches for representing the frequency/magnitude 
hazards and should be investigated for hazard and risk applications.  

• Having knowledge of the underlying hazard phenomena could improve the 
predictions made from models. For example, availability of a maximum upper 
bound (e.g. a physical limit) could help to improve long-term predictions. Future 
benchmarks should investigate the application of physical phenomena with 
hazard modelling. 

• The use of “paleo-data” for a period longer than that recorded in actual data sets 
could have resulted in better predictions from the statistical models. The 
availability of this type of data, though, is not well understood for some types of 
hazards, and should be investigated for external hazards of interest to the WGEV. 

• Uncertainties inherent in hazard model predictions should be better understood 
and quantified as a part of validation.  
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1. Introduction 

1.1 Background 

As an input into risk analysis modelling and simulation, a hazard initiating event (IE) is 
typically considered as the starting point for risk models. Since the IE both contributes 
to the risk quantification results and provides the boundary conditions for the rest of the 
hazard scenarios, effective modelling of the frequency and magnitude for different 
external events using data-driven methods can be applied. However, current practice has 
shown a variety of technical approaches, models, and limitations in validation of these 
approaches (for example, see Figure 1.1). Consequently, this benchmark study is 
intended to demonstrate and capture commendable practices in formulating and 
assessing the quantification of external event IEs when using statistical models. 

This benchmark was open to a variety of technical communities including academia, 
government agencies, industry, research institutes, and technical and scientific support 
organisations (TSOs). Chapter 2 of this report provides the case studies under 
consideration of this benchmark. An overview of the results of the participant 
submissions is presented in Chapter 3. Overall insights and conclusions are provided in 
Chapter 4. Detailed submissions are listed in the Annexes. 



16 | NEA/CSNI/R(2021)10 

BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING  
      

Figure 1.1. Example of the variety in potential modelling choices for magnitude-probability representation 
of a streamflow initiating event 

 
Source: OECD (2014), OECD Economic Outlook: Statistics and Projections (database), 
http://dx.doi.org/10.1787/data-00688-en. 

1.2 Objective 

The objective of this benchmark study was to facilitate an exercise on statistical 
modelling in order to better understand the quantitative technical analysis steps and 
processes used for assessing hazard frequency and magnitude in external events risk 
assessments. This benchmark study report provides details (data and overall objectives) 
for the benchmarking exercise (in Chapter 2) by specifying synthetic data for a 
hypothetical external event (e.g. precipitation, extreme temperatures, high winds).  
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1.3 Overview of the exercises 

In terms of scope, the benchmark exercise on the analysis and assessment of the hazard 
frequency/magnitude (called “the benchmark” in this report) for external events risk 
assessment covers the description of probabilistic hazard modelling, its associated 
uncertainty characterisation, and the process used for analysis and assessment. The 
information that was provided to, and asked of, the benchmark participants 
encompassed: 

• Hypothetical observational data representing an external hazard that have been 
created from synthetic models (this type of model is used to create synthetic data 
generated by a computer). Two cases are described: (1) a fully revealed “open” 
case where both the synthetic data and the synthetic model producing the data 
are provided, and (2) a “blind-test case” where only the synthetic data are 
provided. 

• Descriptions by the participants of the assumptions made to create the hazard 
frequency/magnitude model(s), the qualitative and quantitative results of the 
model(s), the process used to assess the adequacy of the model(s) and the results 
of the model adequacy assessment. For this benchmark, phenomenologically-
based evaluation and modelling will not be considered since only “observational-
type” data (derived from a synthetic model) are provided, resulting in statistical-
types of models to be considered. However, more complicated modelling 
situations incorporating phenomena physics and/or spatial considerations may 
be proposed for a future benchmark. 

The specific choice of model(s) to be considered by benchmark participants is not limited 
a priori but will need to be able to incorporate the data and should, ideally, be able to 
provide a consideration of prediction uncertainty. 
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1.4 Glossary 

This section contains a list of definitions for key terms used in this benchmark. 

Aleatory uncertainty – Pertaining to stochastic (non-deterministic) events, the outcome 
of which is described by a probability. From the Latin alea (game of chance, die). 

Adequacy assessment – The process of judging, both qualitatively and quantitatively, 
the predictive ability of a model used for decision making. 

Data – Distinct observed (e.g. measured) values of a physical process. Generally, data 
may be subject to uncertainties, such as imprecision in measurement.  

External event – An event originating outside a nuclear power plant that directly or 
indirectly causes an initiating event. 

Hazard – Anything that has the potential to cause an undesired event or condition that 
leads to damage. 

Hazard curve – A model that relates the occurrence frequency of a hazard to the 
magnitude (e.g. intensity of an earthquake, precipitation rate, flood water level, 
temperature level) of the hazard. 

Model – A mathematical construct that converts data and information into knowledge. 
Two types of models are used for risk analysis purposes, probabilistic (or aleatory) and 
deterministic. 

Statistical model – A model that represents complex phenomena stochastically. 
Examples of common statistical approaches used in risk assessment include extreme 
value, exponential, Weibull and Poisson models. 

Synthetic data – Data that are generated from computational models instead of from 
actual observation. 

Synthetic model – A computational model that is designed to produce data that mimic 
actual observed data. 
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2. Benchmark problem description 

2.1 Data generation via synthetic models 

Rather than real data gathered from the external hazard community, synthetic examples 
of a hypothetical physical process (e.g. local precipitation, high winds) are used for the 
benchmark. The reason for this is that because synthetic cases are used, the underlying 
data-producing mechanisms are known (exactly), as opposed to real cases, where they 
are not known. Thus, it is possible to assess how well data-driven models perform from 
a predictive standpoint. Furthermore, since synthetic models are created and run on a 
computer to simulate data, it is possible to control the data-generating process, including 
accounting for elements such as the uncertainty present in the synthetic data. 

In general, a synthetic model is an equation that has the functional form of: 

Model output = f(inputs) * Uncertainty 

For example, a simple linear model with no uncertainty used to represent a hypothetical 
hazard frequency/magnitude relationship could be expressed as: 

Magnitude = a * t 

where the magnitude could be represented in terms of some observable quantity (e.g. 
height about a river flood stage, quantity of rain in an hour, velocity of wind, depth of 
snow in a day), a is a changeable parameter used to control the output of the synthetic 
model, and t is a time interval – or return frequency – that “sees” the observable quantity 
described by the magnitude term. In this case, longer return frequencies would produce 
larger synthetic events in a linear fashion. 

2.2 Case 1 – Known model producing the synthetic data 

The synthetic model used for the first exercise (Case 1) is: 

M = 0.5 + 0.5 * log10(a * t). 

This synthetic example is constructed so that different values of “return time intervals” 
t produce a hypothetical (but known since it comes from the synthetic model) magnitude 
M for an annual maxima event. It is possible to use these types of models to produce 
“synthetic data” where different event outcomes are predicted as a function of time (e.g. 
producing a flooding hazard curve). As used in this benchmark, the synthetic model 
serves as surrogate for a complex phenomenological process. 

One characteristic in Case 1 is that the data generation process produces “extreme 
events” such that the larger the event, the less frequently the event is seen – in other 
words the return interval becomes large as the event magnitude increases. Consequently, 
the units (italicised) that are present in the Case 1 synthetic model are: 

M metres = 0.5 metres + 0.5*log10(a years-1 * t years) metres. 
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For Case 1, the “a variable” is set to 1. Thus, it is now possible to plot the magnitude of 
the event that is “produced” by Case 1 for select times up to a return interval of 10 000 
years (see Figure 2.1). 

Figure 2.1. Case 1 plot up to a return period of 10 000 years 

 
However, what is important for this benchmark is that hypothetical observational data 
(from a synthetic model) is provided for the hazard frequency/magnitude modelling. For 
Case 1, this data is shown in Table 2.1.  

Table 2.1. Synthetic data for Case 1 

Return period (years) 1 2 5 10 50 100 500 1 000 2 000 10 000 
Magnitude (metres) 0.50 0.65 0.85 1.0 1.4 1.5 1.9 2.0 2.2 2.5 

Participants were asked to use the data for Case 1 and provide a model that best described 
the frequency/magnitude relationship and the associated analysis and insights. The 
results of this analysis should include those areas identified in Chapter 3 of this 
benchmark, including: 

• Qualitative aspects and insights 

o assumptions made to create the hazard frequency/magnitude model;  

o the process used to assess the adequacy of the model. 

• Quantitative aspects and insights including 

o the type of model describing the hazard frequency and magnitude statistical 
results; 

o uncertainties of the model - assessing uncertainty is important for both 
validation and prediction (NRC, 2010); 

o results of the model adequacy assessment or validation. 
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2.3 Case 2 – Unknown model producing the synthetic data 

For Case 2, the synthetic model used was not provided to the participants. However, 
three parts were provided for this example: part (a), which provides the synthetic data 
(ten data points) with no uncertainty on the data points provided; part (b), which provides 
additional synthetic data (26 data points) with no uncertainty on the data points provided; 
and part (c), which has uncertainty estimates on some of the data. Any of the parts could 
have been evaluated by participants. 

For part (a), the synthetic data output from the unknown model are shown in Table 2.2.  

Table 2.2. Synthetic data for Case 2(a) 

Return period (years) 1 2 5 10 50 100 500 1 000 3 000 10 000 
Magnitude (metres) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 

For part (b), the synthetic data output from the unknown model are shown in Table 2.3. 

Table 2.3. Synthetic data for Case 2(b) 

Return period (years) 1 2 5 10 15 20 25 30 40 
Magnitude (metres) 0.53 0.53 0.54 0.55 0.56 0.56 0.57 0.57 0.58 
Return period (years) 50 60 70 80 90 100 125 150 175 
Magnitude (metres) 0.59 0.60 0.60 0.61 0.62 0.62 0.63 0.65 0.66 
Return period (years) 200 300 400 500 750 1 000 3 000 1 0000 

 

Magnitude (metres) 0.67 0.71 0.75 0.79 0.87 0.95 1.57 3.97 
 

 
For part (c), the synthetic data for long time intervals are presumed to not be known 
exactly. For these times (500 years and longer), an estimate of the uncertainty on the 
magnitude has been provided and is shown in Table 2.4. 

Table 2.4. Synthetic data for Case 2(c) 

Return period (years)   1 2 5 10 50 100 500 1 000 3 000 10 000 
Magnitude (metres) Mean 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 

SDev.* -** - - -   - 0.04 0.06 0.15 0.46 
5th*** - - - -   - 0.72 0.85 1.3 3.2 
95th - - - -   - 0.85 1.1 1.8 4.7 

Note:  
* SDev. is the standard deviation. 
** A “-” indicates information that is not available. 
*** The 5th and 95th indicates a 5th percentile and a 95th percentile value, respectively. In other words, there 
is a 0.05 probability that the magnitude is less than or equal to 0.72 metres for an event with a return period 
of 500 years. 

The synthetic model used for Case 2 was: 

M metres = 0.5 metres + 0.01 * b * exp (1 years-1 * t0.19 years) metres. 

where b is normal distribution with a mean of 1.1 and a standard deviation of 0.15. The 
use of a normal distribution in this synthetic model provides a degree of “noise” or 
stochastic variation in the data points that are provided via the model. Using this model, 
it is possible to plot the magnitude of the event that is “produced” by Case 2 for select 
times up to a return interval of 10 000 years (see Figure 2.2). 
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Figure 2.2. Case 2 plot up to a return period of 10 000 years 

 
Lastly, the magnitude of the model prediction was asked of the participants for 500, 
5 000, 50 000, and 500 000 years. 

Now that the two models are known completely, it is possible to provide the exact results 
for the different return periods. These results are shown in Table 2.5. Note that since the 
Case 2 model uses an exponential, for long return periods, the magnitude can become 
large – this model may not represent physical processes effectively but can provide a 
challenge for modelling. 

Table 2.5. Results for the two cases 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 1.9 2.4 2.9 3.4 
Magnitude (metres) Case 2 0.78 2.2 28 2 000 
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3. Benchmark outcomes 

3.1 Benchmark completion 

To complete the benchmark exercise, the following four areas should be addressed: 

1. Assumptions 

2. Model detail results 

3. Model adequacy assessment approach 

4. Results of the assessment 

While much of the effort spent in responding to this benchmark was on technical 
analysis, it is important to understand key assumptions behind the modelling approach 
and the ultimate use of the model for hazard representation. As part of an integrated risk 
analysis, the hazard characterisation is a key element of effective modelling. Thus, any 
supporting analyses need to be developed in context with consideration and 
understanding of the scope, limitations, boundary conditions, complexity and contexts 
that provide the foundation for the resulting statistical model. These types of 
assumptions need to be clearly documented to understand how results will be used in 
risk-informed decision making.  

Submissions were provided for consideration by the following: Électricité de France 
(EDF), the Finnish Meteorological Institute (FMI), the Idaho National Laboratory (INL), 
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), and the Korea Atomic Energy 
Research Institute (KAERI).  

3.2 Submission by EDF 

In its submission, EDF models the frequency-magnitude relation with a generalised 
extreme value (GEV) distribution. It notes that, under some general hypotheses, the 
annual extreme value of a process, once normalised, tends to a GEV distribution and the 
return levels are specific quantiles of the annual extreme value distribution. The GEV 
limit model makes it possible to estimate large return levels. 

In Cases 1 and 2, the fitting is based on the minimisation of a criteria, defined as the 
squared error, the weighted square error, the maximum error or the weighted maximum 
error between the data and the model. For Case 1, EDF also used three-points 
interpolation by solving a system of equations defined by the quantiles of GEV 
distribution. 

The EDF analysts noted it is possible to improve the precision of the GEV model on 
large return periods by penalising the errors to give more importance in properly 
predicting the magnitude associated to large return periods.  

In Case 2c, the data are uncertain. EDF uses a GEV model that minimises random 
features of the error focusing on either the mean or 95th quantile. Examples of analysis 
results obtained with the L2 criteria are shown in Table 3.1. Instead, the models were 
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used to compare against the data tables that were shown in Chapter 2. Plots of these 
results are shown in Figure 3.1. The details of their analysis, including tables of 
numerical results, are shown in Annex A. 

Table 3.1. Results for EDF submission (example of L2 criteria results) 

Return period (years) 500 5 000 50 000 500 000 
Case 1  1.85 2.35 2.85 3.35 
Case 2a 0.78 2.40 14.6 105 
Case 2b 0.79 2.41 14.3 102 
Case 2c 0.79 2.41 14.25 101 

Figure 3.1. EDF submission results plotted for the four cases 
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3.3 Submission by the Finnish Meteorological Institute (FMI) 

The FMI submitted a write-up and included the analysis files (in the R tool). All the 
necessary steps to repeat the exercise (excluding setting up some parts of the R 
environment) were provided in this notebook. The submission provides the theoretical 
and technical background for the modelling approach and the assumptions. Then, the 
results for fitting the selected statistical models are presented for each test case together 
with an analysis of potential uncertainties. 

The model used by FMI is the GEV. They use a Bayesian approach (using a couple of 
numerical approaches) to the estimation of the GEV parameters. One of the main 
strengths in the Bayesian approach is that it provides a natural way to estimate both 
parameter and observational uncertainties. The numerical results of the FMI analysis are 
shown in 3.1 for Case 1 and 3.2 for Case 2. 

Table 3.2. Case 1 results for FMI submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 3.4 
FMI mean from the Approximate Bayesian Computation 
approach magnitude (metres)  

1.85 2.35 2.84 3.34 

FMI mean from traditional Markov Chain Monte Carlo approach 
(metres) 

1.84 2.35 2.88 3.43 

Table 3.3. Case 2a results for FMI submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000 
FMI mean from the Approximate Bayesian Computation 
approach magnitude (metres)  

0.76 2.33 16.62 148.36 

FMI mean from traditional Markov Chain Monte Carlo approach 
(metres) 

0.76 2.31 17.25 162.27 

Table 3.4. Case 2b results for FMI submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000 
FMI mean from the Approximate Bayesian Computation 
approach magnitude (metres)  

0.77 2.32 16.22 142.11 

FMI mean from traditional Markov Chain Monte Carlo approach 
(metres) 

0.76 2.30 16.90 156.36 

Table 3.5. Case 2c results for FMI submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2000 
FMI mean from the Approximate Bayesian Computation 
approach magnitude (metres)  

0.78 2.28 14.16 110.94 

FMI mean from traditional Markov Chain Monte Carlo approach 
(metres) 

0.77 2.36 16.95 151.60 
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3.4 Submission by Idaho National Laboratory 

Two independent groups at the INL provided results. The first group used a Bayesian 
approach for a GEV model, using the OpenBUGS analysis tool. The second group used 
a regression approach. Specifically, the second group used linear regression with 
transformed form model to fit the magnitude vs. return period relationship model for 
Case 1 and non-linear regression for Case 2. 

INL Group 1 
Group 1 used a Bayesian approach with the GEV model to quantify both Case 1 and 2. 
The tool used was OpenBUGS. An example of the script used for Case 1 is shown in 
Table 3.6. The predicted results for Case 1 are shown in Table 3.7. The results for Case 
2 are shown in Table 3.8 (Case 2a), Table 3.9 (Case 2b), and Table 3.10 (Case 2c). 

Table 3.6. OpenBUGS script for Case 1 from INL Group 1 submission 

model 
{ for(i in 1:N) { 
z.p[i] ~ dnorm(mean[i],prec) 
y.p[i] <- -log(1 - p[i]) 
mean[i]<- mu - sigma/xi*(1 -pow(y.p[i],-xi)) 
} 
mu ~ dnorm(0,0.0001) 
prec<-pow(sd,-2) 
sd~dunif(0,10) 
xi ~ dunif(-1,1) 
sigma ~ dunif(0,10) 
} 
data 
list(p=c(0.632, 0.393, 0.181, 0.0952, 0.0198, 0.00995, 0.002, 0.001, 0.0005, 0.0002, 0.0001, 0.00002, 
0.000002), 
z.p=c(0.50, 0.65, 0.85, 1.0, 1.4, 1.5, 1.9, 2.0, 2.2, NA, 2.5, NA, NA), N=13) 
list(mu=1.0, sigma=1.0, xi=1.0) 

Table 3.7. Case 1 results for INL Group 1 submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 3.4 
INL mean (metres)  1.88 2.37 2.84 3.31 

Table 3.8. Case 2a results for INL Group 1 submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.76 2.34 16.02 136.20 

Table 3.9. Case 2b results for INL Group 1 submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.76 2.32 16.26 142.80 
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Table 3.10. Case 2c results for INL Group 1 submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.76 2.34 16.02 136.20 

INL Group 2 
The hazard frequency/magnitude model here for Case 1 fit the linear regression model 
with log transformation of the return period to describe the relationship between 
magnitude and return period since the synthetic model provided is linear. The difference 
is the residual term in regression equation, which is the vector values of the differences 
between observed values and predicted values: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝚤𝚤� =  𝛽𝛽0� +  𝛽𝛽1�𝑙𝑙𝑙𝑙𝑀𝑀(𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀 𝑝𝑝𝑀𝑀𝑟𝑟𝑝𝑝𝑙𝑙𝑀𝑀1) +  𝜖𝜖𝑖𝑖  

The estimated equation is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝚤𝚤� =  0.503364 +  0.506251 ∗  𝑙𝑙𝑙𝑙𝑀𝑀(𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀 𝑝𝑝𝑀𝑀𝑟𝑟𝑝𝑝𝑙𝑙𝑀𝑀1) 

The estimated values above are the least square estimates of the intercept and slope. They 
have standard error for the intercept and slope are 0.07006 and 0.03083, respectively. 
The predicted results are shown in Table 3.11 for Case 1, Table 3.12 for Case 2a, Table 
3.12 for Case 2b, and Table 3.14 for Case 2c. 

Table 3.11. Case 1 results for INL Group 2 submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 3.4 
INL mean (metres)  1.87 2.38 2.88 3.39 

Table 3.12. Case 2a results for INL Group 2 submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.75 2.32 14.83 37.18 

Table 3.13. Case 2b results for INL Group 2 submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.75 2.28 17.57 170.46 

Table 3.14. Case 2c results for INL Group 2 submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.71 2.01 13.75 37.09 

Group 2 noted that principal component regression has a few technical limitations and 
uncertainties. First, the uncertainty of mean for short time interval was not provided, 
even though the unknown standard deviation of each mean magnitude is small. To 
estimate the standard deviation, the 5th and 95th percentile of the mean magnitude, an 
imputation must be utilised which produced some uncertainty on those imputed values. 
Compared with the results estimation obtained from Case 2a, we noticed that the 
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confidence and prediction intervals for Case 2c are all wider than those for Case 2a. 
Model fitting also does not perform well when there is a long time return period so that 
the predicted values do not fall into the 95% confidence interval. Lastly, the principal 
component regression model could not meet the expected condition that the mean 
magnitude keeps increasing as the return period increases. 

3.5 Submission by IRSN 

The IRSN submitted its analyses for Case 1, Case 2(a) and Case 2(b) in a write-up that 
included the analysis files (using the R language).  

For Case 1, a set of 100 return periods was first randomly sampled. Then, associated 
magnitudes were calculated using the synthetic model. Finally, extreme frequency 
estimations were performed.  

The analyst implemented an annual maxima (AM) frequency model in which the 
distribution of the extreme events converges to a GEV one. The IRSN noticed that the 
GEV distribution can have the form of the synthetic model only if the shape parameter 
of the distribution is equal to -1 and the scale parameter is negative. With such 
conditions, the theoretical upper tail can only be finite and bounded and the GEV 
distribution cannot be used with a negative scale parameter: thus it was not used to 
describe the frequency/magnitude relationship for Case 1. 

The analyst implemented a Peaks-Over-Threshold (POT) frequency model in which the 
distribution of the exceedances over the threshold converge to an exponential one 
(Generalised Pareto Distribution, or GPD). The choice of the threshold value is based on 
using the synthetic model. The Renext R library (developed by the IRSN and Alpestat) 
was used for the frequency estimations. The relative difference in estimated magnitudes 
does not exceed 5%, and all the plotting positions are inside the one sigma confidence 
interval even though the latter is very narrow (see Figure 3.2). 

Figure 3.2. Fitting of the SM-Case1 data sets (w=100 years) with GPD distribution 

 



NEA/CSNI/R(2021)10 | 29 

 BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING 
      

Table 3.15. Case 1 results for IRSN submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 3.4 
GPD/Exp IRSN mean (metres) 1.78 2.25 2.72 3.19 

 

For both Cases 2a and 2b, non-linear least-squares estimates of the GEV parameters 
were performed. As shown in Figure 3.3, the fitting with confidence intervals is quite 
good with heavy tails (very high shape parameter 0.96ξ ≈ ) up to some thousands of 
years. For longer return periods the fitting is off the curve, perhaps because the proposed 
cases ignore any physical limits.  

Figure 3.3. To the left: Fitting Case2-a synthetic data with a GEV distribution; to the right: Fitting 
Case2a synthetic data with a GEV distribution 

 

Table 3.16. Case 2a results for IRSN submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
GEV IRSN mean (metres)  0.75 2.32 16.79 150.34 

Table 3.17. Case 2b results for IRSN submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
GEV IRSN mean (metres)  0.76 2.31 16.50 146.53 

3.6 Submission by KAERI 

As a result of fitting the relationship between magnitude and return period in Case 1 and 
Case 2, the relationship was estimated in log and linear regression. The data fitting is 
high in R2 but with a square error. The reason is sensitive to the coefficients of the 
synthetic model. Therefore, further parameter analysis is required. The regression 
equation of this study is as shown in the following equations (1) to (2). 

For Case 1: 𝑀𝑀 =  𝐴𝐴 ∗ 𝑙𝑙𝑀𝑀 (𝑥𝑥) + 𝐵𝐵 (𝑃𝑃𝑀𝑀𝑟𝑟𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑃𝑃 𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵)                        (1) 

For Case 2: 𝑀𝑀 =  𝐴𝐴 ∗ (𝑥𝑥) + 𝐵𝐵 (𝑃𝑃𝑀𝑀𝑟𝑟𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑃𝑃 𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵)                          (2) 
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To minimise the square error of parameters A and B, an optimisation method is applied 
through the square error solver function. As a result, the estimated parameters A and B 
for Case 1 and Case 2 are shown in the following equations (3) and (4). 

For Case 1: 𝑀𝑀 =  0.219861834 ∗ 𝑙𝑙𝑀𝑀 (𝑥𝑥) + 0.503363549 (𝑀𝑀𝑝𝑝𝑀𝑀𝑝𝑝𝑃𝑃𝑝𝑝𝑀𝑀𝑀𝑀 𝑃𝑃𝑠𝑠𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀 𝑀𝑀𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟) 
(3) 

For Case 2: 𝑀𝑀 =  0.000344252 ∗ (𝑥𝑥) + 0.565051348 (𝑀𝑀𝑝𝑝𝑀𝑀𝑝𝑝𝑃𝑃𝑝𝑝𝑀𝑀𝑀𝑀 𝑃𝑃𝑠𝑠𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀 𝑀𝑀𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟)   (4) 

The predicted results for Case1 and Case2 are shown in Table 3.17 and 3.18. In addition, 
the re-fitted graph was compared with the existing data and displayed, as shown in Figure 
3.4 to Figure 3.5. 

Table 3.18. Case 1 results for KAERI submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 3.4 
Log KAERI mean (metres)  1.870 2.376 2.883 3.389 
Optimisation KAERI mean (metres) 1.870 2.376 2.882 3.388 

Table 3.19. Case 2 results for KAERI submission 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
Linear KAERI mean (metres)  0.715 2.065 15.565 150.565 
Optimisation KAERI mean (metres) 0.737 2.286 17.778 172.691 
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Figure 3.4. KAERI submission results plotted for Case 1 
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Figure 3.5. KAERI submission results plotted for Case 2 
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4. Observations 

This benchmark provided an exercise focused on the quantitative technical analysis steps 
and processes used to assess hazard frequency and magnitude for external events risk 
assessments. The research provided details (data and overall objectives) for two unique 
benchmarking exercises specific to external events hazard frequency and magnitude 
modelling by providing synthetic data for a hypothetical external event (precipitation, 
extreme temperatures, high winds, etc.) to be determined by the participants. The 
information and results provided by benchmark participants were collected and 
summarised to gain insights on best practices from the activity. 

4.1 Case 1 observations 

Figure 4.1 shows the overall results of all participants for Case 1. As can be seen in the 
figure, the results tended to track well with the exact results and were consistent across 
all groups. The numerical values used for Figure 4.1 are listed in Table 4.1. 

Figure 4.1. Comparison of all submission results for Case 1 
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Table 4.1. Case 1 results for all group submissions 

Result 1 2 5 10 50 100 500 1 000 2 000 5 000 10 000 50 000 500 000 
 Exact  0.50 0.65 0.85 1.00 1.35 1.50 1.85 2.00 2.15 2.35 2.50 2.85 3.35 
 EDF    0.58 0.83 0.99 1.35 1.50 1.85 2.00 2.15 2.35 2.50 2.85 3.35 
 FMI  

      
1.84 

  
2.35 

 
2.88 3.43 

 INL1  0.49 0.65 0.86 1.02 1.37 1.53 1.88 2.03 2.17 2.37 2.51 2.84 3.31 
 INL2  0.50 0.66 0.86 1.01 1.36 1.52 1.87 2.02 2.17 2.38 2.53 2.88 3.39 
 IRSN  0.50     0.90   1.42 1.78     2.25   2.72 3.19 
 KAERI  0.50 0.66 0.86 1.01 1.36 1.52 1.87 2.02 2.18 2.38 2.53 2.88 3.39 

Note: EDF = Électricité de France (example of results obtained with the L2 criteria), FMI = Finnish 
Meteorological Institute, INL1 = Idaho National Laboratory Group 1, INL2 = Idaho National Laboratory 
Group 2, IRSN = Institut de Radioprotection et de Sûreté Nucléaire, KAERI = Korea Atomic Energy 
Research Institute. 
The approach and models used by the different groups ranged from curve fitting logarithm models to 
performing Markov Chain Monte Carlo (MCMC) calculations using the GEV model. For Case 1, five of the 
groups used a regression-based approach while two used a MCMC calculation. 

4.2 Case 2 observations 

The study for Case 2 was much more complicated since the underlying model was not 
provided. A summary of the numerical predictions that were provided by the submitters 
is shown in Table 4.2. As can be seen in the table, the predictions for long periods of 
time (> 10 000 years) started to become problematic due to the underlying synthetic 
model (based upon an exponential function that was proposed as a strong challenge). 

Table 4.2. Case 2 results for all group submissions 

    Return period (years) 
Result Case 500 5 000 50 000 500 000 

Exact 0.78 2.20 28.0 2 000 
EDF 2a 0.78 2.40 14.6 105 

2b 0.79 2.41 14.3 102 
2c 0.79 2.41 14.25 101 

FMI 2a 0.76 2.31 17.3 162 
2b 0.76 2.30 16.9 156 
2c 0.77 2.36 17.0 152 

INL1 2a 0.76 2.34 16.0 136 
2b 0.76 2.32 16.3 143 
2c 0.76 2.34 16.0 136 

INL2 2a 0.75 2.32 14.8 37 
2b 0.75 2.28 17.6 170 
2c 0.71 2.01 13.8 37 

IRSN 2a 0.75 2.32 16.8 150 
2b 0.76 2.31 16.5 147 
2c         

Note: EDF example of results obtained with the L2 criteria 

Focusing on just the 50 000-year magnitude predictions (see Figure 4.2), it is possible to 
see that the predictions were consistent, but too low by about 40%. Again, this under 
prediction is likely a result of the use of the exponential function for the underlying 
synthetic model for Case 2. While the models used by the submitters (e.g. GEV, 
Generalised Pareto, regression) can represent exponential types of behaviour, the data 



NEA/CSNI/R(2021)10 | 35 

 BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING 
      

that was provided may represent too short of a period to reliably predict very long return 
periods (i.e. for periods of time much longer than the data set provided). In Case 2, the 
“longest” data point provided was for 10 000 years, or five time shorter than the 
50 000-year prediction. 

Case 2b represented the situation where additional data was provided (over that provided 
by Case 2a) – 26 data points were provided instead of the original ten. However, in both 
cases, the longest time period represented was 10 000 years. Looking at the 50 000-year 
predictions, we can see that increasing the data points (from 10 to 26) resulted in only 
slightly better predictions (but they were still low by approximately 40%). It appears that 
having additional data within the seen time did not lead to much of an improvement in 
the predictions. Alternatively, if we had provided “paleo-data” for a period longer than 
10 000 years, this data would have likely resulted in better predictions. This aspect of 
the analysis might be considered for future benchmark exercises. 

Figure 4.2. Comparison of all submission results for Case 2 for the 50 000 year predictions 

 
The participants that submitted information for Case 2 used two basic approaches to the 
analysis, Bayesian analysis via MCMC or regression to a curve. It appears that the 
quantity of data and the quantification had little impact on the results shown in 
Figure 4.2. However, it did appear that the Bayesian approach was able to quantify the 
uncertainty on the predictions in a straight-forward fashion (for example, the estimate 
for the INL1 2c result was a mean of 16 m with a 5th percentile of 14 m and a 95th 
percentile of 17 m for the 50 000-year return period).  

When we look at the 500 000-year magnitude predictions, we can see that the predictions 
were consistent, but very low. This under prediction is (again) likely a result of the use 
of the exponential function for the underlying synthetic model for Case 2. Note that the 
use of an exponential function was chosen as a challenging case and most likely does 
not represent any real physical phenomena.  
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However, a concern here would be if return periods much greater than what has been 
experienced (> 10 times the time period) were being predicted and the underlying 
phenomena that drive the magnitude of the external hazard is unbounded upward like an 
exponential function. In that case, the predictions for the hazard may be underestimated. 
Fortunately, most (if not all) natural external hazards would have upper bounds to the 
magnitude – it would not make sense to assume infinitely large floods, temperatures, 
rain, snow, earthquakes, etc. 

The difficulty in the predictions for long return periods does indicate that knowledge of 
the underlying phenomena or knowledge of upper bounds (e.g. physical limits) could 
help to greatly improve the predictions. This aspect of the analysis might be considered 
for future benchmark exercises. 
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5. Conclusions 

This benchmark study provided a mechanism to develop statistics-based approaches for 
representing complex physical phenomena such as extreme temperatures, droughts, high 
winds, floods and extreme snowfall. The benchmark provided the overall objectives of 
the study, the data to be investigated and the expectations for results reporting.  

This report provided two independent benchmark cases to facilitate understanding of 
statistical modelling that may be used in quantitative technical analysis to assess hazard 
frequency and magnitude for external events risk assessment: 

• Case 1: Based on a data set with a given associated synthetic model (i.e. known 
function form). 

• Case 2: Based on a data set generated from another associated synthetic model 
that is not given (i.e. a “blind study”). 

Participants were asked to provide any key assumptions, the statistical model(s) used, 
the overall results of the analysis, and the process used to assess the adequacy of the 
model(s), including uncertainties. The provided data were created using synthetic 
models for a hypothetical external event (e.g. precipitation, extreme temperatures and 
high winds). As such, the data used in this benchmark may not be representable for any 
real physical phenomenon and are solely intended to test different modelling approaches. 

One of the findings of this benchmark study is that different statistical approaches, such 
as regression or probability distribution model application, can provide reasonable 
hazard frequency and magnitude estimation for time periods where data exist (i.e. 
interpolation) for both cases. However, the benchmark study did identify potential 
issues: 

• Predictions for long return periods (much greater than the existing data time 
collection) can prove challenging for some types of data sets. 

• Rather than focusing on predicting a magnitude for a particular hazard, an 
alternative approach might be to evaluate the probability of exceeding a critical 
level in a future time interval. 

• If an underlying physical phenomenon that drives an external hazard is 
unbounded (e.g. like the exponential function used in Case 2), predictions for the 
hazard may be underestimated. 

• Some participants had a process to quantify uncertainties. However, capturing 
the uncertainties in the predictions was not typically performed. 

While issues and challenges do exist in statistical modelling of hazards, this study 
pointed to potential improvements in hazard modelling processes. It is recommended 
that the following items be considered for future WGEV activities: 
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• The availability of statistical open-source tools and frameworks offers the 
potential for standardised approaches for representing the frequency/magnitude 
of hazards applicable to risk applications. 

• While not part of this benchmark, having knowledge of the underlying hazard 
phenomena could improve the predictions made from models. For example, the 
availability of a maximum upper bound (e.g. a physical limit) could help to 
greatly improve long-term predictions. 

• The use of “paleo-data” for a period longer than that recorded in actual data sets 
could have resulted in better predictions from the statistical models. The 
availability of this type of data, though, is not well understood for some types of 
hazards. 

• Uncertainties inherent in hazard model predictions should be better understood 
and quantified as a part of validation. 
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Annex A. Submission by EDF 

Executive summary 

The modelling of external hazards encompasses different technical aspects, depending on 
the type of hazard. All these hazards impact nuclear installations. Usually, a specific risk 
analysis is performed for a given hazard to inform a decision. A risk analysis contains a set 
of scenarios, frequencies and associated consequences. A scenario is a sequence that 
contains an initiating event and one or more subsequent events. The end state (a 
consequence) of a scenario is also of interest. 

The global objective of the benchmark study launched by the OECD NEA, is to focus on 
an initiating event induced by an external hazard. The statistical modelling of a hazard 
frequency and magnitude is of particular interest in this benchmark. 

The benchmark study provides synthetic data for a hypothetical external event. 
Hypothetical data describing the external hazard comes from synthetic models. These data 
have been generated with a computer code. Two cases are described: 

• Case 1: a fully revealed open case where both the synthetic data and the synthetic 
model producing the data are provided; 

• Case 2: a blind-test case where only the synthetic data are provided. 

In this report, we model the frequency-magnitude relation with a GEV distribution. 
Indeed, under some general hypotheses, the annual extreme value of a process, once 
normalised, tends to a GEV distribution. Furthermore, the return levels are specific 
quantiles of the annual extreme value distribution. The GEV limit model makes it 
possible to estimate large return levels. 

To fit the GEV model that best predicts the given synthetic model or the given 
synthetic data, we used several criteria: 

• the minimum of the squared error between the data and the model; 

• the maximum error over a large range of the return period. 

In addition, for Case 1, we used a three-points interpolation by solving a system of 
equations defined by the quantiles of GEV distribution. We voluntarily present this 
method only in Case 1 but it can be applied on the other cases without uncertainty. 

It is possible to improve the precision of the GEV model on large return periods. To 
this end, we penalise the errors to give more importance to properly predicting the 
magnitude associated with large return periods. 

If the data are uncertain, we define a GEV model that minimises random features of 
the error: the mean or its quantile of order 95%. 

For each case, we present the relative error and the optimal set of parameters of the 
GEV model.  
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Figure A1.1 draws the T -return level obtained with the optimal GEV distribution in each 
case. 

Table A1.1 to Table A1.4 detail the reference magnitudes and the approximated ones, 
obtained using several error criteria. 

Figure A1.1. Frequency - Magnitude obtained with the optimal GEV distribution (in blue, red and green) 
that best predicts the known model or the synthetic data (in black) with respect to several error criteria 
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Table A1.1. Case 1: Comparison between the known model g and the optimal GEV model obtained using 
several error criteria 

Return 
period 
(years) 

2 5 10 50 100 500 1 000 2 000 10 000 

Ref 
Mag 
(m) 

0.650 0.849 1.0 1.349 1.5 1.849 2.0 2.151 2.5 

Approx 
Mag 
(m) - 
3p 
interp 

0.582 0.828 0.99 1.349 1.5 1.85 2.0 2.151 2.5 

Approx 
Mag 
(m) - 
L2-
error 

0.600 0.841 1.0 1.353 1.503 1.850 2.0 2.150 2.50 

Approx 
Mag 
(m) - 
L8-
error 

0.724 0.901 1.02 1.31 1.44 1.75 1.90 2.04 2.40 

 

Table A1.2. Case 2a: Comparison between the given synthetic data and the optimal GEV model obtained 
using several error criteria 

Return 
period 
(years) 

2 5 10 50 100 500 1 000 3 000 10 000 

Ref Mag 
(m) 

0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 

Approx 
Mag (m) - 
L2-error 

0.523 0.526 0.530 0.556 0.584 0.776 0.986 1.730 3.959 

Approx 
Mag (m) - 
weighted 
L2-error 

0.505 0.507 0.511 0.537 0.566 0.759 0.971 1.719 3.969 

Approx 
Mag (m) - 
L8-error 

0.479 0.482 0.486 0.511 0.540 0.732 0.942 1.685 3.915 

Approx 
Mag (m) - 
weighted 
L8-error 

0.445 0.448 0.452 0.478 0.507 0.701 0.914 1.669 3.940 
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Table A1.3. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the 
L2-error, using several error criteria 

Return 
Period 
(years) 

2 5 10 50 100 500 1 000 3 000 10 000 

Ref Mag 
(m) 

0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 

Approx 
Mag (m) 
- L2-
error 

0.543 0.546 0.550 0.576 0.604 0.795 1.00 1.741 3.952 

Approx 
Mag (m) 
- 
weighted 
L2-error 

0.538 0.541 0.545 0.571 0.599 0.790 1.00 1.74 3.96 

Approx 
Mag (m) 
- L8-
error 

0.479 0.482 0.486 0.512 0.540 0.732 0.942 1.685 3.916 

Approx 
Mag (m) 
- 
weighted 
L8-error 

0.448 0.451 0.455 0.481 0.510 0.704 0.917 1.67 3.94 

Return 
Period 
(years) 

15 20 25 30 40 60 70 80 90 

Ref Mag 
(m) 

0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62 

Approx 
Mag (m) 
- L2-
error 

0.554 0.557 0.560 0.564 0.570 0.582 0.587 0.593 0.599 

Approx 
Mag (m) 
- 
weighted 
L2-error 

0.548 0.552 0.555 0.558 0.564 0.576 0.582 0.588 0.593 

Approx 
Mag (m) 
- L8-
error 

0.489 0.493 0.496 0.499 0.506 0.518 0.523 0.529 0.535 

Approx 
Mag (m) 
- 
weighted 
L8-error 

0.459 0.462 0.465 0.469 0.475 0.487 0.493 0.499 0.504 

Return 
Period 
(years) 

125 150 175 200 300 400 750 
  

Ref Mag 
(m) 

0.63 0.65 0.66 0.67 0.71 0.75 0.87 
  

Approx 
Mag (m) 
- L2-
error 

0.618 0.631 0.643 0.656 0.704 0.750 0.902 
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Table A1.3. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the 
L2-error, using several error criteria (Continued) 

Return 
Period 
(years) 

2 5 10 50 100 500 1 000 3 000 10 000 

Approx 
Mag (m) 
- 
weighted 
L2-error 

0.612 0.626 0.638 0.651 0.699 0.745 0.897 
  

Approx 
Mag (m) 
- L8-
error 

0.554 0.567 0.580 0.592 0.641 0.687 0.840 
  

Approx 
Mag (m) 
- 
weighted 
L8-error 

0.523 0.537 0.550 0.562 0.611 0.658 0.813 
  

 

Table A1.4. Case 2c: Comparison between the given synthetic data and the optimal GEV model 
minimising several features of the random error 

Return 
Period 
(years) 

2 5 10 50 100 500 1 000 3 000 10 000 

Ref 
Mag 
(mean) 
(m) 

0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 

Approx 
Mag (m) 
- Mean 

0.525 0.527 0.531 0.558 0.587 0.781 0.993 1.73 3.94 

Approx 
Mag (m) 
- 
Quantile 
95% 

0.517 0.519 0.523 0.551 0.581 0.778 0.994 1.75 3.98 
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A1.1 Introduction 

A1.1.1. The OECD context 
The modelling of external hazards encompasses different technical aspects depending on 
the type of hazard, all of them impacting nuclear installations. There is also a link 
between the hazard and the associated risk analysis. A risk analysis contains a set of 
scenarios, frequencies and associated consequences, developed in such a way as to 
inform decisions. A scenario contains an initiating event and (usually) one or more 
subsequent events leading to an end state that reflects the issue of concern. 

The objective of the benchmark study launched by the OECD NEA is to focus on the IE 
by facilitating an exercise on the statistical modelling for assessing hazard frequency and 
magnitude for external event risk assessment. The benchmark study provides synthetic 
data for a hypothetical external event. 

The analysis steps and modelling results we obtained are detailed on this report. 

We would like to underline that the scope of this benchmark differs from the activities 
that EDF usually performs regarding extreme natural events characterisation. Indeed, 
what is usually available is a set of measured data for a given phenomenon, and what is 
performed is statistical extrapolation of these data to evaluate a magnitude of the natural 
phenomenon for a high return level period. 

 

A1.1.2. Data 
Hypothetical observational data represent an external hazard which has been created 
from synthetic models (this type of model is used to create synthetic data that have been 
generated from a computer). Two cases are described: 

• Case 1: a fully revealed open case where both the synthetic data and the synthetic 
model producing the data are provided; 

• Case 2: a blind-test case where only the synthetic data are provided. 

Case 1 - Known model producing the synthetic data 
The synthetic model used for the first exercise is: 

g : T → g(T ) = 0.5 + 0.5 log10(T ) (1) 

where T is the return period in years and M = g(T ) the associated magnitude given in 
metres. This model led to the return period / magnitude detailed in Table A1.5.  

Table A1.5. Case 1: synthetic data 

 

Case 2 - Unknown model producing the synthetic data 
In this case, only the synthetic data are provided (the synthetic model used is not 
provided). The Case 2 presents three subcategories: 

Return period (years) 
Mag (m) 

1 2 5 10 50 100 500 1 000    

0.50 0.65 0.85 1.0 1.4  1.9    
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• On the first two, the synthetic data have no uncertainty and the last has 
uncertainty estimates on some of the data.  

• The three-point interpolation would also be applicable for the 2a case data set 
(without uncertainty). In order to focus on presenting the differences between a 
data set with and without uncertainties, we focused the Case 2 studies on the L2 
and L∞-error models. 

Case 2a: The synthetic data (ten data points) with no uncertainty on the points are 
provided and gathered in Table A1.6. 

Table A1.6. Case 2a: synthetic data 

 
Return period (years) 2 5 10 50 100 500 1 000 3 000

 10 000 
Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6

 4.0 

Case 2b: In addition to the synthetic data of Case 2a, 16 data points are provided without 
uncertainty. The additional data are seven. 

Table A1.7. Case 2b: additional synthetic data with respect to Case 2a 

 

Return period (years) 15 20 25 30 40 60 70 80 
Mag 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 

         
Return period (years) 90 125 150 175 200 300 400 750 
Mag (m) 0.62 0.63 0.65 0.66 0.67 0.71 0.75 0.87 

 
Care: In Table A1.7, we changed the value given in Table 2.3 of the benchmark 
(benchmark numeration). Case 2b: Comparison between the given synthetic data and the 
optimal GEV model using the L2-error, using several error criteria of the benchmark 
(benchmark numeration) at the period T = 3 000 years from the value 1.57 to the value 
1.6 and the value given in the benchmark at the period T = 10 000 years from the value 
3.97 to the value 4.0, in order to make the data Table A1.7. Case 2b: Comparison 
between the given synthetic data and the optimal GEV model using the L2-error, using 
several error criteria (benchmark numeration) coherent with the data of Table A1.6. Case 
2a: Comparison between the given synthetic data and the optimal GEV model obtained 
using several error criteria (benchmark numeration). 

Case 2c: Here, the synthetic data for long time intervals (500 years and longer) are 
presumed to not be known exactly. For these return periods, the uncertainty on the 
magnitude is provided. The other points (≤ 500 years) have no uncertainty on the 
associated magnitude. The synthetic data (ten data points) are gathered in Table A1.8.  
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1 

Table A1.8. Case 2c: known return levels and uncertain ones 

Return period (years) 1 2 5 10 50 100 500 1 000 3 000 10 000 
Mean 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
St. dev. - - - - - - 0.04 0.06 0.15 0.46 
q0.05 - - - - - - 0.72 0.85 1.3 3.2 
q0.95 - - - - - - 0.85 1.1 1.8 4.7 

We can note that the quantiles q0.05 and q0.95 given in Table A1.11 correspond to those of 
a normal distribution for which the mean and standard deviation are those given in the 
table. 

Thus, we will model the uncertainty by a normal distribution as follows: 

X500 ∼ Normal(µ = 0.79, σ = 0.04) (2) 

X1000 ∼ Normal(µ = 0.95, σ = 0.06) (3) 

X3000 ∼ Normal(µ = 1.6, σ = 0.15) (4) 

X10 000 ∼ Normal(µ = 4.0, σ = 0.465) (5) 

We consider that these four random variables are independent. 
 

Notations 
Let us note Gθ the cumulated density function of a GEV distribution para- metered by θ 
= (µ, σ, ξ). The Extreme Value Theory shows that the annual maximum of the 
underlying process follows a GEV distribution. 

The T -return level qθ(T ) is by definition the quantile of order (1 − 1/T ) of the GEV 
distribution : 

Gθ(qθ(T )) = 1 − 1/T (6) 

The T -return level is evaluated from the relation: 

 

 
 

           (7) 

In this report, we want to fit the GEV distribution that best predicts the return levels 
given either by a known model (Case 1) or by some synthetic data (Case 2). 
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A1.2 Case 1 - Know model producing the synthetic data 

In Case 1, the model g that produced the synthetic data is given by (1). 

The objective of the study is to find the optimal parameter θ = (µ, σ, ξ) so that the GEV 
distribution parametered by θ fits the best frequency-magnitude relation (1). 

To find the optimal θ, we first considered a 3-points interpolation according to the relation 
(37). Then, we consider a criteria to evaluate the model error between g and qθ, noted 
Err(g, qθ) and we find θ∗ defined by : 

 

 

         (8) 

In our study, we tested different criteria evaluating the model error Err(g, qθ): 

• the L2-error based criteria, which cumulates the errors at each return period T: 
see Section A1.2.2; 

• the L∞-error based criteria, which focuses on the maximal error over the 
return period T : see Section A.1.2.3. 

A1.2.1. The 3-points interpolation 
The GEV distribution being defined by three parameters, we consider a system based on 
three equations as follows: 

 
where (Ti, Mi)i=1,2,3 represents the return period and its associated magnitude taken in 
the Table A1.5. 

To determine the parameter θ =( µ, σ, ξ), solution of this system, the parameters µ and σ 
are defined as a function of ξ : µ = 𝑓𝑓1(𝑇𝑇𝑖𝑖,𝑀𝑀𝑖𝑖)

 (ξ) and σ = 𝑓𝑓2(𝑇𝑇𝑖𝑖,𝑀𝑀𝑖𝑖)
 (ξ), with 𝑓𝑓1 and 𝑓𝑓2 

known. Then, we reach the parameter ξ, solution of the equation 𝑓𝑓3(𝑇𝑇𝑖𝑖,𝑀𝑀𝑖𝑖)
 (ξ) = 0, using 

the Brent’s algorithm. Note that the functions 𝑓𝑓1, 𝑓𝑓2 and 𝑓𝑓3 are presented in Annex A. 
Once the optimal ξ∗  is obtained, we deduce µ∗  =𝑓𝑓1(𝑇𝑇𝑖𝑖,𝑀𝑀𝑖𝑖)

 (ξ*) and σ∗= 𝑓𝑓2(𝑇𝑇𝑖𝑖,𝑀𝑀𝑖𝑖)
 (ξ*). 

The optimal parameter with (Ti, Mi)i=1,2,3 = {(10 000, 2.5) , (100, 1.5) , (2 000, 2.2)} is: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.502162, 0.216915, −1.1 · 10−6) (9) 

These points were chosen because they lead to a better approximation after several tests 
performed in the Annex A. 

With ξ∗ near to 0, we can say that the hazard frequency-magnitude relation follows a 
Gumbel distribution with parameters (µ∗, σ∗) = (0.502162, 0.216915). 

Figure A1.2 draws the T -return level obtained with the optimal GEV distribution and 
the model g.  
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Table A1.9 details the T -return levels obtained with the optimal GEV for several periods 
T and gives the relative error made for each of them (in %) defined by: 

 

(10) 

Figure A1.3 draws the relative error function: T  ε(T). 

Table A1.9. Case 1: Comparison between the known model g and the optimal GEV model obtained with a 
3-points interpolation (in %) 

Return period (years) 2 5 10 50 100 500 1 000 2 000 10 000 
Ref Mag (m) 0.650 0.849 1.0 1.349 1.5 1.849 2.0 2.151 2.5 
Approx Mag (m) 0.582 0.828 0.99 1.349 1.5 185 2.0 2.151 2.5 
ε(T ) 10.58 2.57 9.7e-1 6.94e-2 0 2.68e-2 2.21e-2 1.55e-2 0 

A1.2.2. L2-error 

We define the error as the square of the L2-norm of (g − qθ). In other words, we consider 
the integrated squared error at each point T between the model g(T ) and qθ(T ): 

 

(11) 

To compute the integration, we use the Gauss-Legendre algorithm to approximate the 
integral with a finite sum of the integrand evaluated on some judicious points. Using the 
TNC (Truncated Newton Constrained) optimisation algorithm with 100 different starting 
points, we obtain the following optimal point: 

 

θ∗ = (µ∗, σ∗, ξ∗) = (0.522748, 0.211424, 0.0032985) (12) 

The associated error is:   Err∗ = 0.1356 

As the 3-points interpolation, the hazard frequency-magnitude relation is defined 
following the Gumbel distribution with parameters θ∗ = (µ∗, σ∗) = (0.522748, 
0.211424). 
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Figure A.1.2. Case 1: Frequency - Magnitude relation obtained with the optimal GEV distribution (in 
green) that best predicts the known model g (in black) with 3 points: in natural scale (left) and in logscale 

(right). Zoom on the interval [1, 100] years on the first line. 

 

Figure A1.3. Case 1: Relative error between the optimal GEV distribution and the given model g.  

 
optimisation algorithm with 100 different starting points, we obtain the following 
optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.522748, 0.211424, 0.0032985) (12) 

The associated error is:   Err∗ = 0.1356 
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As the 3-points interpolation, the hazard frequency-magnitude relation is defined 
following the Gumbel distribution with parameters θ∗ = (µ∗, σ∗) = (0.522748, 
0.211424). 

Figure A1.4 draws the T -return level obtained with the optimal GEV distribution and 
the model g. 

Table A1.5 details the T -return levels obtained with the optimal GEV for several periods 
T and the relative error made for each of them (in %). 

Figure A1.6 draws the relative error function: T → ε(T ). 

Figure A1.4. Case 1 Frequency - Magnitude relation obtained with the optimal GEV distribution (in red) 
that best predicts the known model g (in black) with respect to the L2-error: in natural scale (left) and in 

logscale (right). Zoom on the interval [1, 100] years on the first lines. 

Table A1.10. Case 1: Comparison between the known model g and the optimal GEV model obtained with the 
relative L2-error (in %) 

Return period (years) 2 5 10 50 100 500 1 000 2 000 10 000 
Ref Mag (m) 0.650 0.849 1.0 1.349 1.5 1.849 2.0 2.151 2.5 
Approx Mag (m) 0.600 0.841 1.0 1.353 1.503 1.850 2.0 2.150 2.50 
e(T ) 7.72 1.04 3.0e-2 2.64e-1 1.83e-1 2.83e-2 6.43e-3 2.29e-2 3.74e-3 

 

(%
) 
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Figure A1.5. Case 1: Relative L2-error between the optimal GEV distribution and the given model g. 

 

A1.2.3. L∞-error 

We define the error as the L∞-norm of (g − qθ). In other words, we consider the 
maximum absolute error between g(T ) and qθ(T ) : 

 

 
           (13) 

To solve the optimisation problem, we use the Cobyla algorithm initialised with the 
optimal point obtained with the L2-error. 

We obtain the following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.668508, 0.149587, 0.0484294)             (14) 

The associated error is: 

Err∗ = 0.107711 

Figure A1.6 draws the T -return level obtained with the optimal GEV distribution and 
the model g. 

Table  details the T -return level obtained with the optimal GEV for several periods T 
and gives the relative error made for each of them (in %) defined by (10). 

Figure A1.7 draws the relative error function: T → ε(T ). 
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Figure A1.6. Case 1: Frequency - Magnitude relation obtained with the optimal GEV distribution (in red) 
that best predicts the known model g (in black) with respect to the L∞-error: in natural scale (left) and in 

logscale (right). Zoom on the interval [1, 100] years on the first line. 

 

Figure A1.7. Case 1: Relative L∞-error between the optimal GEV distribution and the given model g 
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Table A1.11. Case 1: Comparison between the known model g and the optimal GEV model obtained with 
the L∞-relative error (in %) 

Return period (years) 2 5 10 50 100 500 1 000 2 000 10 000 
Ref Mag (m) 0.650 0.849 1.0 1.349 1.5 1.849 2.0 2.151 2.5 
Approx Mag (m) 0.724 0.901 1.02 1.31 1.44 1.75 1.90 2.04 2.40 
e(T ) 11.3 6.09 2.41 2.85 4.05 5.22 5.22 5.0 3.81 

A1.2.4. Models comparison 
In order to ease comparison, Figure A1.8 draws both models obtained with 3-points 
interpolation and with both criteria’s (11) and (13). 

Figure A1.8. Case 1: Frequency - Magnitude obtained with the optimal GEV distribution (in blue, red and 
green) that best predicts the known model g (in black) with respect to the L2-error (in blue), the L∞-error 

(in red) and with 3-points interpolation (in green): in natural scale (left) and in logscale (right). 
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A1.3 Case 2 - Unknown model producing the synthetic data 

 

For Case 2, the synthetic data is provided without the associated model. 

A1.3.1. Case 2a 
In Case 2a, we use the synthetic data of Table A1.6. 

 

A1.3.1.1. L2-error 
We define the following error criteria:  

              
(15) 

 

where Sa = (Ti, xTi )1≤i≤10 are the synthetic data of Table A1.6, with Ti the return period 
and xTi  the associated magnitude. 

Using the TNC optimisation algorithm with 100 different starting points, we got the 
following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.522859, 0.001, 0.868784)                   (16) 

The associated error is: 

Err∗ = 0.1517 

Figure A1.9 draws the T -return level obtained with the optimal GEV distribution and 
the sample Sa. 

Figure A1.9. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) with respect to the L2-error: in natural scale (left) 

and in logscale (right). 

 
Table  details the T -return level obtained with the optimal GEV for several return 
periods T and gives the relative error made for each of them (in %) defined by:  
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                                             (17) 

Table A1.12. Case 2a: Comparison between the given synthetic data and the optimal GEV model using the 
L2-error, with the relative error in %. 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.523 0.526 0.530 0.556 0.584 0.776 0.986 1.730 3.959 
e(T ) 1.27 2.60 3.66 5.79 5.75 1.76 3.84 8.08 1.03 

A1.3.1.2. Weighted L2-error 
 

In order to force a best adequation over the large return periods, we consider the 
weighted least square error defined by:  

 
          (18) 

 

where Sa = (Ti, xTi )1≤i≤10 are the synthetic data of Table A1.6, with Ti the return period 
and xTi  the associated magnitude. 

Using this weighted error, we penalise the errors on large return periods, considering, 
for example, that we prefer getting a model that predicts better return levels associated 
to large return periods even if the model works worse on low return periods. 

Using the TNC optimisation algorithm with 100 different starting points, we obtain the 
following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.504188, 0.001, 0.869813) (19) 

The associated error is: 

Err∗ = 0.4018 

Figure A1.10 draws the T -return level obtained with the optimal GEV distribution and 
the sample Sa. 
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Figure A1.10. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in red) 
that best predicts the given synthetic data (in black) with respect to the weighted L2-error: in natural 

scale (left) and in logscale (right) 

 
Table A1.13 details the T -return level obtained with the optimal GEV for several periods 
T and gives the relative error made for each of them (in %) defined by (17). We verify 
that although the global error is larger, the optimal GEV distribution fits better the data 
for periods larger than 500 years. 

Table A1.13. Case 2a: Comparison between the given synthetic data and the optimal GEV model using the 
weighted L2-error, with the relative error (%). 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.505 0.507 0.511 0.537 0.566 0.759 0.971 1.719 3.969 
e(T ) 4.79 6.06 7.06 8.94 8.73 3.95 2.17 7.44 0.78 

 

A1.3.1.3. L∞-error 
We define the following error criteria: 

Err(Sa, qθ) = max |xTi − qθ(Ti)|  (20) 

where Sa = (Ti, xTi )1≤i≤10 are the synthetic data of Table A1.6, with Ti the return period 
and xTi  the associated magnitude. 

Using the TNC optimisation algorithm with the optimal point obtained with the L2-error 
as a starting point, we obtain the following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.478532, 0.00100012, 0.868792) (21) 

The associated error is :  Err∗ = 0.0851144 

Figure A1.11 draws the T -return level obtained from the optimal GEV distribution and 
the sample Sa. 

Table A1.14 details the T -return level obtained from the optimal GEV for several 
periods T and gives the relative error made for each of them (in %). 
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Figure A1.11. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) with respect to the L∞-error: in natural scale (left) 

and in logscale (right). 

 

Table A1.14. Case 2a: Comparison between the given synthetic data and the optimal GEV model using the 
L∞-error, with the relative error (%). 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.479 0.482 0.486 0.511 0.540 0.732 0.942 1.685 3.915 
e(T ) 9.63 10.8 11.7 13.3 12.9 7.36 8.12e-1 5.32 2.12 

 

A1.3.1.4. Weighted L∞-error 

In order to force a best adequation over the large return periods T, we consider the 
weighted error defined by 

Err(Sa, qθ) = max | log(Ti)[xTi − qθ(Ti)]| (22) 

where Sa = (Ti, xTi )1≤i≤10 are the synthetic data of Table 1.2, with Ti the return period 
and xTi  the associated magnitude. 

Using this weighted error, we penalise the errors on large T , considering, for example, 
that we prefer getting a model that predicts better large return levels even if the model 
works worse on little return levels. 

Using the TNC optimisation algorithm with the optimal point obtained with the L2-error 
as starting point, we obtain the following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.44483, 0.001, 0.870939)  (23) 

The associated error is:   Err∗ = 0.553827 

Figure A1.12 draws the T -return level obtained from the optimal GEV distribution and 
the sample Sa. 

Table A1.15 details the T -return level obtained from the optimal GEV for several 
periods T and gives the relative error made for each of them (in %) defined by (17). We 
note that weighting the error for large periods has changed very little the optimal 
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solution: it means that the maximum error was reached for large T , so that the 
penalisation was not efficient. 

Figure A1.12. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) with respect to the weighted L∞-error: in natural 

scale (left) and in logscale (right). 

   

Table A1.15. Case 2a: Comparison between the given synthetic data and the optimal GEV model using the 
weighted L∞-error, with the relative error (%). 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.445 0.448 0.452 0.478 0.507 0.701 0.914 1.669 3.940 
e(T ) 15.98 17.05 17.85 18.98 18.26 11.28 3.764 4.318 1.479 

A1.3.1.5. Models comparison 
In order to ease comparison, Figure A1.13 draws both models obtained from both criteria 
(15), (18), (20) and (22).  

Figure A1.13. Case 2a: Frequency - Magnitude relation obtained with the optimal GEV model (in blue 
and red) that best predicts the given synthetic data (in black): in natural scale (left) and in logscale (right). 
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A1.3.2. Case 2b 
In Case 2b, we use the synthetic data of Table A1.6 and the additional ones of Table 
A1.7. 
A1.3.2.1. L2-error 
We define the following error criteria:  

 
          (24) 
 

where Sb = (Ti, xTi )1≤i≤26 are the synthetic data of Tables A1.6 and A1.7, with Ti the 
return period and xTi the associated magnitude. 

Using the TNC optimisation algorithm with 100 different starting points, we got the 
following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.542937, 0.001, 0.867794) (25) 

The associated error is: 
Err∗ = 0.1715 

Figure A1.14 draws the T -return level obtained from the optimal GEV distribution and 
the sample Sb. 
Table A1.16 details the T -return level obtained from the optimal GEV for several 
periods T and gives the relative error made for each of them (in %) defined by (17). 

Figure A1.14. Case 2b: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) with respect to the L2-error: in natural scale (left) 

and in logscale (right). 

 
Table A1.16. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the 

L2-error, with the relative error (%). 
Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.543 0.546 0.550 0.576 0.604 0.795 1.00 1.741 3.952 
e(T ) 2.52 1.11 1.68e-2 2.40 2.55 6.23e-1 5.68 8.82 1.21 
Return Period (years) 15 20 25 30 40 60 70 80 90 
Ref Mag (m) 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62 
Approx Mag (m) 0.554 0.557 0.560 0.564 0.570 0.582 0.587 0.593 0.599 
e(T ) 1.16 5.44e-1 1.71 1.14 1.76 3.04 2.08 2.76 3.43 
Return Period (years) 125 150 175 200 300 400 750 

  

Ref Mag (m) 0.63 0.65 0.66 0.67 0.71 0.75 0.87 
  

Approx Mag (m) 0.618 0.631 0.643 0.656 0.704 0.750 0.902 
  

e(T ) 1.97 2.98 2.51 2.10 8.19e-1 4.17e-2 3.65 
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A1.3.2.2. Weighted L2-error 
In order to force a best adequation over the large periods T, we consider the weighted 
least square error defined by: 

 
          (26) 

 

where Sb = (Ti, xTi )1≤i≤26 are the synthetic data of Table A1.6 and Table A1.7, with Ti 
the return period and xTi  the associated magnitude. 

Using the TNC optimisation algorithm with 100 different starting points, we obtain the 
following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.53762, 0.001, 0.868286) (27) 

The associated error is: 

Err∗ = 0.6837 

Figure A1.15 draws the T -return level obtained from the optimal GEV distribution and 
the sample Sb. 

Table A1.17 details the T -return level obtained from the optimal GEV for several periods 
T and gives the relative error made for each of them (in %) defined by (17). We note that 
even if the global error is larger, the optimal GEV distribution fits better for periods 
larger than 500 years. 

Figure A1.15. Case 2b: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) with respect to the weighted L2-error: in natural 

scale (left) and in logscale (right). 
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Table A1.17. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the 
weighted L2-error, with the relative error (%). 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.538 0.541 0.545 0.571 0.599 0.790 1.00 1.74 3.96 
e(T ) 1.52 1.30e-1 9.83e-1 329 3.39 2.99e-2 5.25 8.74 1.00 
Return Period (years) 15 20 25 30 40 60 70 80 90 
Ref Mag (m) 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62 
Approx Mag (m) 0.548 0.552 0.555 0.558 0.564 0.576 0.582 0.588 0.593 
e(T ) 2.11 1.49 2.63 2.07 2.67 3.92 2.96 3.62 4.27 
Return Period (years) 125 150 175 200 300 400 750 

  

Ref Mag (m) 0.63 0.65 0.66 0.67 0.71 0.75 0.87 
  

Approx Mag (m) 0.612 0.626 0.638 0.651 0.699 0.745 0.897 
  

e(T ) 2.79 3.77 3.29 2.86 1.52 6.0e-2 3.15 
  

A1.3.2.3. L∞-error 
We define the error criteria defined in (20). 

Err(Sb, qθ) = max |xTi − qθ(Ti)| (28) 

where Sb = (Ti, xTi )1≤i≤26 are the synthetic data of Table A1.6 and Table A1.7 with Ti 
the return period and xTi  the associated magnitude. 

Using the TNC optimisation algorithm with the optimal point obtained with the L2-error 
as starting point, we obtain the following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.478596, 0.00100039, 0.868782) (29) 

The associated error is: 

Err∗ = 0.0854126 

Figure A1.16 draws the T -return level obtained from the optimal GEV distribution and 
the sample Sb. 

Table A1.18 details the T -return level obtained from the optimal GEV for several 
periods T and gives the relative error made for each of them (in %) defined by (17). 

Figure A1.16. Case 2b: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) with respect to the L∞-error: in natural scale (left) 

and in logscale (right). 
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Table A1.18. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the 
L∞-error, with the relative error (%). 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.479 0.482 0.486 0.512 0.540 0.732 0.942 1.685 3.916 
e(T ) 9.62 10.8 11.71 13.3 12.9 7.35 7.99e-1 5.34 2.10 
Return Period (years) 15 20 25 30 40 60 70 80 90 
Ref Mag (m) 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62 
Approx Mag (m) 0.489 0.493 0.496 0.499 0.506 0.518 0.523 0.529 0.535 
e(T ) 12.6 12.0 13.0 12.4 12.8 13.72 12.8 13.3 13.8 
Return Period (years) 125 150 175 200 300 400 750 

  

Ref Mag (m) 0.63 0.65 0.66 0.67 0.71 0.75 0.87 
  

Approx Mag (m) 0.554 0.567 0.580 0.592 0.641 0.687 0.840 
  

e(T ) 12.1 12.8 12.2 11.6 9.77 8.39 3.50 
  

A1.3.2.4. Weighted L∞-error 
In order to force a best adequation over the large return periods T , we consider the 
weighted least square error defined by : 

Err(Sb, qθ) = max | log(Ti)[xTi − qθ(Ti)]|        (30) 

where Sb = (Ti, xTi )1≤i≤26 are the synthetic data of Table A1.6 and Table A1.7, with Ti 
the return period and xTi  the associated magnitude. 

Using the TNC optimisation algorithm with the optimal point obtained with the L2-error 
as starting point, we got the following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (00.447999, 0.001, 0.870727) (31) 

The associated error is: 
Err∗ = 0.570137 

Figure A1.17 draws the T -return level obtained from the optimal GEV distribution and 
the sample Sb. 

Table A1.19 details the T -return level obtained from the optimal GEV for several periods 
T and gives the relative error made for each of them (in %) defined by (17). We note that 
even if the global error is larger, the optimal GEV distribution fits better for periods 
larger than 1 000 years. 

Figure A1.17. Case 2b: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) with respect to the weighted L∞-error: in natural 

scale (left) and in logscale (right). 
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Table A1.19. Case 2b: Comparison between the given synthetic data and the optimal GEV model using the 
weighted L∞-error, with the relative error (%). 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 1 0000 
Ref Mag (m) 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.448 0.451 0.455 0.481 0.510 0.704 0.917 1.67 3.94 
e(T ) 15.4 16.5 17.3 18.4 17.8 10.9 3.49 4.41 1.54 
Return Period (years) 15 20 25 30 40 60 70 80 90 
Ref Mag (m) 0.56 0.56 0.57 0.57 0.58 0.60 0.60 0.61 0.62 
Approx Mag (m) 0.459 0.462 0.465 0.469 0.475 0.487 0.493 0.499 0.504 
e(T ) 18.1 17.5 18.3 17.8 18.1 18.8 17.8 18.2 18.6 
Return Period (years) 125 150 175 200 300 400 750 

  

Ref Mag (m) 0.63 0.65 0.66 0.67 0.71 0.75 0.87 
  

Approx Mag (m) 0.523 0.537 0.550 0.562 0.611 0.658 0.813 
  

e(T ) 16.9 17.4 16.7 16.1 13.9 12.2 6.59 
  

A1.3.2.5. Models comparison 
In order to ease comparison, Figure A1.18 draws both models obtained from all the 
criteria. 

Figure A1.18. Frequency - Magnitude relation obtained with the optimal GEV model (in blue and red) 
that best predicts the given synthetic data (in black): in natural scale (left) and in logscale (right). 

 

A1.3.3. Case 2c 
In Case 2c, we use the synthetic data of Table A1.8. 

To fit a GEV distribution on the synthetic data, we define the error function: 

 
           

(32) 

 

where Sc = (Ti, xTi )1≤i≤6 are the known synthetic data and (XTi )1≤i≤4 are the 4 unknown 
return levels, only described by their distribution. 

Then, the error function Err2(Sc, qθ) is a random variable because of the randomness of 
the return levels associated to the return periods 500, 1 000, 3 000 and 10 000 years. 
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We will consider several probabilistic features of the random variable Err2(Sc, qθ) to 
find the optimal θ. 

A1.3.3.1. Mean feature 
In this section, we consider the mean of the random variable Err2(Sc, qθ) and we find 
the optimal θ that minimises the mean error: 

θ∗ = argmin E
 
Err2(Sc, qθ)

 
(33) 

Using the TNC optimisation algorithm with the optimal point obtained in the Case 2b 
with the L2-error as a starting point, we obtain the following optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.524142, 0.00104785, 0.862527) (34) 

The associated error is:    Err∗ = 0.6969 

Figure A1.19 draws the T -return level obtained with the optimal GEV distribution. 

Table A1.20 details the T -return level obtained from the optimal GEV for all the periods 
T. When the return level was unknown, we give to which quantile of the uncertainty 
distribution the model value corresponds. 

Figure A1.19. Case 2c: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) minimising the random mean squared error E 

Err2(Sc, qθ): in natural scale (left) and in logscale (right). 

 

Table A1.20. Case 2c: Comparison between the given synthetic data and the optimal GEV model 
minimising the random mean squared error E Err2(Sc, qθ), with the relative error (%). For the uncertain 

values, we give the quantile of the estimated return level. 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Mean 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.525 0.527 0.531 0.558 0.587 0.781 0.993 1.73 3.94 
Quantile - - - - - 0.41 0.76 0.82 0.45 
e(%) 1.02 2.34 3.38 5.41 5.30 - - - - 

A1.3.3.2. Quantile feature 
In this section, we consider the quantile 95% of the random variable Err2(Sc, qθ) and we 
find the optimal θ that minimises the quantile error: 

θ 
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θ∗ = argmin Quantile0.95 (Err2(Sc, qθ))
 

(35) 

Using the truncated newton method optimisation algorithm with the optimal point 
obtained in the Case 2b with the L2-error as a starting point, we obtain the following 
optimal point: 

θ∗ = (µ∗, σ∗, ξ∗) = (0.516115, 0.00108486, 0.859784) (36) 

The associated error is:  

Err∗ = 1.04575 

It means that P[ Err2(Sc, qθ) ≥ Err∗2 ] = 0.05. 

Figure A1.20 draws the T -return level obtained from the optimal GEV distribution. 

Table A1.21 details the T –return level obtained from the optimal GEV for all the periods 
T.            

When the return level is unknown, we give to which quantile of the uncertainty distribution the model 
value corresponds.  
 

Figure A1.20. Case 2c: Frequency - Magnitude relation obtained with the optimal GEV model (in blue) 
that best predicts the given synthetic data (in black) minimising the Quantile0.95 Err2(Sc, qθ): in natural 

scale (left) and in logscale (right). 

 

Table A1.21. Case 2c: Comparison between the given synthetic data and the optimal GEV model 
minimising the Quantile0.95 (Err2(Sc, qθ), with the relative error (%). For the uncertain values, we give 

the quantile of the estimated return level. 

Return Period (years) 2 5 10 50 100 500 1 000 3 000 10 000 
Mean 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 
Approx Mag (m) 0.517 0.519 0.523 0.551 0.581 0.778 0.994 1.75 3.98 
Quantile - - - - - 0.39 0.77 0.84 0.48 
e(%) 2.53 3.81 4.80 6.61 6.33 - - - - 

θ 
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A1.3.3.3. Models comparison 
In order to ease comparison, Figure A1.21 draws both models obtained when minimising 
the mean error and its quantile of order 95%. We note that both criteria lead to the same 
optimal solution. 

Figure A1.21. Case 2c: Frequency - Magnitude relation obtained with the optimal GEV model (in blue 
and red) that best predicts the given synthetic data (in black) minimising the mean feature of Err2(Sc, qθ) 

(in blue) and its quantile 95% feature (in red): in natural scale (left) and in logscale (right). 
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A1.4. Conclusion 

The benchmark study proposed an exercise on the statistical modelling. The main goal 
is to better understand the quantitative technical analysis steps and processes used for 
assessing hazard frequency and magnitude for external event risk assessments. To this 
end, we have the synthetic data for a hypothetical external event. 

In this report, we modelled the hazard frequency-magnitude relation with a generalised 
extreme value distribution. Several criteria to fit the GEV distribution: L2-error and L∞-
error. For the Case 1, a 3-points interpolation is performed. 

For the synthetic data with no uncertainty, we saw that the criterion allowing the best 
fitting of GEV distribution is L2-error. For the synthetic data with the uncertainty in some 
points, minimising the random mean squared error has the best precision. 

In this benchmark, whatever the type of data, we managed to approximate the synthetic 
model/data by a GEV distribution. 
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Annex B. Submission by Finnish Meteorological Institute 
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Annex C. Submission by Idaho National Laboratory Group 1 

Introduction 

This paper responds to an OECD Nuclear Energy Agency (NEA) report that calls for a 
benchmark exercise on the analysis and assessment of the hazard frequency and 
magnitude for external events risk assessments. The objective of this benchmark study 
is to focus on the statistical modelling of an external hazard initiating event (IE), 
assessing its frequency and magnitude, that could be used in probabilistic risk 
assessment (PRA) of external hazards. The NEA report specifies two cases of 
hypothetical observational data created from synthetic models (which are used to create 
synthetic data that have been generated from a computer) for a hypothetical external 
event (e.g. precipitation, extreme temperatures, high winds): (1) a fully revealed “open” 
case where both the synthetic data and the synthetic model producing the data are 
provided, and (2) a “blind-test case” where only the synthetic data are provided. This 
paper documents the author’s analysis steps, assumptions, insights and modelling results 
for the exercise.  

Case 1 – Known model producing the synthetic data  

The following synthetic model is provided in Case 1 to create hypothetical observational 
data for the hazard frequency/magnitude modelling:  

M = 0.5 + 0.5*log10(a*t) 

The synthetic model serves as surrogate for a complex phenomenological process. It is 
of the form that different values of “return time intervals” t produce a hypothetical (but 
known since it comes from the synthetic model) magnitude M for an annual maxima 
event. These types of models can be used to produce “synthetic data” and predict 
different event outcomes as a function of time (e.g. producing a flooding hazard curve). 

The hypothetical observational data for the magnitude M (in metres) and return period t 
(in years) from the synthetic model with the “a variable” set to 1 is shown in Table C.1. 

Table C.1. Synthetic data for Case 1. 

Return Period (years) 1 2 5 10 50 100 500 1 000 2 000 10 000 
Magnitude (metres) 0.50 0.65 0.85 1.0 1.4 1.5 1.9 2.0 2.2 2.5 

Participants are asked to use the data for Case 1 and provide a model that best described 
the frequency/magnitude relationship and the associated analysis and insights. The 
results of this analysis should include those areas identified in Chapter 3 of this 
benchmark, including: 

• Qualitative aspects and insights. 

o Assumptions made to create the hazard frequency/magnitude model. 

o The process used to assess the adequacy of the model. 
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• Quantitative aspects and insights including: 

o The type/form of the model describing the hazard frequency and magnitude 
statistical results. 

o Uncertainties of the model. Assessing uncertainty is important for both 
validation and prediction [NRC, 2010]. 

o Results of the model adequacy assessment or validation. 

 

Case 2 – Unknown model producing the synthetic data  

In Case 2, the synthetic model used is not provided. Instead, three sets of synthetic data 
output from the unknown model are provided. 

• Case 2a provides the synthetic data (ten data points) with no uncertainty 
associated with the data points (see Table C.2). 

• Case 2b provides additional synthetic data (26 data points) with no uncertainty 
associated with the data points (see Table C.3). 

• Case 2c has uncertainty estimates on some of the data (see Table C.4). 

Table C.2. Synthetic data for Case 2a 

Return Period (years) 1 2 5 10 50 100 500 1 000 3 000 10 000 
Magnitude (metres) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 

Table C.3. Synthetic data for Case 2b 

Return Period (years) 1 2 5 10 15 20 25 30 40 
Magnitude (metres) 0.53 0.53 0.54 0.55 0.56 0.56 0.57 0.57 0.58           
Return Period (years) 50 60 70 80 90 100 125 150 175 
Magnitude (metres) 0.59 0.60 0.60 0.61 0.62 0.62 0.63 0.65 0.66           
Return Period (years) 200 300 400 500 750 1 000 3 000 10 000 

 

Magnitude (metres) 0.67 0.71 0.75 0.79 0.87 0.95 1.57 3.97 
 

Table C.4. Synthetic data for Case 2c 

Return Period (years) 1 2 5 10 50 100 500 1 000 3 000 10 000 
Magnitude (metres) Mean 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 

Sdev.* ** 
     

0.04 0.06 0.15 0.46 
5th*** 

      
0.72 0.85 1.3 3.2 

95th 
      

0.85 1.1 1.8 4.7 

Assumptions  

A generalised extreme value (GEV) model was used in this benchmark exercise to 
predict the magnitude values for long return periods using the synthetic data provided in 
Case 1 and Case 2 (Table C.2., C.3. and C.4.). OpenBUGS was used to implement the 
GEV model. It is believed by many analysts that observed data from relatively short-
term return periods should not be used to predict the magnitude values for much longer-
term periods (e.g. use observed data up to 5 000 years to predict for 50 000 years). 
However, when such needs arise, for example for the use of external hazard frequency 



NEA/CSNI/R(2021)10 | 99 

 BENCHMARK ON EXTERNAL EVENTS HAZARD FREQUENCY AND MAGNITUDE STATISTICAL MODELLING 
      

in probabilistic risk assessment (PRA) models, various approaches and engineering 
judgement have to be used to provide such estimates, and the GEV model is believed to 
be such a tool to provide best estimates, with the modelling uncertainty being in mind 
when using the results from the model.  

Assessment approach  

The GEV is a single family of limiting distribution that combines three other limit 
distributions: Gumbel, Fréchet and Weibull. It has the following cumulative distribution 
functional form: 

𝐺𝐺(𝑀𝑀) = exp {−�1 + 𝜉𝜉 �𝑧𝑧−𝜇𝜇
𝜎𝜎
��
−1 𝜉𝜉� } (1) 

where 𝜉𝜉 is a shape parameter, 𝜇𝜇 is a location parameter, and 𝜎𝜎 is a scale parameter. The 
shape parameter 𝜉𝜉  determines the distribution type and the tail behaviour. 𝜉𝜉 = 0 
corresponds to the Gumbel distribution, which is unbounded and has exponential tail. 
𝜉𝜉 > 0 corresponds to the Fréchet distribution, which has lower bound and long tail. 𝜉𝜉 <
0 corresponds to the Weibull distribution, which has an upper bound and short tail 
(Figure C.1). 

Figure C.1. Generalised extreme value distribution family 

  
The inverse distribution function, or quantile function, is often used to calculate the 
extreme values: 

𝑀𝑀𝑝𝑝 = 𝐺𝐺−1(1− 𝑝𝑝) =  𝜇𝜇 − 𝜎𝜎
𝜉𝜉
�1 − [− log(1 − 𝑝𝑝)]−𝜉𝜉�, 𝜉𝜉 ≠ 0 (2) 

The return level 𝑀𝑀𝑝𝑝 is exceeded by the annual maximum in any particular year with the 
annual exceedance probability 𝑝𝑝, when the measuring time is in years. Or one can say 
that the return level 𝑀𝑀𝑝𝑝 is exceeded, on average, once during the return period 1/𝑝𝑝. 
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The GEV model shown in Eq. (1) was applied to the synthetic data in this benchmark 
exercise using OpenBUGS. An example of the script used for Case 1 is shown in Table 
C.5.  

Table C.5. OpenBUGS script for Case 1 using GEV model 

model 
{ for(i in 1:N) { 
z.p[i] ~ dnorm(mean[i],prec) 
y.p[i] <- -log(1 - p[i]) 
mean[i]<- mu - sigma/xi*(1 -pow(y.p[i],-xi)) 
} 
mu ~ dnorm(0,0.0001) 
prec<-pow(sd,-2) 
sd~dunif(0,10) 
xi ~ dunif(-1,1) 
sigma ~ dunif(0,10) 
} 
data 
list(p=c(0.632, 0.393, 0.181, 0.0952, 0.0198, 0.00995, 0.002, 0.001, 0.0005, 0.0002, 0.0001, 0.00002, 
0.000002), 
z.p=c(0.50, 0.65, 0.85, 1.0, 1.4, 1.5, 1.9, 2.0, 2.2, NA, 2.5, NA, NA), N=13) 
list(mu=1.0, sigma=1.0, xi=1.0) 

Results of the assessment  

The predicted results for Case 1 are shown in Table C.6. The results for Case 2 are shown 
in Table C.7(Case 2a), Table C.8(Case 2b), and Table C.9(Case 2c). 

Table C.6. Case 1 results 

Return Period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 3.4 
INL mean (metres)  1.88 2.37 2.84 3.31 

Table C.7. Case 2a results 

Return Period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.76 2.34 16.02 136.20 

Table C.8. Case 2b results 

Return Period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.76 2.32 16.26 142.80 

Table C.9. Case 2c results 

Return Period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
INL mean (metres)  0.76 2.34 16.02 136.20 
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Annex D. Submission by Idaho National Laboratory Group 2 

Introduction 

The aim of the benchmark is to investigate the frequency/magnitude relationship for 
external events. Two cases represent different external hazard from synthetic data. The 
first case provides both the synthetic data and synthetic model. The second case 
introduces three parts with only the synthetic data, where the first and second parts do 
not consider the uncertainty, whereas the third part of the magnitude has been provided 
with the uncertainty. The magnitude from those two cases is modelled as a function of 
return period. The return period is also known as recurrence interval, which is the 
estimated average time between floods events occurring.  

Linear regression with a transformed form model would be considered to fit the 
magnitude vs. return period relationship model for case1. Cases using ordinary least 
squared method would have the same assumptions and similar model adequacy 
assessment approach. A linear model has the following general form: 

𝑌𝑌𝑖𝑖 =  𝛽𝛽0� + 𝛽𝛽1�𝑥𝑥1 +  𝛽𝛽2�𝑥𝑥2 … +  𝜖𝜖𝑖𝑖 

where the Y is the response variable, x are predictor variables, 𝜖𝜖 is the residuals derived 
from the differences between tabulated values and predicted values.  

Assumptions 

For a linear regression model with ordinary least squared method, there are several 
assumptions:  

1. residuals are approximately independent, homoscedastic and normally 
distributed with zero mean; and 

2. there is linearity between the response and predictors.  

Model adequacy assessment approach 

Linear least squared was used to estimate the parameters in the regression. The model 
will be evaluated using the coefficient of determination  and F-test to assess the model 
adequacy.  could give the strength of the linear relationship between the predictor and 
the response variable. F-test provides the test result of whether the linear regression 
model provides a better fit to the data than a model only with intercept. The F-statistics 
is: , where the 

, SSE(F) is the predicted full model, and SEE(R) 
is the reduced model with only the intercept term, df(Residual) = n – (k+1) where k is 
number of parameters being estimates and n is the sample size. The , 
where the , is the residual sum of squares, and the 

, is the total sum of squares. 

Four different types of diagnostic plots will assess each assumption of a linear regression 
model: 
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1. Residuals vs. fitted: is used to check the residual homoscedasticity assumption. 
If a linear model is correctly specified, the residual vs. fitted plots should not 
have any systematic features with a flat line. Studentised Breusch-Pagan tests 
would be used if this graph does not show a visible flat line with separated dots 
around it. The  is the studentised test statistics and it is calculated by finding 
out the  when running the auxiliary regression equation of 

; examined by regressing the squared residuals on each 
independent variable. 

2. Normal QQ: is used to check whether the residuals are normally distributed. 

A Shapiro-Wilk normality test is another option used to check this assumption. 
The W statistic is: 

 
Where the  are the ordered sample values,  are constants generated from 
the means, variances and covariance’s of the order statistics of the sample from 
a normal distribution. 

3. Residuals vs. leverage: is used to check the outliers and identify the influential 
cases, since extreme values may affect the regression results if those values are 
excluded or included from the analysis. Outliers could be identified if they are 
outside of the Cook’s distance dashed line. 

Case 1 
The hazard frequency/magnitude model here for Case 1 fits the linear regression model 
with log transformation of return period to describe the relationship between magnitude 
and return period since the synthetic model provided is linear. The difference is the 
residual term in regression equation, which is the vector values of the differences 
between observed values and predicted values 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝚤𝚤� =  𝛽𝛽0� +  𝛽𝛽1�𝑙𝑙𝑙𝑙𝑀𝑀(𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑀𝑀 𝑝𝑝𝑀𝑀𝑟𝑟𝑝𝑝𝑙𝑙𝑀𝑀1) +  𝜖𝜖𝑖𝑖 

Model adequacy assessment approach  
The estimated equation is:  

. 

The estimated values above are the least square estimates of the intercept and slope. They 
have standard error for the intercept and slope are 0.07006 and 0.03083, respectively. 

The coefficient of determination , which means 99.88% of the 
uncertainty in the predicted values can be explained by the straight-line regression 
model. The assessment of model uncertainties is essential to the practical application of 
the models to inform the decision makers. The small uncertainties of the models will 
provide the confidence on decision making.   

Figure D.1 shows the tabulated/predicted data and the regression model. There is a 
narrow range of 95% confidence band. Two tabulated values out of ten not underlying 
on the 95% confidence band, but they all fall into the prediction intervals. 
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Figure D.1. Return period versus mean magnitude 
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The following, Figure D.2 to Figure D.5, are the four different diagnostic plots for the 
regression model:  

Figure D.2 is the plot of residuals vs. fitted values. The residuals do not change a lot as 
the fitted values increase or decrease. Here, an approximate horizontal line without any 
patterns shown in Figure D.2 indicates a linear relationship. Figure D.3 is the normal QQ 
plot. Although there are a few points that do not follow the straight dashed line, the 
normality of assumption is not violated. A Shapiro-Wilk normality test would be used 
to check this assumption.  p-value (0.161) of this test suggests that no evidence rejected 
the normality assumption. Figure D.4 is the plot of Scale-Location.  

An approximate flat line shown in this figure demonstrates a constant variance of the 
residuals. Figure D.5 is the residual vs. leverage plot. There is a data point in this figure 
that exceeds Cook’s distance, which is probably influential to the regression results. 
Excluding this outlier data point and re-running the log-transformed variable model, we 
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see that there is not a huge difference between the two models. The sample size is small 
and there is a large time interval corresponding to each observation. The return period 
for expected magnitude prediction on this benchmark is larger than 10 000, which means 
excluding this point is not appropriate.  

Figure D.2. Residuals vs fitted 

 

Figure D.3. Normal Q-Q 

 

Figure D.4. Scale-location 
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Figure D.5. Residuals vs leverage 

 

Results 

The following table shows the magnitude prediction for Case 1 for the return period of: 

Table D.1. Resulting magnitude prediction for Case 1 

Return Period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 1.87 2.38 2.88 3.39 

The model for Case 1 indicates that for 1% increase in the return period variable, the 
magnitude increases by about 0.506*log (1.01) = 0.005.  

Results of Assessment 
Utilising the linear regression to predict magnitude is simple and efficient, there are some 
technical basis and limitations. For example, the given range of magnitudes tabulated for 
up to 10 000 return period years and limited observations cause high confidence and 
model uncertainty. If a linear regression is correctly specified, all of its assumptions must 
be met including the linearity of data, normality of residuals, independence and 
homogeneity of residuals. For most of the cases, the data does not simply follow the 
linearity assumption, we need to transform their forms to meet the assumptions. Besides, 
even though our model for Case 1 has high value of , the small size and outliers 
happened may influence the model results so that there are a few points not underlying 
on the confidence intervals. The biggest difference between the synthetic model and the 
regression we fit is the random error term associated with the model, which makes the 
regression model be a stochastic model. However, the trend of the linear regression is 
constant, so that an exact relationship between variables is determined without 
considering the random error component. The linear regression model hypothesises a 
probabilistic relationship between magnitude and return period.  

Case 2a 
The hazard frequency/magnitude model here for Case 2 does not have a synthetic model 
provided. For the first case, Non-linear regression would be considered to fit the 
magnitude vs. return period relationship for Case 2a. A non-linear regression model has 
the following general form: 

𝑌𝑌𝑖𝑖 =  𝑓𝑓(θ, x)� + 𝜖𝜖𝑖𝑖 
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Where Y is the response variable, x is the independent variable, θ is the vector of model 
parameterthe relationship between x and y through the function 𝑓𝑓(θ, x). and 𝜖𝜖 is the 
residual error term.  

Case 2a has an exponential form relationship between outcome interest and predictor, 
the estimated equation is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝚤𝚤� = −36.9𝑀𝑀−0.000009781∗𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖 + 37.46 

Figure D.6 shows the tabulated/predicted data and the regression model with 95% 
confidence interval and prediction interval. There is a narrow range of 95% confidence 
band when the return period is below 1 000 years, and there are a few tabulated values 
do not fall on the 95% confidence band.  

Figure D.6. Magnitude vs return period 

 

Assumptions 

For a non-linear regression model with least squared method also has the same residuals 
assumption:  

Residuals are approximately independent, homoscedastic and normally distributed with 
zero mean. 

Model adequacy assessment approach  

Unlike the linear regression, the 𝑅𝑅2 could explain the goodness of fit for a model, 𝑅𝑅2 is 
invalid for non-linear regression. To access the goodness of fit for non-linear regression, 
this could be done by looking that the correlation between the actual observed values 
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and values predicted by a model. A high correlation coefficient (0.99) indicates that 
observed and predicted values are very close to each other. 

Since the non-linear regression has the same residuals assumption as the linear 
regression has, the following Residuals vs. Fitted, normal Q-Q plot, Autocorrelation 
plots would check the residual assumption separately.  

Figure D.7. Residuals 

 

Figure D.8. Autocorrelation 
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Figure D.9. Normal Q-Q plot of standardised residuals 

 
For the Residual vs Fitted plot, each corresponding residuals from fitted values does not 
change a lot between each other, which indicates the assumption of residual 
homoscedastic is met. However, it seems like the autocorrelation plot show an increasing 
trend. A Runs test was used to determine the autocorrelation exists. The test statistics of 
Runs test is 𝑍𝑍 =  𝑟𝑟− 𝜇𝜇𝑟𝑟

𝜎𝜎𝑟𝑟
, where 𝜇𝜇𝑟𝑟 =  2𝑟𝑟0𝑟𝑟1

𝑁𝑁
 + 1 is the expected number of runs, 𝜎𝜎𝑟𝑟 =

 2𝑟𝑟0𝑟𝑟1(2𝑟𝑟0𝑟𝑟1−𝑁𝑁)
𝑁𝑁2(𝑁𝑁−1)

 is the standard deviation of the number of runs, r is the observed number 
of runs, 𝑀𝑀0  is the number of observations below the threshold, 𝑀𝑀1  is the number of 
observations above the threshold, and 𝑁𝑁 =  𝑀𝑀0 +  𝑀𝑀1 . A p-value of 0.18 indicates 
autocorrelation assumption is not violated. The last graph is normal Q-Q plot with a p-
value (0.27) of Shapiro-Wilk normality test indicates a normality assumption is met.  

Results 

The following table shows the magnitude prediction for Case 2-1 for the return period 
of: 

Table D.2. Resulting magnitude prediction for Case 2-1 

Return Period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 0.74 2.32 14.83 37.18 

  

Results of assessment 
An exponential non-linear regression is a good option to fit the non-linear relationship 
between predictors and outcome and to meet the desired condition that the magnitude 
would be stabilised when the return period is large enough. However, this technique may 
have some technique limitations for Case 2a. First of all, the limited observed values and 
their trend corresponding to the return period is dramatically increasing, which makes it 
hard to estimate the maximum mean magnitude when the return period is large enough. 
Due to the small sample size, a non-significant p-value of runs test could not detect the 
residuals autocorrelation issues for our non-linear regression model. The power for our 
residual correlation is only 0.52. If we want to achieve our power to 0.8, the sample size 
of residuals must be at least 22. Besides, the confidence and prediction intervals for a 
return period after 2 500 years has wider bands than those intervals for return period 
before 2 500 years. The small sample size with a range of magnitudes is tabulated from 
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long-term return periods, which demonstrates a larger uncertainty of a model. In 
addition, compared with the log-transformed linear regression for Case 1, exponential 
non-linear regression has larger predictions for the long-term return period, but has 
similar predictions for the short-term return period.  

Case 2b 
For Case 2b, a simple linear regression with the Cochrane-Orcutt Procedure would be 
considered. The estimated equation is: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 =  0.586522 +  0.000339738(𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟 𝑝𝑝𝑀𝑀𝑟𝑟𝑝𝑝𝑙𝑙𝑀𝑀𝑖𝑖) 

The Cochrane-Orcutt Procedure could adjust the serial correlation of errors for a linear 
regression model. The residuals generated from the simple linear regression is first-order 
autoregressive structure based on the following two graphs, which could be written as 
𝜖𝜖𝑟𝑟 =  𝜌𝜌𝜖𝜖𝑟𝑟−1 +  𝜖𝜖𝑟𝑟 , |𝜌𝜌| < 1 , and the model could be transformed as 𝑦𝑦𝑟𝑟 −  𝜌𝜌𝑦𝑦𝑟𝑟−1 =
 𝛼𝛼(1 − 𝜌𝜌) + 𝛽𝛽(𝑋𝑋𝑟𝑟 −  𝜌𝜌𝑋𝑋𝑟𝑟−1) + 𝜖𝜖𝑟𝑟. 

Figure D.10. Series redis(mod) [1:26] 

 

Figure D.11. Series redis(mod) [1:26] 

 
The coefficient of determination is 0.9994, which means 99.94% of the uncertainty in 
the predicted values can be explained by the linear regression model. Figure D.12 shows 
the tabulated/predicted data and the regression model. It seems like a few points do not 
fall into the 95% confidence band.  
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Figure D.12. Return period vs mean magnitude 

 
The following figures are diagnostic plots for the regression model. 

The first plot is residuals vs. fitted values. In this plot, it seems like the line has some 
patterns shown below. However, each of corresponding residuals from each fitted value 
only changes a very small range, which means no large variance between the fitted 
values and tabulated values. The second graph, the normal Q-Q plot, noticed that the 
first and the last residuals do not follow the referenced dashed line. The last figure is 
checking the residuals correlation assumption. There is no trend shown on this graph.  
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Figure D.13. Residuals versus fitted 

 

 

Figure D.14. Normal Q-Q 

 

Figure D.15. Autocorrelation 

 

Results 

The following table shows the magnitude prediction for Case 2b for the return period of: 

Table D.3. Resulting magnitude prediction for Case 2b 

Return Period (years) 500 5 000 50 000 500 000 
Magnitude (metres)  0.75 2.28 17.57 170.46 
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Results of assessment 
Although this simple regression with the Cochrane-Orcutt Procedure solved the residuals 
correlation issue, the prediction of magnitude has larger differences for long-term 
periods compared with other cases, and the normality assumption is violated due to the 
first and the last residuals points. If the sample size is small, the Type I error rates will 
not be far from the target significance level, but the non-normality residuals would 
generate the inaccurate prediction interval. Besides, the model could not obtain an ideal 
and stabilised estimated magnitude for a long time period. If we could have more 
observations, especially for long time-period, we could probably estimate a model for 
ideal conditions. 

Case 2c 
The hazard frequency/magnitude model here for Case 2c has the estimation of the 
uncertainty on the magnitude for long time intervals. However, the uncertainty of short 
time intervals has not been provided for Case 2c. Therefore, the first step is using simple 
linear regression to simulate those unknown uncertainties for short time intervals. Based 
on the known mean magnitude, the standard deviation, 5th percentile and 95th percentile 
values for long time intervals used three different linear regression models to estimate 
the coefficient of relationship between the mean magnitude and those uncertainty 
characteristics. A complete table is shown below: 

Table D.4. Benchmark data provided for Case 2-3 

Return Period (years)   1 2 5 10 50 100 500 1 000 3 000 10 000 
Magnitude (metres) Mean  053 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4.0 

SDev 0.0067 0.00677 0.00808 0.00939 0.01462 0.01854 0.04 0.06 0.15 0.46 
5th 0.508 0.5082 0.5160 0.5237 0.5546 0.57787 0.72 0.85 1.3 3.2 
95th 0.5564 0.5564 0.5683 0.5803 0.6279 0.66376 0.85 1.1 1.8 4.7 

To create the predictive model based on the return period and the uncertainty of mean 
magnitude characteristics, the standard deviation, and the 5th and 95th percentile values, 
the multicollinearity of those predictors is a big issue. A principal component analysis is 
to find a new linear combination of those variables that contains much information by 
looking at the highest variance. The new variables derived by the principal component 
analysis are orthogonal, where the first axis contains the most information, and the 
second axis contains the second most information, and so forth. The following plot 
shows that only one component explains around 93% variance, and two components 
explain around 99% variance in the data set.  
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Figure D.16. Principal component analysis results 

 
The next step is to regress the response variable mean magnitude in a set of principal 
components obtained from the return period, standard deviation, and 5th and 95th 
percentiles values of the mean magnitude. The principal component regression with a 
few components often could explain most of the variability of all predictors and 
consequently with a relationship with outcome interest. The first component from the 
principal component analysis would be considered to be used in the regression model, 
and a polynomial term of the first component would be added in order to meet the 
normality assumption. The principal components regression model for Case 2c has the 
following form: 

log (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� 𝑖𝑖) =  1.04862 +  1.56278𝑃𝑃𝑃𝑃1 − 0.18800𝑃𝑃𝑃𝑃12 

The coefficient of determination 𝑅𝑅2 = 0.9862 , which means 98.62% of 
the uncertainty in the predicted values can be explained by the squared regression model. 
Besides, F-statistics (428.7) and significant p-value (<0.05) points out the model 
provides better fit than the null model. 

Figure D.17 shows the tabulated/predicted data and the regression model. Predicted 
values for long time periods could not fall into the 95% confidence interval but fall into 
the prediction interval.  
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Figure D.17. Return period versus mean magnitude 

 
Since principal component regression still uses the linear regression to predict the 
response variable by using the components as predictors, residuals vs. fitted and normal 
Q-Q plots could be utilised to check the residuals’ homoscedasticity and normality 
assumption. Another Durbin Watson test would check the measurement of 
autocorrelation in residuals from regression model. The test statistic is 𝐷𝐷𝐷𝐷 =
 ∑ (𝑟𝑟𝑡𝑡− 𝑟𝑟𝑡𝑡−1)2𝑇𝑇

𝑡𝑡=2
∑ 𝑟𝑟𝑡𝑡2𝑇𝑇
𝑡𝑡=1

, where the 𝑀𝑀𝑟𝑟 are residuals. Diagnostic plots for the regression model are 
shown below: 

Figure D.18. Residuals versus fitted 
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Figure D.19. Normal Q-Q 

  
For the residuals vs. fitted values plot, it seems like the line has some patterns shown 
between fitted values and residuals. However, residual values do not change a lot 
between each other, which means there are small variances between the fitted values and 
tabulated values. For the normal Q-Q plot, a few residuals points do not completely 
follow the referenced dashed line. Using the Shapiro-Wilk test again to ensure the 
normality assumption test, a p-value with 0.18 (>0.05) suggests that the null hypothesis 
of normality assumption could not be rejected. Besides, the Durbin Watson test with p-
value 0.09 also indicates the autocorrelation assumption is not violated.  

Results 

The following table shows the magnitude prediction for Case 2-3 for return periods of: 

Table D.5. Resulting magnitude prediction for Case 2-3 

Return Period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 0.71 2.01 13.75 37.09 

Results of assessment 
This principal component regression has a few technical limitations and uncertainties. 
First, the uncertainty of mean magnitude for a short time interval has not been provided 
in the table, even though the unknown standard deviation of each mean magnitude is 
small. In order to estimate the standard deviation, the 5th and 9th percentile of mean 
magnitude, an imputation has to utilised, which produced some uncertainty for those 
imputed values. To co-operate that uncertainty and return period, we used the principal 
component regression that only one component of those combinations represents 93% 
of variances in the dataset, inducing larger uncertainty in our model. Compared with the 
results estimation obtained from Case 2a, we noticed that the confidence and prediction 
intervals for Case 2c are all wider than those for Case 2a. Model fitting also does not 
perform well when there is a long time return period so that the predicted values do not 
fall into the 95% confidence interval. Besides, this principal component regression 
model could not meet the expected condition that the mean magnitude would keep 
increasing as the return period increases.  
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Annex E. Submission by IRSN 

E.1.1. Case 1 – Known model producing the synthetic data 

Table 1. 
Synthetic data 

for Case 1 
t M 
1 0.50 
2 0.65 
5 0.85 
10 1.00 
50 1.40 

100 1.50 
500 1.90 

1000 2.00 
2000 2.20 

10000 2.50 
 

The synthetic model (SM-Case1): 
( )100.5 0.5 logM a t= + × ×   

 
The synthetic model serves as surrogate for a 

complex phenomenological process. 
Inputs:  

Return time intervals (or periods) t ; 
Outputs:  

Magnitude M for an annual maxima (AM) 
event. Variable a equal to 1 in cas1:

( )100.5 0.5 logM t= + × ). 
 

Figure 1. Hazard curve (SM-Case1). 

Benchmark completion: Provide, using the data for Case 1, a model that best describes 
the frequency/magnitude relationship and the associated analysis and insights. 

The randomness, homogeneity and stationarity of data are necessary conditions to 
conduct a frequency analysis. As a magnitude M produced by the synthetic model is 
supposed to be for annual maxima (AM) events (mean rate of events 1λ = , this parameter 
gives the number of events per year), the hypothetical data set should be independent. 
They should also be homogeneous since the magnitudes are produced by one synthetic 
model (the same statistical population). The sample size is a prerequisite for a frequency 
analysis, as well. This last-mentioned condition can be very easily satisfied since we 
know the synthetic model producing the data (we can produce as much data as 
necessary). 

Assumption 1: The magnitudes are assumed to be stationary, 
independent and homogeneous. 

As mentioned earlier, a magnitude M  is produced by the synthetic model with a rate 
of events equal to one ( 1λ = ). Return periods can then be estimated with one of the two 
following frequency models:  

1. An annual maxima (AM) frequency model in which the distribution of the AM 
events converges to a GEV one. 

2. A Peaks-Over-Threshold (POT) model in which the distribution of the 
exceedances over the threshold u  converges to an exponential one (of 
parameter θ ).  
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Let Tx  be the event with the return period T  and F  the non-exceedance probability 

function. In its general definition, Tx  corresponds to the quantile of probability of 

exceedance equal to 1 Tλ  (i.e. equal to 1 T  when 1λ = ): ( ) ( )Pr 1T TX x F x T≥ = = λ  ( F  is 
the survival function).  

In the 1st case (SM-Case1), a set of 100 return periods is randomly sampled. Associated 
magnitudes are calculated with the synthetic model and a classic frequency estimation 
is then performed with a GEV distribution. To take this issue one step further, a simple 
analogy of the synthetic model with GEV and GP distribution functions is performed.  

1. AM/GEV frequency model:  
The GEV distribution is the limiting distribution for the AM of independent and 
identically distributed (iid) random variables.  

( )
( )

1

1
0

0
x

x

e

eF x

e

−

− −

− − + 
 

−


 ≠= 
 =

ξ

µ σ

µξ
σ ξ

ξ
 

Where µ , 
0>σ  and ξ  are the location, scale and shape parameters, respectively. A 

sample of 100 magnitudes (AM events with an effective duration equal to 100 years) is 
generated and analysed. The hypothetical observational data set (from a synthetic model) 
is selected in such a way that their empirical distribution looks as natural as possible 
(close to the natural behaviour and variability of external hazards such as floods, extreme 
temperatures or high winds, etc.). More concretely, the sampling is done as follows: the 
R “sample” function is used to randomly sample 100 values of “return times” t  from 1 
to 100 years. In all, 95 values have empirical return periods less than 100 years. It is 
worth noting that the case with aleatory sampling in a period of 10 000 years is not 
realistic and cannot represent natural hazards. 

 
library("evd") 
library("ggplot2") 
# Hypothetical data from synthetic model 
# A sample of 100 AM in which the 100-year return level was not exceeded 
w <- 100 
tt1 <- sample(1:100, size=w, replace=TRUE); 
xt <- round(0.5+0.5*(log10(tt1)),2) 
# Plotting positions - empirical probabilities (Weibul) 
Px <- 1:length(xt)/(length(xt)+1) 
# associated empirical return periods 
Tx <- 1/(1-Px) 
# Theoretical fitting  
fit.GEV <- fevd(xt, type="GEV") 
# Estimated parameters: # location  scale   shape  
#             1.2589728  0.1924330 -0.2943914  
ttic <- c(1.25, 1.5, 2, 3, 5, 10, 20, 50, 100, 500, 1000, 2000, 3000) 
RLs <- ci(fit.GEV, type = "return.level", return.period=ttic, method = 
"normal", alpha=0.30) 

Plot the fitting . . . 
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data1 <- data.frame(xx = Tx, yy = sort(xt)) 
data2 <- data.frame(xxx = ttic, yyy = RLs [,2]) 
data3 <- data.frame(xxxx = ttic, lb = RLs [,1]) 
data4 <- data.frame(xxxx = ttic, ub = RLs [,3]) 
sp <- ggplot(data.frame("pp"=NULL, "tf"=NULL)) 
sp + geom_point(aes(x=data1$xx, y=data1$yy, colour="PPcol" )) + 
geom_line(aes(data2$xxx, data2$yyy,colour="Fitcol",linetype="Fitline1")) + 
geom_line(aes(data3$xxxx, data3$lb, colour="ICcol", linetype="Fitline2"))+ 
geom_line(aes(data4$xxxx,data4$ub,colour = "ICcol",linetype="Fitline2")) + 
scale_color_manual("",labels = c("PP", "Fit", "IC70%"),breaks=c("PPcol", 

"Fitcol","ICcol"),values=c("black","black","black")) + 
scale_linetype_manual("",breaks = c("fitline1","fitline2"), 

values = c("solid","longdash")) + 
guides(fill = guide_legend(order = 1), colour = guide_legend(order = 2, keywidth = 

2.5, override.aes = list(linetype =  c("blank", "solid", "longdash"), 
shape=c(16,NA,NA)))) + 

scale_x_log10(breaks=c(10, 100, 500, 1000), labels=as.character(c(10, 100, 500, 
1000)), name = "Return period (years)") + 

scale_y_continuous(name = "Magnitude (m)", limits = c(0,2)) + 
ggtitle("Fitting with a GEV distribution (AM data)") +  
theme( 
plot.title = element_text(color = "Black", size=10, face = "bold.italic")) 

The fitting is bounded to a final value equal to −µ σ ξ (equal to 1.91 m). The 500 000-
year return level is equal to this end value (1.90 m) which is much lower than the 3.35 m 
calculated with the synthetic model for the same return period. Paradoxically, it can be 
seen from Figure E.1 that the adequacy of the GEV distribution is quite good and the 
uncertainty (in term of confidence intervals) is very low for high return levels. 

Figure E.1. Fitting with a GEV distribution with the SM-Case1 data sets ( 1.26; 0.19; 0.29= = = −µ σ ξ ) 

 
The GEV distribution combines three distributions, identified by Fisher and Tippet 

(1928) into a single form. Indeed, depending on the value of the shape parameterξ , the 

GEV can take the form of the Gumbel ( 0=ξ ), Fréchet ( 0>ξ ) or the Reverse Weibull 

distributions ( 0<ξ ). On the other hand, and as mentioned earlier in this section, the scale 
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parameter of the GEV distribution should be positive ( 0>σ ). The probability and 
quantile functions for the GEV distribution can be written as: 

A linear relationship between magnitudes M  and the 
logarithm of return periods t  could be obtained if the x-
axis was plotted in a logarithmic scale. Note that this 
linear relationship cannot be obtained with all the 
asymptotic extreme value distributions and only the 
exponential form (the Gumbel distribution) might be 
suitable (but with the limitation of bad fitting of small 
magnitudes associated to small return periods up to 50-
100 years). 

( )
( )

( ){ }

1

1
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1 log 1

x

x

e

F

eF x
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  ξ ≠=   ξ = 
 σ  = µ − − − −  ξ

 

As can be seen from the probability equation, the GEV distribution can as well have the 
form of the synthetic model when the shape parameter is equal to -1. With such a value, 
the theoretical upper tail can only be finite and bounded (as may be useful for estimates 
of specific cases of extreme values which may have an upper bound, as is the case here). 
This hypothesis is in line with the bounded theoretical fitting presented in Figure E.1.  

( ) ( )11 log 1 log logF T Tx F x x T
T
 = µ + σ + − → = µ +σ+σ → = µ +σ−σ      

 
( ) ( )10log 10 logTx T= µ + σ−σ ×

 

This last equation is similar to the proposed synthetic model as follows: 

 

It can be concluded from these two conditions that, with a shape parameter equal to -1, 
the scale parameter can only be negative. As just noted, a GEV distribution obviously 
cannot be used with a negative scale parameter: then it cannot describe the 
frequency/magnitude relationship for the SM-Case1.  

2. The POT GPD/Exponential frequency model:  
The GP distribution for the return levels (with an exponential distribution for the 
exceedances over the threshold u ). The exceedances over the threshold u  follow an 
exponential distribution of parameterρ . 

( ) ( )1 expuF X x u= − −ρ −    

( ) ( )1 1 1 1log 1 log logT T Tx u F x u x u T
T

 − = − − → = − → = + λ ρ ρ λ ρ 
 

Therefore, the 
T year−

 return level can be written as: 

( ) ( ) ( )10
1 1ln log 10 logTx u T= + λ +
ρ ρ  
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This last equation is similar to the proposed synthetic model as follows: 

 

Considering the case in which the rate of events is equal to one ( 1λ = ), the first condition 
gives a threshold 0.5u = . It can also be easily concluded from the second condition that

( )log 10 0.5 4.605ρ = = .  

Assumption 2: The number of events is randomly sampled 
following a Poisson Process. It is also assumed that the rate of 
events is equal to 1.  

In the first step, the developed frequency model is used to describe the 
frequency/magnitude relationship. Magnitudes are then sampled on a period of time w
, say 100 years.  

 
set.seed(1248) 
# effective duration 
w <- 100 
# Threshold 
u <- 0.5 
# annual rate of events 
lambda <- 1 
# Parameter of the exponential distribution 
rho <- log(10)/0.5 
# Assuming the Nbre of arrivals happen randomly following a Poisson Process 
N <- rpois(n = 1, lambda = lambda * w) 
# Return levels (exceedances follow an exponential distribution) 
xt <- u + rexp(n = N, rate = rho) 

In the next step, the fitting with the theoretical distribution (exponential) is performed. 
The fitting of the SM-Case1 data set (w=100 years) with a GPD distribution (

0.5 & 1u = λ = ) for the return levels (the exceedances over u  are exponential) is 
presented in Figure E.2. The results are also shown in Table E.1. A good and visually 
adequate fitting is obtained. Indeed, all the observed probabilities are in the 70% 
confidence interval. As shown in Table E.1, the 500 000-year return level is equal to 
3.19 m which is close to the 3.35 m calculated by the synthetic model for the same return 
period. On the other hand, the uncertainty (in term of confidence intervals) is reasonably 
low for high return levels. All the simulations were carried out within the R environment 
(open-source software for statistical computing: http://www.r-project.org/). The Renext 
library (IRSN and Alpstat, 2013), developed by the French Institute for Radiological 
Protection and Nuclear Safety, was used for frequency estimations. The Renext package 
was specifically developed for flood frequency analyses using the POT method. 

library("Renext") 
library("ggplot2") 
fit.exp <- Renouv(xt, effDuration = w,                   distname.y = 

"exponential",                     threshold = u,                             
Tlim= c(1, 10000),                    pct.conf = 70,                      
plot = TRUE)  

http://www.r-project.org/
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Figure E.2. Fitting of the SM-Case1 data sets (w=100 years) with GPD distribution (𝒖𝒖 = 0.5 & 𝛌𝛌 = 𝟏𝟏) for 

the return levels (the exceedances over u  are exponential). 

 

Table E.1. Comparison of magnitudes (m) calculated with the synthetic data for Case 1. The values in 
brackets correspond to the 70% confidence intervals. 

Return Period (years) 500 5 000 50 000 500 000 
Synthetic data for Case 1 1.85 2.35 2.85 3.35      
POT model (GPD/Exp) 1.78 (1.66-1.92) 2.25 (2.08-2.45) 2.72 (2.51-2.98) 3.19 (2.94-3.50) 

3. Case 1 – Conclusion 
In this first case, both the hypothetical data and the synthetic model are known. It can be 
concluded that the GEV distribution is not very suitable to describe all the 
frequency/magnitude relationships for the SM-Case1 data. These data are best described 
with a POT frequency model in which the distribution of the return levels converges to 
a GPD (threshold equal to 0.5 and rate of events equal to 1) with an exponential 
behaviour of the exceedances over the threshold. Indeed, the desired high return levels 
are estimated with this frequency model and compared to the hypothetical observational 
data from the synthetic model. The relative difference in magnitudes did not exceed 5% 
(7 cm, 10 cm, 13 cm and 16 cm for the 500-, 5 000-, 50 000- and 500 000 year return 
levels, respectively). Moreover, all the plotting positions are inside the confidence 
interval despite the fact that the latter is very narrow (low uncertainty). 
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E1.2. Case 2 – Unknown model producing the synthetic data 

For Case 2, there is no synthetic model provided. Furthermore, three parts to this 
example are provided.  

Case 2(a): provides the synthetic data (10 data points) with no uncertainty provided; 

Case 2(b): provides additional synthetic data (26 data points) with no uncertainty 
provided; 

Case 2(c): provides the synthetic data (10 data points) with uncertainty estimates on 
some of the data. 

We need to provide, using the data for Case 2, a model that best describes the 
frequency/magnitude relationship and the associated analysis and insights. 

 

Non-linear least-squares estimates of the distribution parameters are performed using the 
“nls” R function. Confidence intervals are then calculated and plotted. The same 
assumptions are used for this second case. 

Assumption 1: The magnitudes are assumed to be stationary, 
independent and homogeneous. 

Only parts 2a and 2b are evaluated herein. As in Case 1, return periods can then be 
estimated with one of the two following frequency models:  

1. The AM/GEV frequency model: Annual maxima (AM) frequency model in 
which the distribution of the AM events converges to a GEV one.  

2. POT/GPD frequency model: Peaks-Over-Threshold (POT) model in which the 
distribution of the exceedances converge to a GPD. 

For both Cases 2a and 2b, non-linear least-squares estimates of the GEV and GPD 
parameters are performed. It is worth noting that the GPD must give almost the same 
parameters and fitting (results not presented hereafter). The fitting with confidence 
intervals is presented in Figure E.5 and Figure E.8. The adequacy of the theoretical 
distribution in both Cases 2a and 2b is visually quite good with heavy tails (very high 
shape parameter 0.96ξ ≈ ). A comparison of T-year return levels (corresponding to 500-, 
5 000-, 50 000- and 500 000-year return periods) for both Case 2a and Case 2b are 
presented in Table E.2 (the values in brackets correspond to the absolute and relative 
widths of the 70% confidence intervals). The results in Table E.2 indicate that the 
relative widths of confidence intervals in Case 2b (with 26 synthetic data points) are 
1.5 times narrower than those obtained in Case 2a (with 10 synthetic data points) for the 
GEV distribution. 

Table E.2. The T-year quantiles with absolute and relative widths of their 70% confidence intervals 

Return Period 
(years) 

500 5 000 50 000 500 000 

    
   

GEV for Case 2-a 0.75 (0.68-0.84) 
(21.3%) 

2.32 (1.72-3.21) 
(64.2%) 

16.79 (10.75-26.44) 
(93.4%) 

150.34 (89.35-254.16) 
(109.6%)  

GEV for Case 2-b 0.76 (0.71-0.82) 
(14.5%) 

2.31 (1.88-2.87) 
(42.8%) 

16.50 (12.17-22.46) 
(62.4%) 

146.53 (102.70-209.56) 
(73.0%) 
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Cases 2a and 2b – Conclusion 
In these two cases, only the synthetic data are known (no synthetic model provided). It 
can be concluded that both the MA/GEV and POT/GP distributions best describe the 
magnitude/frequency relationship with heavy tails (very high shape parameter, then 
there is no physical limit!). On the other hand, as more data are provided in Case 2b, the 
confidence intervals are narrower (reduced uncertainty). 

It is obvious that, with such a high shape parameter, these data reflect what can be 
observed for natural hazards up to a return period of 1 000 - 10 000 years. Beyond this, 
return magnitudes increase much more quickly to very high values. This is the main 
characteristic of models with very heavy tails (as is the case here). 

Case 2a: the MA/GEV frequency model:  
10 synthetic data points are provided with no uncertainty provided; 

# Benchmark on External Events Hazard Frequency and Magnitude # 
Statistical Modelling 
# Case 2 – Unknown Model Producing the Synthetic Data 
library("evd") 
library("ggplot2") 
# Case 2-a synthetic data 
t <-c(1,2,5,10,50,100,500,1000,3000,10000) 
M <- c(0.53,0.53,0.54,0.55,0.59,0.62,0.79,0.95, 1.60,4.00) 
# Plot data - Hazards curve 
qplot(t, M, geom=c("point", "line"), xlim = c(0, 10000), ylim = c(0.5, 4), 

main = "Data (with no synthetic model provided) - Cas2-a", xlab = 
"Return period (years)",ylab = "Magnitude (m)") 

Table E.3. Synthetic data for Case 2a 

t M 
1 0.53 
2 0.53 
5 0.54 

10 0.55 
50 0.59 

100 0.62 
500 0.79 

1 000 0.95 
3 000 1.57 

10 000 3.97 
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Figure E.3. Hazard curve (Case 2a synthetic data) 

 

Figure E.4. Fitting Case 2a synthetic data 

 
 
df1 <- data.frame(t = t, xt = M) 
# Fitting with a Non-linear least-squares estimates of the GEV parameters 
fit <- nls(xt ~ qgev(1-1/t, loc = mu, scale = sigma, shape = xi), data=df1[-1,], start 

= list(mu = 0.12, sigma = 0.2, xi = 1)) 
coef(fit)  
# mu      sigma    xi  
# 0.5593335970 0.0004576594 0.9649876346 
# Plot fitting (code not presented herein) 
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Figure E.5. Fitting Case 2a synthetic data (GEV ( 0.5593; 0.0005; 0.9650µ = σ = ξ = )) 

 

Case 2b: the MA/GEV frequency model: 
26 synthetic data points are provided with no uncertainty provided; 

 library("evd") 
library("ggplot2") 
# Case 2-b synthetic data 
t <-c(1,2,5,10,15,20, . . . ,750,1000,3000,10000) 
M <- c(0.53,0.53,0.54,0.55, . . . ,0.95,1.57,3.97) 
# Plot data - Hazards curve 
qplot(t, M, geom=c("point", "line"), xlim = c(0, 10000), ylim = 

c(0.5, 4), main = "Data (with no synthetic model provided) 
- Cas2-b", xlab = "Return period (years)",ylab = 
"Magnitude (m)") 
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Table E.4. Synthetic data for Case 2b 

t M 
1 0.53 
2 0.53 
5 0.54 

10 0.55 
15 0.56 
20 0.56 
25 0.57   
30 0.57 
40 0.58 
50 0.59 
60 0.60 
70 0.60 
80 0.61 
90 0.62 
100 0.62 
125 0.63 
150 0.65 
175 0.66 
200 0.67 
300 0.71 
400 0.75 
500 0.79 
750 0.87 

1 000 0.95 
3 000 1.57 
10 000 3.97 

Figure E.6. Hazard curve (Case 2b synthetic data) 
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Figure E.7. Fitting the Case 2b synthetic data 

 
 

df1 <- data.frame(t = t, xt = M) 
# Fitting 
fit <- nls(xt ~ qgev(1 - 1/t, loc = mu, scale = sigma, shape = xi), 
      data = df1[-1, ], 
      start = list(mu = 0.12, sigma = 0.2, xi = 1)) 
coef(fit) 
# mu      sigma    xi  
# 0.5707180614 0.0004624945 0.9619867644 
# Plot fitting (code ggplot not presented herein) 

Figure E.8. Fitting Case 2a synthetic data with a GEV distribution ( 0.5709; 0.0005; 0.9619µ = σ = ξ = ) 
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Annex F. Submission by KAERI 

Introduction 

This benchmark study aims to apply statistical modelling for frequency and magnitude 
estimation based on data for external event hazard assessment. Based on the results of this 
study, it is believed that an approach to the quantification of external event IEs can be 
formulated and evaluated through the application of an effective statistical model. In this 
study, analysis was based on two cases that considered benchmarks provided by the OECD 
NEA. Each case was given a magnitude according to the return period. Based on this data, 
an appropriate statistical model was applied through regression analysis for each case. 
Based on the results, the magnitudes of 500, 5 000, 50 000, and 500 000 years were 
predicted and presented. 

Synthetic data analysis 

• Study for Case 1 

Table F.1 shows the synthetic data for Case 1 as provided by the OECD NEA. Using 
regression analysis, log regression showed appropriate fitting results for the relationship 
between magnitude and return period, as shown in Figure F.1. 

Table F.1. Synthetic data for Case 1 

Return period (years) 1 2 5 10 50 100 500 1 000 2 000 10 000 
Original M (metres) 0.50  0.65  0.85  1.00  1.40  1.50  1.90  2.00  2.20  2.50  
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Figure F.1. Log regression fitting 

 
As a result of the regression analysis on the magnitude of Case 1, the log regression 
equation including variables A and B is shown in Eq. (1). The magnitude of the return 
period from 1 to 10 000 years was estimated by Eq. (1); Table E.2 compares the values to 
the original magnitude values proposed by the OECD NEA. 

Case 1: 𝑀𝑀 =  0.2199 ∗ 𝑙𝑙𝑀𝑀 (𝑥𝑥) + 0.5034 (𝑝𝑝𝑀𝑀𝑟𝑟𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑃𝑃 𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵) (1) 

Table F.2. Regression results for Case 1 

Return period (years) 1 2 5 10 50 100 500 1 000 2 000 10 000 
Original M (metres) 0.50  0.65  0.85  1.00  1.40  1.50  1.90  2.00  2.20  2.50  
Log Magnitude (metres) 0.503 0.656 0.857 1.010 1.364 1.516 1.870 2.022 2.175 2.529 

An error analysis was then performed using the SUMXMY2 function to verify the 
statistical justification of the estimated magnitudes. The SUMXMY2 function squares and 
sums the difference between two corresponding values, and therefore, the closer to 0, the 
smaller the error between the two variables, and the more statistically valid the estimation 
can be considered. The SUMXMY2 function is expressed as Eq. (2). 

𝑆𝑆𝑆𝑆𝑀𝑀𝑋𝑋𝑀𝑀𝑌𝑌2 =  ∑(𝑥𝑥 − 𝑦𝑦)2               (2) 

Here, 𝑥𝑥  is the value of the original magnitude, and 𝑦𝑦  is the value of the estimated 
magnitude. As a result of error analysis using the SUMXMY2 function, the sum square 
error (SSE) value was calculated as 0.005, which is very close to zero. It was therefore 
judged that the estimated magnitude values were very similar to the original values and 
valid. However, to minimise SSE and more precisely estimate the magnitude values, a 
solver function was used. The target of the SSE value was set to 0, and an optimisation 
analysis was performed on parameters A and B of Eq. (1). The results are shown in Table 
F.3. 
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Table F.3. Optimisation for parameters 

Parameter Original SSE_Solver 
A 0.2199 0.219861834 
B 0.5034 0.503363549 

These optimised parameters are then used in the regression equation for Case 1, as shown 
in Eq. (3) below. Table F.4 compares the magnitude values estimated by Eq. (3) with those 
estimated by Eq. (1) and the original magnitude values. 
Case 1: 𝑀𝑀 =  0.219861834 ∗ 𝑙𝑙𝑀𝑀 (𝑥𝑥) + 0.503363549 (𝑝𝑝𝑀𝑀𝑟𝑟𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑃𝑃 𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵)  (3) 

Table F.4. Comparison of magnitudes 

Return period (years) 1 2 5 10 50 100 500 1 000 2 000 10 000 
Original M (metres) 0.500 0.650 0.850 1.000 1.400 1.500 1.900 2.000 2.200 2.500 
Log Magnitude (metres) 0.503 0.656 0.857 1.010 1.364 1.516 1.870 2.022 2.175 2.529 
Optimised 
magnitude (metres) 

0.503 0.656 0.857 1.010 1.363 1.516 1.870 2.022 2.175 2.528 

For Case 1, the optimised parameters A and B (Table F.3) were similar to the existing 
values. Likewise, the SSE value of 0.0049 was also similar to the existing value of 0.005. 
Fitting was then performed based on the optimised magnitude values; results are shown in 
Figure F.2. 

Figure F.2. Fitting result for Case 1 

 

F.1.1. Case 1 result assessment  
The results of the optimised fit for Case 1 were estimated to be similar to the size values 
presented by the OECD NEA. The trend lines calculated from the estimated magnitude 
values (Figure F.1 and Figure F.2) were also similarly estimated. Therefore, it can be 
judged that the fitting result for Case 1 in this study is valid. Additionally, based on the 
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regression analysis estimates in Case 1, magnitude values were predicted for 500, 5 000, 
50 000, and 500 000 years return period. The results are presented in Table F.5 and Figure 
F.3. 

Table F.5. Magnitude prediction by return period (Case 1) 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 1 Exact 1.9 2.4 2.9 3.4 
Log KAERI mean (metres) 1.870 2.376 2.883 3.389 
Optimised KAERI mean (metres) 1.870 2.376 2.882 3.388 

Figure F.3. Magnitude prediction fitting for Case 1 

 

F.1.2. Study for Case 2  
Table F.6 shows the synthetic data for Case 2 provided by the OECD NEA. In this case, 
regression analysis found linear regression to give the best fit between magnitude and 
return period, as shown in Figure F.4. 

Table F.6. Synthetic data for Case 2 

Return Period (years) 1 2 5 10 50 100 500 1 000 3 000 10 000 
Original M (metres) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.60 4.00 
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Figure F.4. Linear regression fitting 

 
Equation (4) below is the linear regression equation including variables A and B as a result 
of the regression analysis on the magnitude of Case 2. Magnitudes of return periods from 
1 to 10 000 years were estimated by Eq. (4) and compared to the values of the original 
magnitude proposed by the OECD NEA (Table F.7). In addition, 95% and 5% confidence 
interval magnitude provided by the OECD NEA are also given in Table F.7, with fitting 
results plotted in Figure F.5. 
Case 2: 𝑀𝑀 =  0.0003 ∗ 𝑥𝑥 + 0.5651 (𝑝𝑝𝑀𝑀𝑟𝑟𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑃𝑃 𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵)      (4) 

Table F.7. Regression results for Case 2 

Return period (years) 1 2 5 10 50 100 500 1 000 3 000 10 000 
Original M (metres) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.60 4.00 
Linear Magnitude (metres) 0.565 0.566 0.567 0.568 0.580 0.595 0.715 0.865 1.465 3.565 
Original M 95% (metres) — — — — — — 0.85 1.1 1.8 4.7 
Original M 5% (metres) — — — — — — 0.72 0.85 1.3 3.2 
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Figure F.5. Linear regression fitting according to confidence interval 

 
As a result of the regression analysis, the estimated magnitude values fell within the 
confidence interval and cannot be judged as inappropriate. The estimated magnitude for 
the initial return period was similar to those proposed by the OECD NEA. However, as the 
return period increases, errors in the magnitude values were found to occur. Error analysis 
in this case using the SUMXMY2 function gave an SSE value of 0.22443. In order to 
minimise this error in Case 2, the solver function was used, where again the target of the 
SSE value was set to 0 and an optimisation analysis was performed on parameters A and B 
from Eq. (4). The results are shown in Table F.8. 

Table F.8. Optimisation for parameters 

Parameter Original SSE_Solver 
A 0.0003 0.000344252 
B 0.5651 0.565051348 

Based on the optimised parameters, linear regression analysis for Case 2 was re-estimated 
via Eq. (5). Table F.9 compares the magnitude values from the three sources [original, Eq. 
(4), and Eq. (5)] along with the confidence intervals.  
Case 1: 𝑀𝑀 =  0.000344252 ∗ 𝑥𝑥 + 0.565051348 (𝑃𝑃𝑀𝑀𝑟𝑟𝑀𝑀𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑃𝑃 𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀 𝐵𝐵)    (5) 

Table F.9. Compare for magnitude 

Return period (years) 1 2 5 10 50 100 500 1 000 2 000 10 000 
Original M (metres) 0.53 0.53 0.54 0.55 0.59 0.62 0.79 0.95 1.6 4 
Linear  
Magnitude (metres) 

0.565 0.566 0.567 0.568 0.58 0.595 0.715 0.865 1.465 3.565 

Optimised 
magnitude (metres) 

0.565 0.566 0.567 0.568 0.582 0.599 0.737 0.909 1.598 4.008 

Original M 95% (metres) — — — — — — 0.85 1.1 1.8 4.7 
Original M 5% (metres) — — — — — — 0.72 0.85 1.3 3.2 
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In Case 2, the SSE of the optimised model was calculated to be 0.01. Accordingly, it was 
judged that the parameters A and B were significantly improved compared to the existing 
parameters. Fitting was then performed based on the optimised magnitude values. The 
results are shown in Figure F.6. 

Figure F.6. Fitting result for Case 2 

 

F.1.3. Case 2 result assessment 
It was found that when the optimisation technique was applied to Case 2, the model 
performance further improved, as seen in Figure F.5. In other words, the optimised fitting 
was able to estimate values similar to the magnitude values proposed by the OECD NEA. 
Comparing Figure F.4 and Figure F.5, the trend lines calculated from the estimated 
magnitude values were also similarly estimated. Therefore, like Case 1, it can be judged 
that the fitting result for Case 2 in this study is valid.  

Then, based on the regression analysis estimates in Case 2, magnitude values for return 
periods of 500, 5 000, 50 000, and 500 000 years were predicted. The results are shown in 
Table F.10 and Figure F.7. 

Table F.10. Magnitude prediction by return period (Case 2) 

Return period (years) 500 5 000 50 000 500 000 
Magnitude (metres) Case 2 Exact 0.78 2.2 28 2 000 
Linear KAERI mean (metres) 0.715 2.065 15.565 150.565 
Optimised KAERI mean (metres) 0.737 2.286 17.778 172.691 
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Figure F.7. Magnitude prediction fitting for Case 2 

 

Conclusion 

In this study, statistical analysis was applied to the estimation of two cases presented by 
the OECD. In any statistical analysis, it is important to understand the characteristics of the 
data set. For the given problems here, the range of the return period was 10–10 000 years, 
while that of the magnitude was only 0.4–5.0 metres. Therefore, the coefficient of the 
synthetic model had a great influence on the analysis results. This study demonstrates that 
employing the full extent of the significant figures is important to handle the different 
ranges of data values. In the future, it is expected that data-based statistical values can be 
better estimated through various verified statistical models. 
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